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Abstract

This article is motivated by the difficulty of applying standard simulation techniques when iden-
tification constraints or theoretical considerations induce covariance restrictions in multivariate
models. To deal with this difficulty, we build upon a decomposition of positive definite matrices
and show that it leads to straightforward Markov chain Monte Carlo samplers for restricted
covariance matrices. We introduce the approach by reviewing results for multivariate Gaussian
models without restrictions, where standard conjugate priors on the elements of the decom-
position induce the usual Wishart distribution on the precision matrix and vice versa. The
unrestricted case provides guidance for constructing efficient Metropolis-Hastings and accept-
reject Metropolis-Hastings samplers in more complex settings, and we describe in detail how
simulation can be performed under several important constraints. The proposed approach is
illustrated in a simulation study and two applications in economics. Supplemental materials for
this article (appendices, data, and computer code) are available online.

Keywords: Accept-reject Metropolis-Hastings algorithm; Bayesian estimation; Cholesky decompo-
sition; Correlation matrix; Markov chain Monte Carlo; Metropolis-Hastings algorithm; Multinomial
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Appendix A: Proofs

To prove Theorem 1, we begin by computing the determinant of the Jacobian of the transformation

considered in Section 2. The result is recorded in the following lemma:

Lemma 1 Suppose W is a p × p positive definite matrix and W = T ′AT , where T is a lower

triangular matrix whose diagonal elements are all ones and A a diagonal matrix with positive

diagonal elements. Denote the lower diagonal elements of T by tij, 1 6 j < i 6 p, and the diagonal

elements of A by tii, i = 1, . . . , p,. Let (dW ) denote the differential form (dW ) ≡ ∧
i>j

dwij and
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similarly (dT ) ≡ ∧
i>j

dtij. Then we have

(dW ) =
p∏

i=1

ti−1
ii (dT ).

In other words, the determinant of the Jacobian of the transformation from T ′AT to W is
∏p

i=1 t−i+1
ii .

Proof of Lemma 1: By definition, we have



w11 w21 . . . wp1

w21 w22 . . .
...

...
...

. . .
...

wp1 wp2 . . . wpp




=




1 t21 . . . tp1

0 1 . . . tp2
...

...
. . .

...
0 0 . . . 1







t11 0 . . . 0
0 t22 . . . 0
...

...
. . .

...
0 0 . . . tpp







1 0 . . . 0
t21 1 . . . 0
...

...
. . .

...
tp1 tp2 . . . 1


 .

Now we express each wij in terms of tij ’s and then take differentials (for an introduction to the

differential forms approach, see Muirhead, 1982). Since we are going to take the exterior product

of these differentials and the exterior products of repeated differentials are zero, there is no need

to keep track of differentials in tij which have previously occurred. In general we get

wii = tii +
p∑

j=i+1

t2jitjj , i = 1, . . . , p, (1)

wij = tijtii +
p∑

k=i+1

tkitkjtkk, 1 6 j < i 6 p. (2)

Taking differentials and ignoring those which have previously occurred, we have

dwpp = dtpp

dwp,p−1 = tppdtp,p−1 + . . .

...

dwp1 = tppdtp1 + . . .

dwp−1,p−1 = dtp−1,p−1 + . . .

...

dw11 = dt11 + . . .

Hence taking exterior products gives

(dW ) ≡ ∧
i>j

dwij = tp−1
pp tp−2

p−1,p−1 . . . t22 ∧
i>j

dtij
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as desired. ¤

Proof of Theorem 1: Assume the same notation as above. To prove Theorem 1, it is

sufficient to consider the case where tii
ind∼ G(ν+i−p

2 , 2), ν > p, i = 1, . . . , p, and for each i, we

have tij |tii iid∼ N (0, t−1
ii ), 1 6 j < i 6 p. First note that since detT = 1, we have

det W = det A =
p∏

i=1

tii.

Moreover, by (1), we also have

tr(W ) =
p∑

i=1

wii

=
p∑

i=1

tii +
p∑

i=1

p∑

j=i+1

t2jitjj

=
p∑

i=1

tii +
p∑

j=2

j−1∑

i=1

t2jitjj

=
p∑

i=1

tii +
p∑

i=2

i−1∑

j=1

t2ijtii

where we change the order of the double summations in the third equality and interchange the

dummy indices i ↔ j in the last equality. Now, the kernel of the joint density of T and A is

(
p∏

i=1

t
ν+i−p

2
−1

ii exp{−1
2
tii}

)


p∏

i=2

t
i−1
2

ii exp{−1
2

i−1∑

j=1

t2ijtii}



=

(
p∏

i=1

t
ν−p−3

2
+i

ii

)
exp



−

1
2




p∑

i=1

tii +
p∑

i=2

i−1∑

j=1

t2ijtii






 .

By Lemma 1, the determinant of the Jacobian is
∏p

i=1 t−i+1
ii . Substituting tr(W ) and det(W ) into

the above expression and multiplying the Jacobian, the kernel of the density of W is

(detW )
ν−p−1

2 exp{−1
2
tr(W )},

which is the kernel of the Wishart density Wp(ν, Ip). ¤

Proof of Corollary 1: The proof will proceed by construction. By the re-scaling property of

the Wishart distribution, if C ′C = R and W ∼ W(ν, Ip), then C ′WC ∼ Wp(ν, R). By Theorem 1,
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C ′WC can be written as C ′L′D−1LC, where the elements of L and D are distributed as in (1)

and (2). At this point, transparency of the construction is greatly improved by choosing C to be

a lower triangular matrix, for example by taking C =
(
P−1

)′, where P is the Cholesky factor of

R−1 such that P ′P = R−1. Since both L and C are lower triangular and the main diagonal of L

contains ones, the product LC is a lower triangular matrix with a main diagonal equal to the main

diagonal of C and subdiagonal entries that are linear functions of the entries of L. This implies

that by simple rescaling of the rows of LC by the values on the main diagonal of C, we can write

C ′L′D−1LC = L̃
′
D̃
−1

L̃, where L̃ is lower unitriangular and D̃ is diagonal. Furthermore, because

L̃ contains linear combinations of normal random variables and D̃ contains rescaled inverse gamma

random variables, their elements have Gaussian and inverse gamma distributions, respectively. In

essence, by starting with the priors in (1) and (2), transforming them by C we can derive the

hyperparameters in priors (3) and (4) necessary to obtain Σ−1 ∼ W(ν, R). It then goes without

saying that any prior hyperparameters in (3) and (4) that do not boil down to those in (1) and (2)

after the reverse transformation will produce a Σ−1 that does not follow the Wishart distribution.

Examples include parameters νk0 that vary differently (or not at all) with k, {δk0} that are not

equal to 1, a0 that is distinct from zero, and A0 that does not depend on λ. ¤

Appendix B: The ARMH Algorithm

To introduce the ARMH algorithm (Tierney, 1994; Chib and Greenberg, 1995), let θ be a parameter

vector whose density, π (θ), is the target density of interest, which is known only up to a normalizing

constant and is not easy to simulate. Let h(θ) denote a source (or proposal) density for the ARMH

algorithm and let the constant c define the region of domination

D = {θ : π(θ) 6 ch(θ)}

which is a subset of the support Θ of the target density. Because the domination condition need

not be satisfied for all θ ∈ Θ, the source density h (θ) is often called a pseudo-dominating density.

The choice of a pseudo-dominating density is commonly determined by conditioning on the data,

other blocks of parameters and latent data as discussed in Section 3; such dependence is implicit
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in our discussion, but is suppressed for notational simplicity. Let Dc be the complement of D, and

suppose that the current state of the chain is θ. Then the ARMH algorithm proceeds as follows.

Algorithm 1 The accept-reject Metropolis-Hastings (ARMH) algorithm

1. A-R step: Generate a draw θ′ ∼ h(θ); accept θ′ with probability αAR(θ′) = min
{

1, π(θ′)
ch(θ′|y)

}
.

Continue the process until a draw θ′ has been accepted.

2. M-H step: Given the current value θ and the proposed value θ′:

(a) if θ ∈ D, set αMH(θ, θ′) = 1;

(b) if θ ∈ Dc and θ′ ∈ D, set αMH(θ, θ′) = ch(θ)
π(θ) ;

(c) if θ ∈ Dc and θ′ ∈ Dc, set αMH(θ, θ′) = min
{

1, π(θ′)h(θ)
π(θ)h(θ′)

}
.

Return θ′ with probability αMH(θ, θ′); otherwise return θ.

The ARMH algorithm is an MCMC sampling procedure which nests the accept-reject and MH

algorithms when Dc or D become empty sets, respectively. But even in the intermediate case when

both D and Dc are non-empty, ARMH has several attractive features that make it a useful choice

for our setting. First, the algorithm is well suited to problems that do not require conjugacy and

result in non-standard full-conditional densities, which is the case for the elements of a restricted

covariance matrix Σ. Second, the tuning of an ARMH algorithm can be less demanding and it

works reasonably well even if the proposal density h (θ) is only a rough approximation of the target

density, as may be the case with standard asymptotic approximating densities (e.g., Zellner and

Rossi, 1984). Third, ARMH can produce draws that are closer to iid than those from a similarly

constructed MH simulator, but without requiring global domination as the simple accept-reject

algorithm. Fourth, the algorithm is useful in sampling covariance matrices because only draws

that satisfy positive definiteness, or more stringent eigenvalue constraints as in Everson and Morris

(2000), pass through the accept-reject step and continue to the MH step of the sampler. Finally,

the building blocks of the ARMH algorithm provide a straightforward way to estimate the marginal

likelihood as discussed in Chib and Jeliazkov (2005).
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