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The use of subjective prior beliefs must be accompanied by a local sensitivity

analysis, and to the extent possible, a global sensitivity analysis.

Poirier (1988, p. 130)

1 Introduction

Since the seminal work of Sims (1980), vector autoregressions (VARs) have become a

workhorse model for modeling the dynamic linear interdependencies between multiple

time series. In particular, VARs are widely used for macroeconomic forecasting and

often serve as benchmark models for comparing the performance of new models and

methods. VARs tend to have a lot of parameters, and Bayesian methods that formally

incorporate strong but sensible prior information are often found to greatly improve

forecast performance. Prominent examples include the Minnesota prior developed in

Doan, Litterman, and Sims (1984) and Litterman (1986).

The fact that informative priors can improve forecast performance suggests VAR forecasts

are sensitive to prior hyperparameters. However, the nature of this sensitivity is not well

understood—it is unclear how VAR forecasts are affected by various choices of hyper-

parameters. Of course, the importance of sensitivity analysis has long been recognized

(Leamer, 1983). It is especially so when subjective priors are used—e.g., Poirier (1988)

strongly advises it be done as stated in his second pragmatic principle of model building

quoted above. In practice, even when a sensitivity analysis is conducted, often only a

narrow aspect is investigated. For example, forecasters might assess a specific aspect of

forecast sensitivities by recomputing the forecasts using a different set of hyperparame-

ters. But this approach is ad hoc and requires a substantial amount of computational

overhead. Hence, it would be useful to have a systematic approach to assess forecast

sensitivities with respect to a variety of hyperparameters as part of the Markov chain

Monte Carlo (MCMC) output. This paper takes up this task.

Specifically, we develop a general framework to analyze the sensitivities of predictive

outputs—such as means and quantiles of the predictive distribution—with respect to any

prior hyperparameters. Our approach builds on earlier work by Jacobi, Joshi, and Zhu

(2018), who introduce prior sensitivity analysis for Gibbs output based on Automatic

Differentiation (AD). In a nutshell, Automatic Differentiation provides an efficient way

to compute derivatives of an algorithm—i.e., local sensitivity of the outputs with respect

to the inputs. It is “automatic” in the sense that for an algorithm that transforms the
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input into any posterior output, there is an automatic way of deriving its complementary

algorithm of computing its sensitivities.

In contrast to AD, the conventional method for assessing local sensitivities of MCMC

outputs is the standard numerical finite difference method. Despite its relatively easy

implementation, the first clear drawback in applying it to VARs is the computational

burden. It requires at least one re-running of the whole MCMC for each parameter in

the input vector for assessing first-order sensitivities, hence places a substantial amount

of computational overhead. Secondly the method needs to be used with care in choosing

the bumping parameter. Since its resulting sensitivities of posterior statistics are biased,

there is a variance-bias trade-off in choosing the bumping parameter (Glasserman, 2013).

Most importantly, however often ignored, are its subtleties in the cases of non-smooth

algorithms. For example, one popular method to sample from a distribution that does not

admit the application of the inverse-transform is the acceptance-rejection sampling (as

used for example in Gamma random variable generation), which introduces discontinuities

to the MCMC. In such cases a naive bumping of input parameters may result in very

unstable estimates of the derivatives.

We illustrate our methodology using a VAR forecasting exercise that involves US GDP

output growth, interest rate and unemployment rate. We assess the sensitivities of point

and interval forecasts of these three variables with respect to a few key hyperparameters in

a Minnesota-type prior. Our results show that point and interval forecasts are relatively

sensitive to the strength of shrinkage of the VAR coefficients, but they are not much

affected by the prior mean of the error covariance matrix nor the strength of shrinkage

of the intercepts. In particular in the context of shorter samples, forecasts exhibit a

considerable sensitivity with respect to the prior shrinkage parameter.

The rest of this paper is organized as follows. Section 2 first outlines a standard VAR and

discusses the priors and the estimation. It is followed by a brief description of how point

and interval forecasts from the VAR can be computed. We then introduce in Section 3

a general framework to analyze the sensitivities of the point and interval forecasts with

respect to the prior hyperparameters. Section 4 considers a forecasting exercise that

involves GDP output growth, interest rate and unemployment rate. Lastly, Section 5

concludes and briefly discusses some future research directions.
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2 Vector Autoregressions

A vector autoregression (VAR) is a multiple-equation linear regression that aims to cap-

ture the linear interdependencies between variables over time. More specifically, let yt

denote a vector of observations of n variables at time t with t = 1, . . . , T . Then, a p-order

VAR, denoted as VAR(p), is given by:

yt = b+B1yt−1 + · · ·+Bpyt−p + εt, εt ∼ N (0,Σ), (1)

where b is an n×1 vector of intercepts, B1, . . . ,Bp are n×n matrices of VAR coefficients

and Σ is a covariance matrix.

Even for small systems, VARs tend to contain a large number of parameters. For example,

a VAR of n = 4 variables with p = 4 lags has pn2 + n = 68 coefficients, as well as

n(n + 1)/2 = 10 free parameters in the covariance matrix. Given the typical number of

quarterly observations for macroeconomic variables (e.g., less than 300), it is often hard

to precisely estimate these parameters. The estimation errors in parameters in turn make

forecasts based on VARs less accurate. This has motivated the development of shrinkage

priors—i.e., informative priors designed to avoid over-fitting the data and to improve

forecast accuracy. Prominent examples include the Minnesota prior and various variants;

see, for example, Doan, Litterman, and Sims (1984), Litterman (1986) and Kadiyala and

Karlsson (1997).

Given that fairly informative priors are typically used in the context of VAR forecasting,

it is natural to assess how these point and interval forecasts change with respect to the

strength of shrinkage (e.g., prior covariance). Below we introduce and apply an efficient

approach to undertake a comprehensive prior sensitivity analysis for VAR point and

interval forecasts with respect to key prior parameters.

2.1 Prior and Estimation

Before outlining the estimation method, it is convenient to rewrite the VAR in (1) in the

form of a seemingly unrelated regression:

yt = Xtβ + εt, εt ∼ N (0,Σ), (2)
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whereXt = In⊗(1,y′

t−1, . . . ,y
′

t−p) and β = vec([b,B1, . . . ,Bp]
′) is the vector of intercepts

and VAR coefficients stacked by rows. Here β ∈ R
kβ with kβ = n(np+1). The parameters

can therefore be partitioned into two blocks: β and Σ.

Next, consider the following independent priors for β and Σ:

β ∼ N (β0,Vβ), Σ ∼ IW(ν0,S0), (3)

where N (·, ·) and IW(·, ·) denote respectively the normal and inverse-Wishart distribu-

tions. Here β0 and Vβ are respectively the mean vector and covariance matrix of the

normal prior on β, whereas ν0 and S0 are respectively the degrees of freedom and scale

matrix of the inverse-Wishart prior on Σ.

In our empirical application that involves stationary macroeconomic variables, we con-

sider a Minnesota-type prior that shrinks the VAR coefficients to zero. Specifically, we set

β0 = 0, and the covariance matrix Vβ is assumed to be diagonal with diagonal elements

vβ,ii = κ1/(l
2ŝr) for a coefficient associated to lag l of variable r and vβ,ii = κ2 for an

intercept, where ŝr is the sample variance of an AR(4) model for the variable r. Further

we set ν0 = n+ 3, S0 = κ3In, κ1 = 0.22, κ2 = 102 and κ3 = 1. Intuitively, the coefficient

associated to a lag l variable is shrunk more heavily to zero as the lag length increases,

but intercepts are not shrunk to zero. These hyperparameters are standard in the litera-

ture. The key hyperparameter is κ1 that controls the overall strength of shrinkage. For

a more detailed discussion of this type of shrinkage priors, see, e.g., Koop and Korobilis

(2010) or Karlsson (2013).

Given the priors in (3), the VAR can be estimated using a 2-block Gibbs sampler. To

outline the Gibbs sampler, define

Y =




y′

1

y′

2
...

y′

T




, X =




1 y′

0 · · · y′

1−p

1 y′

1 · · · y′

2−p

...
...

. . .
...

1 y′

T−1

... y′

T−p




. ε =




ε′1

ε′2
...

ε′T




,

Then, we can rewrite (2) as

Y = Xβ + ε.

In particular, this gives us X′X ∈ R
kβ×kβ and X′Y ∈ R

kβ×n.

Let B denote the burn-in period and let G represent the number of posterior draws
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required. Then, we initialize the Gibbs sampler via Σ0 ∈ R
n×n, and update for g =

1, 2, . . . , B +G via

1. Generate (βg |Y,Σg−1) ∼ N (bg,Bg), where

Bg = (V−1
β + (Σg−1)−1 ⊗X′X)−1, bg = Bg

(
V−1

β β0 + vec(X′Y(Σg−1)−1)
)
.

2. Generate (Σg |Y,βg) ∼ IW(ν1,S
g), where

ν1 = ν0 + T, Sg = S0 +Y′Y − (βg)′X′Y − ((βg)′X′Y)
′

+ (βg)′X′Xβg.

The derivations of the two conditional distributions (β |Y,Σ) and (Σ |Y,β) can be found

in standard Bayesian macroeconometric textbooks, such as Chapter 8 in Chan (2017) and

Chapter 2 in Koop and Korobilis (2010).

2.2 Point and Interval Forecasts

In this section we describe how one can obtain point and interval forecasts from the

VAR given the posterior draws of (β,Σ). More specifically, given data up to time t,

denoted as y1:t, we use the predictive mean E(yt+h |y1:t)—where the expectation is taken

with respect to the predictive density p(yt+h |y1:t)—as the point forecast of yt+h for

forecast horizon h > 0. To construct interval forecasts, we use appropriate quantiles of

the predictive density. For example, the 0.05 and 0.95 quantiles of the predictive density

define an interval forecast with coverage probability 0.9.

Even though neither the predictive mean nor any predictive quantiles are available analyt-

ically, they can be easily estimated using simulation. Note that the predictive distribution

at time t+ h can be expressed as

p(yt+h |y1:t) =

∫
p(yt+h |y1:t,β,Σ)p(β,Σ |y1:t)d(β,Σ),

where p(yt+h |y1:t,β,Σ) is a Gaussian density implied by the Gaussian VAR described in

equation (1). The above integral is taken with respect to the posterior distribution of the

parameters. Hence, we can obtain draws from this predictive distribution by generating

draws from p(yt+h |y1:t,β,Σ) at each iteration of the Gibbs algorithm introduced above,

via the following additional step:
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3. Generate y
g
t+h, for h = 1, . . . , H from (yg

t+h |y1:t,β
g,Σg) ∼ N (Xt+hβ

g,Σg).

We can then use these posterior draws {yg
t+h}

B+G
g=B+1 after burn-in to obtain simulation-

consistent estimates of the mean and quantiles of the predictive densities.

3 Automatic Differentiation for VAR

In this section we introduce a general framework to analyze the sensitivity of the predictive

outputs (e.g., predictive mean and quantiles) with respect to a set of prior hyperparame-

ters, θ0 ∈ R
p. This builds on recent work by Jacobi, Joshi, and Zhu (2018) that develops

a general framework to obtain a complete set of input sensitivities for MCMC output

based on Automatic Differentiation (AD), including methods to compute sensitivities for

posterior statistics with respect to the full set of prior assumptions.

Automatic Differentiation is an efficient means of computing derivatives, i.e., the local

sensitivity of the outputs with respect to the inputs. In a nutshell, if we have a function

g : R → R, AD translates g into its first order derivative automatically. For many

applications in Bayesian MCMC, we typically have a more general mapping of the form

θ0 ∈ R
m1 ,η0 ∈ R

n1 → G(θ0, η0) ∈ R
m2×n2 ,

where η0 refers to the set of inputs in combination with θ0 that are mapped via some

MCMC algorithm G into posterior quantities, albeit the analyst is not interested in its

relative sensitivities. For instance, the prior mean of β is set at zero in the Minnesota

prior as an input for the MCMC algorithm, but it is not considered in our sensitivity

analysis in Section 4. In general, the complementary AD computes the derivatives of the

posterior output G with respects to the complete set of inputs. It is up to the analyst to

choose which subset of inputs are included in θ0.

The application of AD is the translation of G into a set of first order derivatives

∂G(θ0,η0)

∂θ0

=
∂ vec(G′(θ0,η0))

∂θ0

=




∂G1,1(θ0,η0)

∂θ0,1

∂G1,1(θ0,η0)

∂θ0,2
· · · ∂G1,1(θ0,η0)

∂θ0,m1

∂G1,2(θ0,η0)

∂θ0,1

∂G1,2(θ0,η0)

∂θ0,2
· · · ∂G1,2(θ0,η0)

∂θ0,m1

...
...

. . .
...

∂Gm2,n2
(θ0,η0)

∂θ0,1

∂Gm2,n2
(θ0,η0)

∂θ0,2
· · ·

∂Gm2,n2
(θ0,η0)

∂θ0,m1



,
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where θ0,j is the jth element of θ0, this Jacobian matrix of dimension m2n2 × p.

While AD methods have been widely used to undertake input sensitivity analysis in the

context of less computationally intensive classical simulation methods, particularly in

financial mathematics (see Giles and Glasserman, 2006; Joshi and Yang, 2011), it has

only been recently introduced in the context of MCMC simulation by Jacobi, Joshi, and

Zhu (2018). In particular, the paper develops an AD approach and AD based methods for

a comprehensive prior robustness and convergence analysis of MCMC output and shows

how the Forward mode of differentiation can be applied to compute Jacobian matrices of

first order derivatives for MCMC based statistics in various standard models.

AD is “automatic” in the sense that for an algorithm that transforms the input vector θ0

into the posterior output vector, there is an automatic way of deriving its complementary

algorithm of computing its sensitivities without manually deriving the symbolic formula

of the derivatives. It is derived by first decomposing the original algorithm G into simpler

operations G1, . . . ,Gk:

G = Gk ◦Gk−1 ◦ · · · ◦G1.

Then, the derivative of G can be obtained via the chain-rule (that is implemented auto-

matically in the compute program)

∂G(θ0,η0)

∂θ0

= JGk × JGk−1 × · · · × JG1,

where JGi, i = 1, . . . , k are the intermediate Jacobians of the simpler operations. While

the end result ∂G(θ0,η0)
∂θ0

is a dense matrix, the JGi’s are typically very sparse matrices

because each operation Gi typically only updates one or two variables.

In the context of MCMC, sensitivities can often be derived using information about model

dynamics in simulation—i.e., the dependence of the posterior distribution on the set of

prior assumptions. AD accomplishes this by differentiating the evolution of the under-

lying state variables along each path. In comparison to the widely used numerical finite

difference methods, AD requires additional model analysis and programming, but this

additional effort is often justified by the improvement in the quality and comprehensive-

ness of calculated local sensitivities. Due to the computational burden of numerical finite

difference methods, typically only a very limited prior robustness analysis is implemented.

Symbolic differentiation is another method widely implemented in computer software

including Matlab and Mathematica. In general, if the original function of mapping is
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simple enough, a symbolic differentiation package can be applied which outputs symbolic

descriptions of the derivatives. Many of our derivation in the following section uses

this symbolic derivative idea for illustration purposes, but the exact implementation

is done via AD which simplifies long symbolic derivative expressions by sharing some

intermediate results between the main original algorithm, Gi and the complementary

derivative algorithm, JGi.

3.1 Sensitivities for Prior Shrinkage

For the VAR model introduced in Section 2, we are interested in the sensitivities of

the forecasts with respect to the prior hyperparameters (β0,Vβ, ν0,S0). Therefore, let

θ0 = (β0, vec(Vβ), ν0, vec(S0)) denote the vector of all input parameters of interest. AD

offers an efficient numerical approach to compute the complete set of first order derivatives

of a wide range of MCMC output with respect to θ0. Of particular interest here are the

prior robustness of the mean and interval predictions. In the context of the Minnesota

prior the prior variances are specified in terms of the scale parameters κ1, κ2 and κ3 which

respectively “scale” the prior variances for the lag effects, the intercept and the variance

parameters. For our empirical analysis in Section 4 we set θ0 = (κ1, κ2, κ3) as these

present the key parameters for our forecast sensitivity analysis of prior shrinkage.

Our focus is on the sensitivities of point and interval forecasts. As discussed in Section 2,

the MCMC algorithm first generate the model parameters and then the forecast values.

Since the predictions depend on the model parameters, we first discuss the AD approach

to obtain the first order derivatives for the model parameters with respect to θ0. These

are obtained by differentiating through the 2-step Gibbs algorithm that generates the

parameter draws. Next we show how to obtain the first order derivatives for the point

and interval forecasts.

We have also provided Matlab and R code to implement the AD based prior sensitivity

analysis described below.1 For some more technical points on the implementation, inter-

ested readers are referred to the Technical Appendix at the end of this paper as well as

to the discussion in Jacobi, Joshi, and Zhu (2018).

1The code can be downloaded at http://joshuachan.org/code.html.
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3.2 Sensitivities of Model Parameters

In the first step, β is updated from a multivariate Normal as βg = bg + chol(Bg)Z, for

Z ∼ N (0, Ikβ), where kβ = n(np+ 1) is the dimension of β. Therefore, we need to apply

the chain rule and product rule and employ matrix and vector calculus to differentiate

the following expression:

∂βg

∂θ0

=
∂bg

∂θ0

+
(
Z′ ⊗ Ikβ

) ∂ chol(B)

∂B

∣∣∣∣
B=Bg

∂Bg

∂θ0

,

which requires the derivatives of the Cholesky decomposition as well as the derivatives

of the mean ∂bg

∂θ0
and covariance matrix ∂Bg

∂θ0
. While all these derivatives can be obtained

via standard AD schemes, depending on the software implementation, some operations

here involve large matrices, which require particular care for an efficient implementation.

Nevertheless, many of these terms show up repeatedly, and this allows us to dramatically

reduce the computation effort to compute the final derivatives, which contributes to the

high efficiency of AD methods.

In the second step of the Gibbs sampler, we obtain a draw Σg ∼ IW(ν,Sg), where

ν = ν0 + T . This can be done by first sampling S ∼ W(ν, (Sg)−1), and returning

Σg = S−1. Hence, to compute the derivatives for (Σg |Y,βg) ∼ IW(ν,Sg), ∂Σg

∂θ0
, we

consider the Bartlett decomposition of the Wishart distribution W(ν, (Sg)−1). Let L

denote the Cholesky factor of (Sg)−1 so that (Sg)−1 = LL′ and let A = (aij) denote a

lower triangular matrix such that the diagonal elements are distributed as χ2 random

variables a2ii ∼ χ2
ν−i+1 and the lower triangular elements are standard Gaussian random

variables aij ∼ N (0, 1) for i > j. Then, S = LAA′L′ has the Wishart distribution

W(ν, (Sg)−1), and we return Σg = (LAA′L′)−1. Note that we can avoid the explicit

evaluation of (Sg)−1 which simplifies the computation to obtain ∂Σg

∂θ0
.

3.3 Sensitivities for Point Forecasts

In this section we derive explicit expressions of the first-order derivatives of the point

forecasts with respect to the input vector θ0. To make the discussion concrete, we set

p = 2. Recall that at each iteration, we draw Zh ∼ N (0, In) for h = 1, 2, . . . , H and
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construct the point forecasts yg
T+1, . . . ,y

g
T+h as follows:

y
g
T+1 = bg +B

g
1yT +B

g
2yT−1 + chol(Σg)Z1,

y
g
T+2 = bg +B

g
1y

g
T+1 +B

g
2yT + chol(Σg)Z2,

y
g
T+h = bg +B

g
1y

g
T+h−1 +B

g
2y

g
T+h−2 + chol(Σg)Zh, h = 3, . . . , H.

Their corresponding Jacobians are therefore

∂yg
T+1

∂θ0

=
∂bg

∂θ0

+ (y′

T ⊗ In)
∂Bg

1

∂θ0

+ (y′

T−1 ⊗ In)
∂Bg

2

∂θ0

+ (Z′

1 ⊗ In)
∂ chol(Σ)

∂Σ

∣∣∣∣
Σ=Σg

∂Σg

∂θ0

,

∂yg
T+2

∂θ0

=
∂bg

∂θ0

+ ((yg
T+1)

′ ⊗ In)
∂Bg

1

∂θ0

+B
g
1

∂yg
T+1

∂θ0

+ (y′

T ⊗ In)
∂Bg

2

∂θ0

+
(
ZT

2 ⊗ In
) ∂ chol(Σ)

∂Σ

∣∣∣∣
Σ=Σg

∂Σg

∂θ0

,

∂yg
T+h

∂θ0

=
∂bg

∂θ0

+ ((yg
T+h−1)

′ ⊗ In)
∂Bg

1

∂θ0

+B
g
1

∂yg
T+h−1

∂θ0

+ ((yg
T+h−2)

′ ⊗ In)
∂Bg

2

∂θ0

+B
g
2

∂yg
T+h−2

∂θ0

+ (Z′

h ⊗ In)
∂ chol(Σ)

∂Σ

∣∣∣∣
Σ=Σg

∂Σg

∂θ0

.

While the sensitivities of the one-step-ahead point forecast only depend on the draws of

the model parameters and thus the sensitivities of the model parameters, sensitivities of

further forecast horizons depend on both the sensitivities of the model parameters and the

previous periods’ forecasts. There is also a clear autoregressive structure in the first-order

sensitivities, i.e., Bg
1

∂y
g
T+h−1

∂θ0
and B

g
1

∂y
g
T+h−2

∂θ0
. The sample mean of these sensitivity draws

gives an estimate of the sensitivity for the point forecasts, when the model parameters

are drawn from the posterior distribution.

3.4 Sensitivities for Predictive Quantiles

Interval forecasts are appropriate quantiles of the predictive distributions. Quantile sen-

sitivities are more difficult to compute than those of the point forecasts. This is because

algorithmically quantiles are estimated using the corresponding sample order statistics by

sorting the sample, and such operations are not continuously differentiable. Hence, the

derivative operator cannot be directly applied in a finite sample. Moreover, the predic-

tive distribution is not available analytically and we therefore cannot apply distributional

derivatives directly to obtain quantile sensitivities. However, there is some progress in es-

timating quantiles sensitivities in the classical simulation literature, see e.g., the batched
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infinitesimal estimator in Hong (2009) and the Kernel-smooth estimator in Liu and Hong

(2009).

Below we present a consistent method for estimating quantile sensitivities in the context

of MCMC, which shares some similarities with Fu, Hong, and Hu (2009). Suppose our

forecast random variable Y is absolutely continuous with the distribution FY (·;θ0). For

a given α ∈ (0, 1), the α-quantile, denoted as Y ∗, is defined implicitly by

FY (Y
∗;θ0) = α.

By the implicit function theorem, we have

∂Y ∗

∂θ0

= −

∂FY (y;θ0)
∂θ0

fY (y;θ0)

∣∣∣∣
y=Y ∗

,

where fY (·;θ0) is the associated density function, which is unfortunately unknown. How-

ever, suppose there exists a latent random vector Z ∼ fZ(·;θ0) such that

FY (y;θ0) = E [G (y;Z(θ0),θ0)]

for a function G (y;Z(θ0),θ0) that is absolutely continuous in y, and differentiable almost

surely in θ0.
2 Then, we can approximate ∂Y ∗

∂θ0
via

−

∑N

i=1
∂G(y;Z(θ0)i,θ0)

∂θ0∑N

i=1 g(y;Z(θ0)i,θ0)

∣∣∣∣
y=Y ∗

(4)

where Z(θ0)
i ∼ fZ(·;θ0), i = 1, . . . , N and g is the derivative of G with respect to y.

In our context for estimating quantile sensitivities of YT+h, a quantile Y ∗ is approximated

via the associated sample order statistic. The natural candidate for the latent vector Z

is (YT+h−1,β,Σ), and the corresponding G is simply the density of YT+h conditional of

Z, which is Gaussian. Hence, both the density function as well as the derivatives of the

distribution function are easy to evaluate.

2Note that we make the dependence of Z on θ0 explicit.
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3.5 Efficient Implementation

We can improve the speed and reduce the amount of memory required in computing the

above sensitivities by using a more compact representation of the VAR. More specifically,

we rewrite the VAR in (1) as:

y′

t = z′tB+ εt,

where z′t = (1,y′

t−1, . . . ,y
′

t−p) and B = (b,B1, . . . ,Bp)
′. Then, stacking the equations

over t = 1, . . . , T, we have

y = ZB+ ε,

where y is a T × n matrix of observations, and Z and ε are defined similarly. Since

each row of ε is conditionally independent and normally distributed with mean zero and

covariance Σ, it follows the matric-variate normal distribution ε ∼ MN (0,Σ, IT ) (see,

e.g., Bauwens et al., 1999, p. 301-303). For a more detailed discussion on the estimation

using this compact representation of the VAR, see the review in Karlsson (2013) and

Woźniak (2016).

4 Empirical Application

In our empirical application we consider a 3-variable VAR that involves US quarterly data

on the unemployment rate, interest rate and real GDP from 1954:Q3 to 2017:Q4. These

three variables are commonly used in forecasting (e.g., Banbura, Giannone, and Reichlin,

2010; Koop, 2013; Chan, 2018). The real GDP series is transformed to annualized growth

rates, whereas the unemployment rate and interest rate are not transformed. All data

are sourced from the Federal Reserve Bank of St. Louis economic database. The data

are plotted in Figure 1.
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Figure 1: Plots of the US unemployment rate, interest rate and real GDP growth.

Our main objects of interest are the point and interval forecasts for these three variables.

In particular, we follow the common practice to use the 16- and 84-percentiles to define

the 68% interval forecasts. These forecasts are presented in Figure 2. The VAR forecasts

that real GDP growth will remain relatively flat at around 3% over the next 20 quarters

whereas interest rate will gradually increase from about 1.4% in 2018:Q1 to about 3.3% at

the end of the forecast period. In contrast, the VAR predicts that unemployment rate will

halt its decline since the Great Recession and will gradually increase 5.5% toward the end

of the forecast period. Our results also indicate that there is a lot of uncertainty around

these point forecasts. In particular, the 68% interval forecasts of the three variables are

all fairly wide, even for relatively short forecast horizons.

These forecasts are somewhat in line with the projections provided by the US Congres-

sional Budget Office. For example, in their report The Budget and Economic Outlook:

2018 to 2028 published in April 2018 (CBO, 2018), the Federal funds rate is forecasted

to rise from about 1.9% in 2018 to 3.8% in 2022, whereas real GDP growth will drop

from about 3% in 2018 to only about 1.5% in 2022.
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Figure 2: Point and interval forecasts for unemployment rate, interest rate and real GDP
growth.

The focus of this paper is to assess how sensitive these point and interval forecasts are

with respect to three key hyperparameters: κ1, κ2 and κ3. Recall that κ1 and κ2 control,

respectively, the strength of shrinkage of the VAR coefficients and the intercepts, whereas

κ3 controls the prior mean of Σ.

We use AD to compute the derivatives of the forecasts with respect to κ1, κ2 and κ3,

and the results are presented in Figure 3. More specifically, the first row shows the

derivatives of the three point forecasts, namely, real GDP growth (GDP), interest rate

(i) and unemployment rate (u) with respect to κ1, κ2 and κ3. The second and third rows

show respectively the corresponding derivatives of the 84- and 16-percentiles.
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Figure 3: Derivatives of the point forecasts (top row), 84-percentiles (middle row) and
16-percentiles (bottom row) of the variables real GDP growth (GDP), interest rate (i)
and unemployment rate (u) with respect to κ1 (left column), κ2 (middle column) and κ3

(right column); full sample.

Our results indicate that the point and interval forecasts are relatively insensitive to both

κ2 and κ3. For example, if we change the value of κ2 by one unit, the changes of point

and interval forecasts are of the order of 10−5. The impact of κ3 is larger, but it is still

inconsequential: the changes of all forecasts are of the order of 10−3 for each unit change

of κ3. Interestingly, the effects on the point and interval forecasts are of the same order.

A priori, one might expect that, say, κ3 would have a smaller impact on the point forecast

than the interval forecasts as κ3 controls the prior mean of the error covariance matrix

Σ. This is apparently not the case.

In contrast, the forecasts are all much more sensitive to the value of κ1. This is perhaps

not surprising as κ1 controls the strength of shrinkage of the VAR coefficients, and it is

well-known that appropriate shrinkage can substantially improve forecast performance.

In addition to confirming the important role of shrinkage, our results also allow us to
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calculate how small changes in κ1 affect the forecasts. For example, if we increase κ1

by 0.01 (recall that we set κ1 = 0.22 = 0.04), the one-quarter-ahead point forecasts of

real GDP growth, interest rate and unemployment rate will change by −0.026, 0.008 and

0.04, respectively.3

Figure 3 also suggests that sensitivities tend to decrease as forecast horizon increases.

This could be due to the fact that long-horizon forecasts depend mainly on a particu-

lar combination of the VAR coefficients, but not on individual coefficients. To elabo-

rate, recall that long-horizon forecasts converge to the unconditional mean of the system

µ = (In −
∑p

i=1 Bp)
−1b, which in general can be more precisely estimated than individ-

ual VAR coefficients. Consequently, the estimated µ tend to be less sensitive to prior

hyperparameters compared to individual VAR coefficients.

Next, we redo our sensitivity analysis using a shorter sample. This is motivated by the

observation that many forecasters apply VAR to time series with significantly fewer ob-

servations than our full sample—either because of data availability issues or because they

expect structural changes in their data and past observations might be less relevant. We

re-estimate our model using data from 1989:Q3 to 2017Q4, and the estimated sensitivities

are reported in Figure 4.

Despite the shorter sampler, the point and interval forecasts remain relatively insensitive

to the hyperparameters κ2 and κ3. In contrast, the sensitivities of short-horizon forecasts

with respect to κ1 can be an order of magnitude larger. For example, if we increase κ1

by 0.01, the one-quarter-ahead point forecasts of real GDP growth, interest rate and un-

employment rate will change by −0.24, 0.075 and 0.4, respectively, (compared to −0.026,

0.008 and 0.04 when the full sample is used). Hence, it is especially important to conduct

a sensitivity analysis when a relatively short sample is used.

Compared to the full sample results, the decrease in sensitivities as forecast horizon

increases is more visible here. Using a shorter sample, it might be more difficult to pin

down individual VAR coefficients than the unconditional mean. Consequently, short-

horizon forecasts that depend more on individual coefficients would be more sensitive to

hyperparameter values.

3To check these estimates, we rerun the sampler with κ1 = 0.05, while keeping other hyperparameters
exactly the same. The changes in the one-quarter-ahead point forecasts of real GDP growth, interest rate
and unemployment rate are respectively −0.021, 0.007 and 0.034, which are very close to the original
estimates.
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Figure 4: Derivatives of the point forecasts (top row), 84-percentiles (middle row) and
16-percentiles (bottom row) of the variables real GDP growth (GDP), interest rate (i)
and unemployment rate (u) with respect to κ1 (left column), κ2 (middle column) and κ3

(right column); subsample from 1989:Q3 to 2017:Q4.

5 Concluding Remarks

We have developed a general method based on Automatic Differentiation to assess how

sensitive VAR forecasts are with respect to various key hyperparameters in a Minnesota-

type prior. Using a US dataset, we have found that both point and density forecasts

are relatively sensitive to the shrinkage strength of the VAR coefficients, but are not

affected by that of the intercepts. Moreover, one could use our sensitivity estimates to

obtain forecasts under slightly different hyperparameters. Hence, our approach provides

an automatic way to assess the robustness of the forecasts.

In future work, it would be useful to develop similar automated sensitivity analysis of

forecasts from more flexible models. This is motivated by recent findings that flexible
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models such as time-varying parameter VARs developed in Cogley and Sargent (2001,

2005) and Primiceri (2005) tend to forecast substantially better, as demonstrated in Clark

(2011), D’Agostino, Gambetti, and Giannone (2013) and Cross and Poon (2016).
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Technical Appendix: Illustration of Automatic Differ-

entiation

In general, Automatic Differentiation (AD) translates an algorithm of turning inputs into

outputs, into its complementary algorithm of computing derivatives of the outputs with

respect to the inputs. It heavily depends on decomposing the base algorithm into simpler

operations such as addition, subtraction and multiplication, and updates the derivatives

using chain-rule-based techniques based on the composition of these simpler operations.

To illustrate the idea, consider at the beginning of the gth iteration of the MCMC, we have

already obtained
(
Σg−1

)
−1
. If AD is applied complementarily, we have also its derivatives

with respect to θ0, denoted
∂vec((Σg−1)−1)

∂θ0
. Recall that in the MCMC algorithm, we first

compute

Kg = V−1
β + (Σg−1)−1 ⊗X′X, Bg = (Kg)−1

and

αg = V−1
β β0 + vec(X′Y(Σg−1)−1), bg = Bgαg

Then, we sample the vector of coefficients as

βg = bg + chol(Bg)Zg.

In what follows we apply AD to obtain ∂vec(βg)
∂θ0

.

Consistent with the MCMC algorithm, terms such as

∂V−1
β

∂θ0

= −((V−1
β )′ ⊗V−1

β )
∂Vβ

∂θ0

(5)

and
∂V−1

β β0

∂θ0

= V−1
β

∂β0

∂θ0

+ (β′

0 ⊗ Ikβ)
∂V−1

β

∂θ0
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are pre-computed to save the computational cost.4 5 Given
∂((Σg−1)−1)

∂θ0
, then we have the

complementary algorithm of computing derivatives

∂Kg

∂θ0

=
∂V−1

β

∂θ0

+
∂
(
(Σg−1)−1

)

∂θ0

⊗ vec(X′X),
∂Bg

∂θ0

= −(Bg′ ⊗Bg)
∂Kg

∂θ0

,

∂αg

∂θ0

=
∂V−1

β β0

∂θ0

+ (In ⊗X′Y)
∂
(
(Σg−1)−1

)

∂θ0

,
∂bg

∂θ0

= Bg ∂α
g

∂θ0

+ (αg′ ⊗ Ikβ)
∂Bg

∂θ0

.

Consequently, we can compute

∂βg

∂θ0

=
∂bg

∂θ0

+
(
Z′ ⊗ Ikβ

) ∂ chol(B)

∂B

∣∣∣∣
B=Bg

∂Bg

∂θ0

,

where the term ∂ chol(B)
∂B

∣∣
B=Bg can be found in Jacobi et al. (2018).

Now given ∂βg

∂θ0
, we can then apply the same logic to obtain

∂((Σg)−1)
∂θ0

. Recall that

ν1 = ν0 + T, Sg = S0 +Y′Y − (βg)′X′Y − ((βg)′X′Y)
′

+ (βg)′X′Xβg

L = chol((Sg)−1)

(Σg)−1 = LAA′L′,

where we consider the Bartlett decomposition of the Wishart distribution. It follows that

∂Sg

∂θ0

=
∂S0

∂θ0

+ ((βg)′X′X−Y′X)
∂βg

∂θ0

+ ((X′Xβg −Y′X)⊗ In)
∂B′

∂B

∣∣∣∣
B=βg

∂βg

∂θ0

∂L

∂θ0

=
∂chol(B)

∂B

∣∣∣∣
B=(Sg)−1

(−(Sg)−1′ ⊗ (Sg)−1)
∂Sg

∂θ0

4The formula in (5) holds also for symmetric matrix Vβ if we differentiate it with respect to a vector
θ0 with independent components. To prove this formula, consider a symmetric, invertible q × q matrix
C. Since C

−1
C = Iq, taking derivative of both sides gives

C
′ ⊗ Iq

∂C−1

∂θ0

+ Iq ⊗C
−1

∂C

∂θ0

= 0.

Using C
′ = C and re-arranging terms, we obtain

∂C−1

∂θ0

= − (C⊗ Iq)
−1

Iq ⊗C
−1

∂C

∂θ0

= −C
−1 ⊗ IqIq ⊗C

−1
∂C

∂θ0

= −C
−1 ⊗C

−1
∂C

∂θ0

.

5Here
∂Vβ

∂θ0

and ∂β
0

∂θ0

depend on the specification of prior and the set of prior parameters of interest.
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∂ ((Σg)−1)

∂θ0

= LAA′
∂B′

∂B

∣∣∣∣
B=L

∂L

∂θ0

+ (LAA′ ⊗ In)
∂L

∂θ0

.

Here ∂B′

∂B
is the commutation matrix associated with the matrix transpose operation

(Magnus and Neudecker, 1979). We have also ignored the sensitivities with respect to ν0

in this paper, and refer interested readers to Jacobi, Joshi, and Zhu (2018).

Typically, an efficient AD package does not evolve this complementary algorithm sym-

bolically as we just demonstrated above, but passes the original algorithm by reference.

It recognises simple operations, e.g. V−1
β is a matrix inversion operation of the form

A−1|Vβ
, then translates to its derivative counterpart −(A−1′ ⊗A−1)|A=Vβ

. This is done

numerically, such that there is no need for the above symbolic derivations at all.
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