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Abstract

High-dimensional matrix-valued time-series are increasingly common in economics

and finance. Prominent examples include large cross-region panels and dynamic

economic networks. As the dimensions of the matrix grow, conventional approaches

based on vector autoregressions—implemented by vectoring the matrix-valued data—

become computationally infeasible. We introduce a class of large Bayesian ma-

trix autoregressions (MARs) that can accommodate time-varying volatility, non-

Gaussian errors and COVID-19 outliers. To tackle parameter proliferation, we

propose Minnesota-type shrinkage priors for these MARs. We develop a unified

approach for estimating these models that scales well to high dimensions. The em-

pirical relevance of these new MARs is illustrated using a US state-level dataset

that contains 6 macroeconomic times-series for each of the 50 states, with a total

of 300 times-series.

JEL classification: C11, C32, C55

Keywords: heavy-tailed distribution, outlier, shrinkage prior, stochastic volatility,

tensor, vector autoregression



1 Introduction

Matrix-valued data observed over time are common in economics, finance and related ar-

eas. A classic example is a cross-country panel dataset in which a few key macroeconomic

indicators for each country are observed over time (Canova and Ciccarelli, 2009, 2013;

Koop and Korobilis, 2016). More recently, larger cross-region panels with more regional

units and economic variables, such as state-level or other sub-national level time-series

datasets, have become widely available (Baumeister, Leiva-León, and Sims, 2022; Bokun,

Jackson, Kliesen, and Owyang, 2023; Koop, McIntyre, Mitchell, Poon, and Wu, 2023).

Another fast growing category of large matrix-valued time-series are dynamic economic

networks, such as bilateral trade volumes among trading partners (Kharrazi, Rovenskaya,

and Fath, 2017; Kapetanios, Serlenga, and Shin, 2021) and bilateral outstanding credits

between countries (Billio, Casarin, Iacopini, and Kaufmann, 2023).

The growing availability of these complex datasets presents new opportunities, but it also

exposes the limitations of conventional multivariate time-series econometric models. More

specifically, a standard approach is to treat the matrix-valued observations over time as

time-series vectors, which can then be conveniently modeled using vector autoregressions

(VARs). There are, however, two disadvantages of this approach. First, vectoring the

matrix-valued observation mixes its columns and rows, and consequently it disregards

the topological structure of the data. Second, despite recent advances in modeling large

VARs (Bańbura, Giannone, and Reichlin, 2010; Carriero, Clark, and Marcellino, 2019),

it remains extremely time-consuming or practically infeasible to estimate VARs obtained

by vectoring the high-dimensional matrix-valued data.

To tackle these challenges, we take up the matrix autoregression (MAR) introduced

in Hoff (2015) and Chen, Xiao, and Yang (2021), which regresses the matrix-valued

observation on its lagged values using a bilinear form. The MAR has an equivalent

representation as a parsimonious VAR, where the matrix structure of the data is exploited

to construct the VAR coefficient matrices using far fewer free parameters relative to an

unrestricted VAR. As such, the MAR modeling framework ameliorates the two drawbacks

of the VAR approach.

We further extend the MAR framework along two directions. First, instead of assuming

a time-invariant, Gaussian error distribution, we introduce a class of MARs that can ac-
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commodate time-varying volatility, non-Gaussian errors and COVID-19 outliers. This is

motivated by the increasing recognition of the need to allow for time-varying volatility in

modeling most macroeconomic datasets (see, e.g., Cogley and Sargent, 2005; Primiceri,

2005; Sims and Zha, 2006). In fact, there is now a large body of empirical evidence that

demonstrates the importance of time-varying volatility for model-fit and forecasting in

small VARs (Clark, 2011; D’Agostino, Gambetti, and Giannone, 2013; Clark and Ravaz-

zolo, 2015; Chan and Eisenstat, 2018) as well as in large VARs (Koop and Korobilis, 2013;

Carriero, Clark, and Marcellino, 2016, 2019; Chan, 2023a). In addition, the unexpected

extreme movements in many macroeconomic variables at the onset of the COVID-19 pan-

demic underline the need to allow for non-Gaussian errors and potential outliers. Clark

and Mertens (2023) provide a recent review on the benefits of incorporating stochastic

volatility in a wide range of applications using Bayesian VARs.

Our second contribution is to introduce Bayesian shrinkage priors and efficient estimation

methods that can handle large datasets. While earlier works have focused on matrix-

valued time-series of moderate sizes,1 we are interested in high-dimensional settings in

which the matrix dimensions are large. For example, in our empirical application we

analyze a US state-level dataset that contains 6 macroeconomic times-series for each

of the 50 US states, with a total of 300 times-series. Even though a MAR has far

fewer parameters compared to an unrestricted VAR, it may still have more parameters

than observations over time when the dimensions of the matrix are large. Therefore,

we introduce Bayesian shrinkage priors on the MAR coefficients. These new priors are

inspired by the Minnesota prior of Doan, Litterman, and Sims (1984) and Litterman

(1986), and can be viewed as a generalization of the Minnesota prior to the MAR setting.

There priors are conjugate and hence facilitate fast estimation. Additionally, we follow

Giannone, Lenza, and Primiceri (2015) and estimate the prior hyperparameters that

control the overall shrinkage strength from the data, instead of fixing them at some

subjective values.

Building upon the fast sampling methods in Carriero, Clark, and Marcellino (2016) and

Chan (2020), we develop a unified approach for estimation—by exploiting a certain Kro-

necker product structure of the likelihood implied by this family of MARs—that can

1For example, Chen, Xiao, and Yang (2021) consider an application with a panel of 5 countries, and
each has 4 economic indicators. The model is fitted using the iterative least squares and maximum
likelihood estimators. Celani and Pagnottoni (2023) provide a Bayesian treatment of the MAR and
consider a panel of 9 countries, each with 6 economic indicators.

3



drastically speed up the computations. In particular, for the matrix-valued observation

Yt of size n × k, sampling the MAR coefficients using conventional methods would in-

volve O(n6) and O(k6) elementary operations. The proposed sampling approach instead

can be done in computational complexity of the order O(n3) and O(k3). This orders-

of-magnitude speed-up makes the proposed estimation approach suitable for fitting large

datasets.

The empirical relevance of these new models is illustrated using a US state-level dataset

that includes 300 times-series. Even with such a large dataset, the proposed MARs,

together with the Minnesota-type shrinkage priors, can be estimated relatively quickly.

The estimation results demonstrate the strong interactions between the variables across

states, highlighting the importance of modeling all the state variables jointly. In addition,

it is also clear that there is a spike in volatility at the onset of the COVID-19 pandemic—

the error standard deviation in 2020Q2 is estimated to be between 5-7 times larger than

that of regular periods. These results thus underscore the importance of allowing time-

varying volatility and heavy-tailed error distributions.2

In addition to contributing to the development of more flexible matrix autoregressions,

this paper is also related to two other strands of literature. First, it contributes to the

emerging literature on modeling multidimensional arrays or tensors (Leng and Tang,

2012; Lock, 2018), particularly third-order tensors. Most of the existing literature does

not explicitly model the dynamics, even when one of the tensor dimensions is time. Two

notable exceptions are Hoff (2015) and Billio, Casarin, Iacopini, and Kaufmann (2023);

the former introduces a multilinear tensor autoregression based on the Tucker product,

whereas the latter develops a more general linear autoregressive tensor process where the

tensor coefficients are parameterized using a PARAFAC decomposition. In contrast to the

time-invariant Gaussian error distribution considered in both papers, here we develop a

framework that can accommodate non-Gaussian errors and richer time-varying dynamics.

This paper also contributes to the literature on modeling and forecasting regional data.

Hamilton and Owyang (2012) is a classic paper that uses US state-level payroll employ-

ment data to infer regional recessions. Koop, McIntyre, and Mitchell (2020) and Koop,

2A few recent papers, such as Schorfheide and Song (2021) and Lenza and Primiceri (2022) using US
data and Bobeica and Hartwig (2023) using euro area data, have shown that impulse response functions
and forecasts from homoskedastic VARs are heavily distorted by the extreme observations related to the
COVID-19 pandemic.
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McIntyre, Mitchell, and Poon (2020) develop a mixed-frequency framework to nowcast

UK regional growths using both regional and national data. More recent papers such

as Baumeister, Leiva-León, and Sims (2022) and Bokun, Jackson, Kliesen, and Owyang

(2023) have used larger US state-level datasets for nowcasting or monitoring state-level

economic conditions. Our paper provides a convenient modeling framework that can

handle datasets with a large number of regional units and economic indicators.

The rest of this paper is organized as follows. Section 2 first introduces a general frame-

work for modeling matrix-valued time-series with a flexible error covariance structure. It

then offers a few different interpretations of the matrix autoregression and discusses some

identification issues. Lastly, the section develops Bayesian shrinkage priors that gener-

alize the Minnesota priors to MAR settings. Section 3 proposes a unified approach to

estimate these flexible MARs using Markov chain Monte Carlo (MCMC) methods. Sec-

tion 4 considers an application that involves a US state-level dataset with 300 time-series.

Lastly, Section 5 concludes and outlines some future research directions.

2 A Flexible Framework for Matrix Autoregressions

We introduce a general framework for Bayesian matrix autoregressions that aims to strike

the right balance between flexibility and tractability in high-dimensional settings. On the

one hand, this flexible framework can accommodate a wide variety of empirically relevant

features, including heavy-tailed error distributions, time-varying volatility and robustness

to outliers. On the other hand, it also facilitates fast computation and can be used to

model large datasets.

2.1 The Modeling Framework

To set the stage, let Yt denote an n × k matrix of endogenous variables at time t for

t = 1, . . . , T . To fix ideas, one may think of each column of Yt containing the n variables

for each of the k regions. In our empirical application that models US state-level data,

we have k = 50 states and each state has n = 6 variables, with a total of 300 variables.

A common approach to model the matrix-valued data Yt is to first stack its columns into
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a vector, i.e., vec(Yt), which is then fitted using the vector autoregression with p lags:

vec(Yt) = Φ1vec(Yt−1) + · · ·+ Φpvec(Yt−p) + et, (1)

where Φ1, . . . ,Φp are nk × nk coefficient matrices and et is an nk × 1 vector of errors.

There are two main drawbacks of modeling Yt using the VAR in (1). First, by vectoring

Yt, the columns and rows of Yt are mixed. Consequently, the VAR ignores the matrix

structure—e.g., the strong connections between the variables in the same region (column)

and those between the same variable (row) across regions. The second drawback is the

proliferation of parameters when either n or k is large. For example, for n = 6, k = 50

and p = 2, there are 180, 000 VAR coefficients, which makes estimation and inference

practically infeasible.

To tackle these two issues, we follow Hoff (2015) and Chen, Xiao, and Yang (2021) to

directly model the evolution of the matrix Yt via the following matrix autoregression

(MAR):

Yt = A1Yt−1B
′
1 + · · ·+ ApYt−pB

′
p + Et, (2)

where A1, . . . ,Ap and B1, . . . ,Bp are, respectively, n× n and k × k coefficient matrices.

For simplicity we exclude the intercepts; a matrix of intercepts or any deterministic term

can be easily added to the model. The above bilinear form facilitates model interpretation

and estimation. In particular, the matrix autoregression in (2) can be represented in the

form of a VAR:

vec(Yt) = (B1 ⊗A1)vec(Yt−1) + · · ·+ (Bp ⊗Ap)vec(Yt−p) + vec(Et),

where ⊗ denotes the Kronecker product. Hence, the MAR can be viewed as a special

case of the VAR, where the VAR coefficient matrix is modeled as the Kronecker product

Φj = (Bj ⊗Aj). Consequently, the number of VAR coefficients is reduced from n2k2p to

(n2 + k2)p. Subsection 2.2 provides more discussions on the interpretation of the MAR

and and its relations to the VAR.

While earlier works consider only homoskedastic MARs where the distribution of the

n× k matrix of errors, Et, is time-invariant, we propose a more general setting in which
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Et has a conditionally Gaussian distribution given the latent variable ωt:

vec(Et) ∼ N (0nk, ωtΣc ⊗Σr), (3)

where Σc and Σr are, respectively, k×k and n×n covariance matrices. The homoskedastic

MAR considered in Hoff (2015) and Chen, Xiao, and Yang (2021) can be recovered as

a special case with ω1 = · · · = ωT = 1. By assuming different distributions for the

mixing variables ω1, . . . , ωT , this framework encompasses a wide range of flexible error

distributions that are found empirically useful for modeling macroeconomic and financial

data. Below we give a few important examples.

1. Heavy-tailed distributions. Since many distributions can be represented as a scale

mixture of normals, the conditionally Gaussian specification in (3) can accommodate

many common heavy-tailed distributions that are useful to capture rare but large changes

in volatility. For example, if the mixing variable ωt follows the inverse-gamma distribution

ωt ∼ IG(ν/2, ν/2), then the marginal distribution of vec(Et) unconditional on ωt has a

multivariate t distribution with zero mean, scale matrix Σc ⊗Σr and degree of freedom

parameter ν. Alternatively, if ωt has a gamma distribution, then marginally vec(Et)

has a multivariate normal-gamma distribution, which includes the multivariate Laplace

distribution as a special case. Both of these distributions have heavier tails than normals,

and they generally provide better fit for data with infrequent volatility jumps. Empirical

studies that find heavy-tailed errors useful in the context of VARs include Clark and

Ravazzolo (2015), Cross and Poon (2016) and Chiu, Mumtaz, and Pinter (2017).

2. Robustness to outliers. The conditionally Gaussian specification in (3) can also be

used for addressing potential outliers using a tailored mixing distribution. An important

example is an explicit outlier component of the type proposed in Stock and Watson

(2016). More specifically, let ωt = o2t and ot follows a mixture of two distributions: a

point mass at 1 and a uniform distribution on the interval (2, 20). The former can be

thought of as ‘regular’ observations with scale normalized to 1, whereas the latter captures

‘outliers’ that have 2-20 times larger standard deviations than regular observations. As

demonstrated in Carriero, Clark, Marcellino, and Mertens (2022), this outlier component

is especially useful for modeling observations associated with the COVID-19 pandemic.

3. Time-varying volatility. One of the most robust empirical findings in modeling

macroeconomic data is the importance of allowing for time-varying volatility (e.g., Sims
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and Zha, 2006; Clark, 2011; Chan and Eisenstat, 2018). The conditionally Gaussian

framework in (3) can accommodate certain types of time-varying volatility processes.

An important example is the common stochastic volatility model introduced in Carriero,

Clark, and Marcellino (2016). In particular, let ωt = eht , and assume that the log-

volatility ht follows a stationary AR(1) process with 0 mean:

ht = φht−1 + uht , uht ∼ N (0, σ2
h), (4)

for t = 2, . . . , T , where |φ| < 1 and the initial condition is specified as h1 ∼ N (0, σ2
h/(1−

φ2)). The log-volatility ht here may be interpreted as the level of economy-wide macroe-

conomic uncertainty (see also Jurado, Ludvigson, and Ng, 2015). Another example is

the volatility model with a deterministic break date considered in Lenza and Primiceri

(2022), which is designed to model the drastic increase in volatility at the onset of the

COVID-19 pandemic and the subsequent gradual decrease in volatility. Their model can

also be parameterized using the conditionally Gaussian framework.

Naturally, any combinations of the above heavy-tailed errors and volatility processes can

also be incorporated using the conditionally Gaussian framework. For instance, one may

consider a MAR with the common stochastic volatility and the outlier component. In

that case, ωt = ehto2t , where ht follows the AR(1) process in (4) and ot follows the two-

component mixture described above. Other models such as those in Chan (2020) and

Hartwig (2021) can also be considered.

While the modeling framework in (2)–(3) is flexible and includes many empirically useful

specifications as special cases, it is crucial to recognize its limitations. In particular,

the latent variable ωt is assumed to scale the entire covariance matrix of Et, implying

that each element of Et is impacted equally by ωt. As such, the proposed framework

does not nest, for example, a model in which each row of Yt has its specific stochastic

volatility factor. Estimation of such a model, however, would be practically infeasible in

high-dimensional settings. The proposed framework therefore provides the right balance

between modeling flexibility and computational tractability.
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2.2 Model Interpretation and Identification

In this section we discuss the interpretation of the coefficient matrices in the MAR and

some identification issues. For ease of exposition, we consider the case with only one lag:

Yt = A1Yt−1B
′
1 + Et.

In the above bilinear form, the coefficient matrix A1 corresponds to row-wise relation-

ships, whereas B1 represents column-wise interactions. To tease out the impact of the

two matrices, it is useful to consider a few special cases. Recall that the MAR may

be viewed as a special VAR in which the VAR coefficient matrix is parameterized as

Φ1 = (B1 ⊗A1). If we assume B1 = Ik, then we can express the MAR as:

vec(Yt) = (Ik ⊗A1)vec(Yt−1) + vec(Et).

In other words, each column of Yt follows the same VAR with the coefficient matrix A1,

and there are no interactions among the columns (in the conditional mean). Similarly,

for the special case with A1 = In, each row of Yt follows a VAR with the same coefficient

matrix.

The covariance matrix of vec(Et) has a similar interpretation. For simplicity, set ωt = 1.

Then, the matrix of errors as specified in (3) can be equivalently represented as Et =

Σ
1
2
r ZtΣ

1
2
c , where Zt is an n×k matrix consisting of independent standard normal random

variables. It is clear from this representation that Σr corresponds to row-wise covariances

and Σc represents column-wise covariances. In particular, if Σc = Ik, then Et = Σ
1
2
r Zt,

which implies that the columns of Et are all mutually independent and each row has

the same covariance matrix Σr. More generally, the covariance between the (i1, j1) and

(i2, j2) elements of Et is cov(et,i1,j1 , et,i2,j2) = σr,i1,i2σc,j1,j2 .

Another interpretation of the MAR is related to the global VAR (Pesaran, Schuermann,

and Weiner, 2004) and the multivariate autoregressive index model (Carriero, Kapetanios,

and Marcellino, 2016). More specifically, let yt,i,j, a1,i,j and b1,i,j denote the (i, j) elements

of Yt, A1 and B1, respectively. Then, yt,i,j can be expressed as

yt,i,j =
n∑

l1=1

k∑
l2=1

a1,i,l1b1,j,l2yt−1,l1,l2 + et,i,j =
n∑

l1=1

a1,i,l1zt−1,l1,j + et,i,j,
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where zt−1,l1,j =
∑k

l2=1 b1,j,l2yt−1,l1,l2 is a linear combination of the l1-th row of Yt−1 across

the columns. Under this representation, one can view the MAR as a multi-equation

regression with covariates constructed from linear combinations of the columns of Yt−1.

In particular, using our running state-level data example, the MAR can be interpreted

as first constructing linear combinations of GDP, unemployment, etc., across states, and

use them as regressors.

Next, we discuss some identification issues that arise in the MAR. First, the parameters

A1 and B1 are not separately identified, but they are identified up to scale. That is, if

(B1 ⊗ A1)z = (B̃1 ⊗ Ã1)z, for all z, then Ã1 = cA1 and B̃1 = c−1B1 for some c 6= 0,

provided that neither A1 and B1 is the zero matrix. Hence, to fix the scale, we normalize

the (1,1) element of B1 to be 1. More generally, for the MAR of order p, we set the (1,1)

element of Bj to be 1, i.e., bj,1,1 = 1, j = 1, . . . , p. Similarly, the covariances Σr and Σc

are only identified up to scale. We normalize the (1,1) element of Σc to be 1: σc,1,1 = 1.

2.3 Bayesian Shrinkage Priors

We are interested in settings when n or k (or both) is large. In those cases, the matrix

autoregression has a large number of parameters, and consequently regularization or

shrinkage is vital for obtaining sensible results. In addition, to facilitate fast estimation,

we extend the natural conjugate prior (see, e.g., Koop and Korobilis, 2010; Karlsson,

2013) designed for VARs to our setting. To that end, let A = (A1, . . . ,Ap)
′ and B =

(B1, . . . ,Bp)
′, so that A and B are of dimensions np × n and kp × k, respectively. We

consider the prior of the form p(A,B,Σr,Σc |κA, κB) = p(A,Σr |κA)p(B,Σc |κB), where

κA and κB are some hyperparameters which we treat as unknown.

First, we assume that (A,Σr) has a normal-inverse-Wishart distribution (see, e.g., Kadiyala

and Karlsson, 1997; Koop and Korobilis, 2010):

Σr ∼ IW(νr,Sr), (vec(A) |Σr, κA) ∼ N (vec(A0),Σr ⊗VA),

where vec(A0) is the prior mean vector and the np × np prior covariance matrix VA

is assumed to be diagonal and depend on the unknown hyperparameter κA. The joint
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density function of (A,Σr) is thus given by

p(A,Σr) ∝ |VA|−
n
2 |Σr|−

νr+n+np+1
2 e−

1
2
tr(Σ−1

r Sr)e−
1
2
tr(Σ−1

r (A−A0)′V
−1
A (A−A0)), (5)

where tr(·) is the trace operator.

We calibrate A0 and VA in the spirit of the Minnesota priors pioneered by Doan, Lit-

terman, and Sims (1984) and Litterman (1986). More specifically, vec(A0) is set to be a

zero vector for growth rates data. This reflects the prior belief that growth rates data are

typically not very persistent, and the coefficient matrix A is thus shrunk to 0. For levels

data, vec(A0) is set to be zero except for the coefficients associated with the first own lag,

which are set to be one. This expresses the preference for a random walk specification,

reflecting the prior belief that levels data are generally highly persistent.

To calibrate the diagonal elements of VA, let ŝ2i,• =
∑k

j=1 ŝ
2
i,j/k, where ŝ2i1,i2 denotes the

sample variance of an AR(4) model for the variable yt,i1,i2 , the (i1, i2) element of Yt.

Hence, ŝ2i,• is the average sample variances of the variables in the i-th row. Then, the j-th

diagonal element of VA is assumed to be vA,j,j = κA/(l
2ŝ2i,•) for a coefficient associated

with lag l of the variable in the i-th row. Intuitively, the prior variance is scaled by ŝ2i,•, and

the coefficient associated to a lag l variable is shrunk more heavily to zero as the lag length

increases. The overall shrinkage strength is controlled by the hyperparameter κA, where

a smaller value indicates more aggressive shrinkage. We follow the recommendation of

Giannone, Lenza, and Primiceri (2015) to estimate κA from the data instead of fixing it at

some commonly-used subjective value. Finally, we set νr = n+2, Sr = diag(ŝ21,•, . . . , ŝ
2
n,•).

These hyperparameters are elicited in the spirit of the Minnesota priors. In particular,

for k = 1, they reduce to those of the standard Minnesota priors (see, e.g., Karlsson,

2013; Carriero, Clark, and Marcellino, 2015).

Similarly, we consider the following normal-inverse-Wishart prior on (B,Σc):

Σc ∼ IW(νc,Sc), (vec(B) |Σc, κB) ∼ N (vec(B0),Σc ⊗VB),

where vec(B0) is the prior mean vector and the kp × kp prior covariance matrix VB is

assumed to be diagonal and depend on the unknown hyperparameter κB. Naturally, one

can elicit B0 and VB to incorporate prior beliefs specific to the application. Below we

provide a baseline case that is expected to be applicable to a wide range of cross-region
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applications.

As discussed in Section 2.2, when Bj = Ik, j = 1, . . . , p, then each column of Yt, repre-

senting observations from a particular region, follows the same VAR with the coefficient

matrix A, and there are no interactions among the columns in the conditional mean. We

therefore set the prior mean to be B0 = (Ik, . . . , Ik)
′, and shrink B toward to this simpler

setting. This choice of prior mean is also consistent with the identification restrictions

that the (1,1) elements of B1, . . . ,Bp are 1. To calibrate the diagonal elements of VB, let

ŝ2•,j =
∑n

i=1 ŝ
2
i,j/n denote the average sample variances of the variables in the j-th column.

Then, the i-th diagonal element of VB is assumed to be vB,i,i = κB/(l
2ŝ2•,j) for a coefficient

associated with lag l of the variable in the j-th column. Hence, a coefficient is shrunk

more strongly to zero if it corresponds to a variable of higher lag, and the prior variance is

scaled by ŝ2•,j. The hyperparameter κB determines the overall shrinkage strength, which

is again estimated from the data. We set νc = k + 2, Sc = diag(1, ŝ2•,2/ŝ
2
•,1, . . . , ŝ

2
•,k/ŝ

2
•,1).

Here we normalize the scale matrix Sc so that it is consistent with the identification

restriction that the (1, 1) element of Σc is fixed at one.

Finally, the hyperparameters κA and κB are assumed to have hierarchical gamma priors:

κA ∼ G(cA,1, cA,2) and κB ∼ G(cB,1, cB,2).

3 Bayesian Estimation

In this section we provide a general discussion on the estimation of the Bayesian MARs

specified in (2)-(3). In particular, we develop a fast and simple approach to sample

the pairs (A,Σr) and (B,Σc) given the shrinkage hyperparameters κ = (κA, κB)′ and

an arbitrary vector of latent variables ω = (ω1, . . . , ωT )′. In Appendix A we take up

various examples of ω and provide estimation details for tackling each case, as well as

the sampling steps for κ.

We first derive the likelihood function implied by (2)-(3). Letting A = (A1, . . . ,Ap)
′ and

B = (B1, . . . ,Bp)
′, note that one can rewrite the mean equation in (2) as:

Yt = A′XtB + Et,
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where Xt = diag(Yt−1, . . . ,Yt−p) is an np × kp block-diagonal matrix of lagged values.

Given the covariance structure in (3), the likelihood function can be expressed as:

p(Y |A,B,Σc,Σr,ω) = (2π)−
Tnk
2 |Σc|−

Tn
2 |Σr|−

Tk
2

T∏
t=1

ω
−nk

2
t e

− 1
2ωt

tr(Σ−1
c (Yt−A′XtB)′Σ−1

r (Yt−A′XtB)).

(6)

Assuming the natural conjugate priors for (A,Σr) and (B,Σc), posterior draws can be ob-

tained by sequentially sampling from: 1) p(A,Σr |Y,B,Σc,κ,ω); 2) p(B,Σc |Y,A,Σr,κ,ω);

3) p(κ |Y,A,B,Σr,Σc,ω); and 4) p(ω |Y,A,B,Σr,Σc,κ). Depending on how one

models the latent variables ω, additional blocks might be needed to sample some ad-

ditional hierarchical parameters. These steps are typically easy to implement as they

amount to fitting a univariate time-series model. A variety of examples are given in Ap-

pendix A. Below we provide details on implementing Step 1 and Step 2 of sampling from

the high-dimensional densities p(A,Σr |Y,B,Σc,κ,ω) and p(B,Σc |Y,A,Σr,κ,ω) ef-

ficiently.

More specifically, recall that A is of dimensions np×n, and sampling A using conventional

methods would involve O(n6) elementary operations. Fortunately, it can be shown that

(A,Σr |Y,B,Σc,κ,ω) has a normal-inverse-Wishart distribution, and one can sample

A with computational complexity of the order O(n3). To see this, note that it follows

from (5) and (6) that

p(A,Σr |Y,B,Σc,κ,ω) ∝|Σr|−
νr+n+np+Tk+1

2 e−
1
2
tr(Σ−1

r Sr)

× e−
1
2
tr(Σ−1

r ((A−A0)′V
−1
A (A−A0)+

∑T
t=1 ω

−1
t (Yt−A′XtB)Σ−1

c (Yt−A′XtB)′))

=|Σr|−
νr+n+np+Tk+1

2 e−
1
2
tr(Σ−1

r Sr)e−
1
2
tr(Σ−1

r (A′0V−1
A A0+

∑T
t=1 ω

−1
t YtΣ

−1
c Y′t−Â′KAÂ))

× e−
1
2
tr(Σ−1(A−Â)′KA(A−Â)),

where

KA = V−1A +
T∑
t=1

ω−1t XtBΣ−1c B′X′t, Â = K−1A

(
V−1A A0 +

T∑
t=1

ω−1t XtBΣ−1c Y′t

)
.
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In the above derivation we have used the fact that

(A−A0)
′V−1A (A−A0) +

T∑
t=1

ω−1t (Yt −A′XtB)Σ−1c (Yt −A′XtB)′

=(A− Â)′KA(A− Â) + A′0V
−1
A A0 +

T∑
t=1

ω−1t YtΣ
−1
c Y′t − Â′KAÂ.

In other words, (A,Σr |Y,B,Σc,κ,ω) has the normal-inverse-Wishart distribution with

parameters νr + Tk, Ŝr, Â and K−1A , where

Ŝr = Sr + A′0V
−1
A A0 +

T∑
t=1

ω−1t YtΣ
−1
c Y′t − Â′KAÂ.

Hence, we can sample (A,Σr |Y,B,Σc,κ,ω) in two steps. First, we sample Σr marginally

from (Σr |Y,B,Σc,κ,ω) ∼ IW(Ŝr, νr + Tk). Then, given the Σr drawn, we sample

(vec(A) |Y,B,Σr,Σc,κ,ω) ∼ N
(

vec(Â),Σr ⊗K−1A

)
.

Since the covariance matrix is of dimension n2p × n2p, and sampling from this high-

dimensional density using conventional methods would involve O(n6p3) operations. This

can be computationally intensive when n is large. Instead, we adopt an efficient al-

gorithm to sample from the matrix-normal distribution to our setting (e.g., Bauwens,

Lubrano, and Richard, 1999, p.320). This algorithm has been used in Carriero, Clark,

and Marcellino (2016) and Chan (2020) to estimate various large Bayesian VARs. More

specifically, we exploit the Kronecker structure Σr⊗K−1A to speed up computation. Conse-

quently, the complexity of the problem can be drastically reduced to O(n3p3) operations.

We further improve upon this approach by avoiding the computation of the inverse of the

np× np matrix KA. The computational details are provided in Appendix A.

Similarly, it can be shown that (B,Σc |Y,A,Σr,κ,ω) has a normal-inverse-Wishart
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distribution with parameters νc + Tn, Ŝc, B̂ and K−1B , where

KB = V−1B +
T∑
t=1

ω−1t X′tAΣ−1r A′Xt, B̂ = K−1B

(
V−1B B0 +

T∑
t=1

ω−1t X′tAΣ−1r Yt

)
,

Ŝc = Sc + B′0V
−1
B B0 +

T∑
t=1

ω−1t Y′tΣ
−1
r Yt − B̂′KBB̂.

Again, we can sample (B,Σc |Y,A,Σr,κ,ω) in two steps. First, we sample Σc marginally

from (Σc |Y,A,Σr,κ,ω) ∼ IW(Ŝc, νc + Tn) with the normalization restriction that

σc,1,1 = 1. This can be done using the algorithm in Nobile (2000). Then, given the

sampled Σc, we simulate

(vec(B) |Y,A,Σr,Σc,κ,ω) ∼ N
(

vec(B̂),Σc ⊗K−1B

)
with the normalization restrictions that the (1,1) elements of B1, . . . ,Bp are all 1. Sam-

pling from a Gaussian distribution subjected to linear restrictions can be done efficiently

by using Algorithm 2.6 in Rue and Held (2005) or Algorithm 2 in Cong, Chen, and Zhou

(2017). We provide the details of this sampling step in Appendix A.

4 Empirical Application

To illustrate the utility of the proposed models and estimation methods, we consider an

application that involves a US state-level dataset. More specifically, for each of the 50

US states, we obtain 6 quarterly time-series sourced from the Bureau of Labor Statistics

and the FRED database maintained by the Federal Reserve Bank of St. Louis. These 6

variables are initial unemployment insurance claims, continued unemployment insurance

claims, total nonfarm employment, unemployment rate, new housing permits, and real

home price index. The sample period is from 1991Q1 to 2023Q1. A detailed description

of the variables and their transformations are provided in Appendix B. We represent the

data at time t as an n× k matrix Yt, where the columns refer to the k = 50 states and

the rows are the n = 6 variables.
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4.1 Full Sample Results

We first report various estimates of interest using the full sample, which includes the

COVID-19 pandemic. As widely noted, the COVID-19 pandemic has caused extreme

movements in many macroeconomic and financial time-series, and a failure to account

for these outliers would result in heavily distorted parameter estimates, as demonstrated

in recent papers such as Schorfheide and Song (2021), Lenza and Primiceri (2022) and

Bobeica and Hartwig (2023). Therefore, we consider two Bayesian MARs that explicitly

account for time-varying volatility or potential outliers.

More specifically, both models can be nested within the proposed framework and rep-

resented as the system in (2)–(3). The first Bayesian MAR incorporates the common

stochastic volatility specification proposed in Carriero, Clark, and Marcellino (2016) with

ωt = eht , and the log-volatility ht follows the stationary AR(1) given in (4). This model is

refereed to as BMAR-CSV. The second model includes the outlier component introduced

in Stock and Watson (2016) with ωt = o2t , where ot follows a 2-part distribution with a

point mass at 1 and a uniform distribution on the interval (2, 20). This latter model is

refereed to as BMAR-O. For both models we set the lag order to be p = 2.

To visualize the correlation pattern among the variables (rows), we report in Figure 1 a

heatmap of the posterior means of A1 and A2 from the BMAR-CSV, where red entries

denote positive values, blue negative and white zero. First, it is clear that, as expected, all

variables are rather persistent on average. For example, the AR(1) coefficient for nonfarm

payroll is estimated to be about 0.44, and the AR(1) and AR(2) coefficient estimates for

unemployment rate are, respectively, 0.63 and −0.36. Second, the proposed hierarchical

shrinkage prior on A = (A1,A2)
′ strongly shrinks many of the off-diagonal elements to

zero. In particular, the shrinkage hyperparameter κA—that controls the overall shrinkage

strength on A, where a smaller value indicate more aggressive shrinkage to zero—is

estimated to be 0.032 (compared to the prior mean of 1). Despite the shrinkage effects,

some off-diagonal elements corresponding to closely related variables remain non-zero.

For example, lagged continued claims have non-negligible impacts on initial claims, and

vice versa, possibly reflecting current labor market conditions.
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Figure 1: A heatmap of the posterior means of A1 and A2 from the BMAR-CSV.

Next, Figure 2 reports a heatmap of the posterior means of B1 from the BMAR-CSV,

which represents the correlation structure among the states (columns). Due to space

constraint, we do not report estimate of B2, but the pattern is similar. Despite the fact

that the proposed hierarchical shrinkage prior is designed to shrink B1 to the identity

matrix, the majority of the off-diagonal elements are estimated to be non-zero. This

is also reflected in the estimated shrinkage hyperparameter κB that controls the overall

shrinkage strength on B = (B1,B2)
′: its posterior mean is about 0.84 compared to the

prior mean of 1, indicating that the data do not favor strong shrinkage of the off-diagonal

elements to zero. Not surprisingly, many neighboring states or states with similar outputs

show stronger interactions. For instance, lagged variables of Virginia and Florida most

positively impact the variables of Alabama with corresponding coefficients estimated to

be 0.38 and 0.33, respectively.3 Overall, these results highlight the strong interactions

between the states.

3In our sample the variables of Alabama are stacked in the first column. And since we normalize the
scale of the MAR coefficients by setting the (1, 1) elements of B1 and B2 to be 1, the magnitude of the
two states’ variables are 38% and 33% of those of own state variables.
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Figure 2: A heatmap of the posterior means of B1 from the BMAR-CSV.

To assess the extent of time-varying sizes of shocks, we report the posterior means of

the time-varying standard derivations from the BMAR-CSV and the BMAR-O in Fig-

ure 3. Despite the two very different modeling approaches—the BMAR-CSV prescribes

a persistent volatility process whereas the BMAR-O assumes serial independence of the

occurrence of the outliers—the estimated time-varying standard derivations from the two

models are remarkably similar. In particular, for most of the sample before the onset

of the COVID-19 pandemic in 2020Q2, the standard derivations were mostly around 1

(normalized as ‘regular’ observations). In 2020Q2, the standard derivations jumped to 5.5

for the BMAR-CSV and 7 for the BMAR-O, and they stayed elevated afterward. These
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results underscore the empirical relevance of explicitly modeling time-varying volatility

or allowing for outliers.
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Figure 3: Posterior means of the time-varying standard derivations, e
ht
2 and ot respec-

tively, from BMAR-CSV (top panel) and BMAR-O (bottom panel).

5 Concluding Remarks and Future Research

Two recent developments have motivated our paper: the increasing recognition of the

need to allow for flexible time-varying features in modeling most macroeconomic datasets

and the growing availability of a large number of matrix-valued time-series. In response

to these recent developments, we have introduced a new class of matrix autoregressions

that can accommodate time-varying volatility, non-Gaussian errors and COVID-19 out-

liers. We then developed an efficient, unified approach that scales well to high-dimension

datasets. We illustrated the methodology using a US state-level dataset that involves 300

macroeconomic time-series.
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There are multiple lines of future research that are worth pursuing. First, it would

be useful to extend the MARs to a mixed-frequency framework—e.g., modeling both

quarterly and monthly time-series simultaneously. This can be done, for example, by

incorporating the data augmentation approach in Schorfheide and Song (2015) or Chan,

Poon, and Zhu (2023) to simulate the missing monthly observations of the quarterly

data. An interesting application would be one that aims to construct monthly state-

level GDP estimates using both quarterly and monthly variables. Another promising

direction is to develop time-varying parameter MARs. In a VAR setting, Chan (2023b)

has found evidence that the VAR coefficients in some, but not all, equations are time-

varying. The binary indicator approach in Chan (2023b) can be adopted to model the

time-varying MAR coefficients. In addition, both the dynamic shrinkage approach of

Koop and Korobilis (2018) or the dynamic shrinkage with sparsification approach of

Huber, Koop, and Onorante (2019) are promising alternatives.

20



Appendix A: Estimation Details

In this appendix we provide estimation details of the proposed Bayesian matrix autore-

gressions.

A1: Sampling A and B

For sampling the coefficient matrices A and B—of dimensions np × n and kp × k,

respectively—from their full conditional distributions, we make use of some standard

results on the matrix normal distribution (see, e.g., Bauwens, Lubrano, and Richard,

1999, pp. 301-302). Specifically, an r × s random matrix Z is said to have a matrix

normal distributionMN (M,S⊗R) for covariance matrices R and S of dimensions r× r
and s× s, respectively, if and only if vec(Z) ∼ N (vec(M),S⊗R). Naturally, a bilinear

transformation of a matrix normal random matrix followed by a translation is also a

matrix normal random matrix. More precisely, suppose Z ∼ MN (M,S ⊗ R) and let

V = CZD + E. Then, V ∼MN (CMD + E, (D′SD)⊗ (CRC′)).

Now, we can sample vec(A) ∼ N (vec(Â),Σr ⊗K−1A ) as follows. Let CKA
and CΣr be

the lower Cholesky factors of KA and Σr, respectively. We claim that if we construct

A = Â + C−1
′

KA
ZC′Σr

,

where Z is an np×n matrix of iid N (0, 1) random variables, then vec(A) has the desired

distribution. To show that, since Z ∼MN (0, In⊗Inp), using the previous result with C =

C−1
′

KA
, D = C′Σr

and E = Â, we have A ∼MN (Â,Σr⊗K−1A ) and therefore, by definition,

vec(A) ∼ N (vec(Â),Σr ⊗ K−1A ). Finally, we note that in the above construction, one

can efficiently compute C−1
′

KA
Z by solving the linear system C′KA

X = Z for X without

explicitly obtaining the inverse C−1
′

KA
.

Next, we outline the sampling of vec(B) ∼ N (vec(B̂),Σc⊗K−1B ) with the normalization

restrictions that the (1, 1) elements of B1, . . . ,Bp are all one. To that end, we first

represent the normalization restrictions as a system of p linear restrictions: M vec(B) =

b0, where M = (mi,j) is a p × k2p selection matrix with mi,(i−1)k+1 = 1 for i = 1, . . . , p,

and b0 is a p × 1 vector of ones. Then, we can apply Algorithm 2.6 in Rue and Held
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(2005) or Algorithm 2 in Cong, Chen, and Zhou (2017) to efficiently sample vec(B) ∼
N (vec(B̂),Σc⊗K−1B ) so that M vec(B) = b0. In particular, one can first sample vec(Bu)

from the unconstrained conditional posterior distribution using the algorithm discussed

earlier, and construct

vec(B) = vec(Bu) +
(
Σc ⊗K−1B

)
M′ (M (

Σc ⊗K−1B

)
M′)−1 (b0 −M vec(Bu)).

Then, vec(B) has the distribution N (vec(B̂),Σc ⊗K−1B ) such that M vec(B) = b0. We

summarize the algorithm in Algorithm 1.

Algorithm 1 Sampling N (vec(B̂),Σc ⊗K−1B ) such that M vec(B) = b0.

1. Sample Bu = B̂ + C−1
′

KB
ZC′Σc

, where Z is a kp × k matrix of N (0, 1) random
variables.

2. Compute C = CΣ−1
c
⊗CKB

, where CΣ−1
c

is the lower Cholesky factor of Σ−1c .

3. Solve CC′U = M′ for U

4. Solve MUV = U′ for V.

5. Return vec(B) = vec(Bu) + V′(b0 −M vec(Bu)).

A2: Sampling κA and κB

Next, we discuss the sampling steps of drawing the hyperparameters κA and κB. First,

note that κA only appears in two terms: its gamma prior κA ∼ G(cA,1, cA,2) and VA, the

prior covariance matrix of A, which is an np×np diagonal matrix with the i-th diagonal

element vA,i,i = κACA,i for some constant CA,i. Then, we can express the conditional

distribution of κA as

p(κA |A,Σr) ∝ κ
cA,1−1
A e−cA,2κA × |VA|−

n
2 e−

1
2
tr(Σ−1

r (A−A0)′V
−1
A (A−A0))

∝ κ
cA,1−n

2p
2
−1

A e−cA,2κAe−
1
2
tr(V−1

A (A−A0)Σ
−1
r (A−A0)′)

∝ κ
cA,1−n

2p
2
−1

A e−
1
2(2cA,2κA+κ−1

A

∑np
i=1QA,i/CA,i),
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where QA,i is the i-th diagonal element of QA = (A−A0)Σ
−1
r (A−A0)

′. Note that this

is the kernel of the generalized inverse Gaussian distribution

GIG

(
cA,1 −

n2p

2
, 2cA,2,

np∑
i=1

QA,i/CA,i

)
.

Draws from the generalized inverse Gaussian distribution can be obtained using the al-

gorithm in Devroye (2014).

Similarly, κB only appears in its gamma prior κB ∼ G(cB,1, cB,2) and VB, which is a

kp × kp diagonal matrix where the i-th diagonal element is vB,i,i = κBCB,i for some

constant CB,i. It can be shown that (κB |B,Σc) has the generalized inverse Gaussian

distribution:

GIG

(
cB,1 −

k2p

2
, 2cB,2,

kp∑
i=1

QB,i/CB,i

)
,

where QB,i is the i-th diagonal element of QB = (B−B0)Σ
−1
c (B−B0)

′.

A3: Sampling Other Parameters

We now consider a few specific examples of ω and discuss how one can modify the

posterior sampler outlined in the main text to handle each case.

Example 1 Student’s t errors

As discussed in Section 2 of the main text, the case of t distributed errors is nested

within the proposed framework: the latent variables ω = (ω1, . . . , ωT )′ are distributed

independently as (ωt | ν) ∼ IG(ν/2, ν/2).

Posterior draws can be obtained by sequentially sampling from: 1) p(A,Σr |Y,B,Σc,κ,ω);

2) p(B,Σc |Y,A,Σr,κ,ω); 3) p(κ |Y,A,B,Σr,Σc,ω); 4) p(ω |Y,A,B,Σr,Σc,κ, ν);

and 5) p(ν |Y,A,B,Σr,Σc,κ,ω). Steps 1-2 can be implemented exactly as described

in Section 3 of the main text and Step 3 as outlined in Section A2. For Step 4, let

s2t = tr
(
Σ−1c E′tΣ

−1
r Et

)
, where Et can be computed given Yt,A and B using (2). Then,
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the conditional distribution of ω can be expressed as:

p(ω |Y,A,B,Σr,Σc,κ, ν) =
T∏
t=1

p(ωt |Y,A,B,Σr,Σc,κ, ν) ∝
T∏
t=1

ω
−( ν

2
+1)

t e
− ν

2ωt×ω−
nk
2

t e
− 1

2ωt
s2t .

That is, each ωt is conditionally independent given the data and other parameters, and

has an inverse-gamma distribution: (ωt |Y,A,B,Σr,Σc, ν) ∼ IG((nk+ν)/2, (s2t +ν)/2).

Lastly, ν can be sampled by an independence-chain Metropolis-Hastings step with the

proposal distribution N (ν̂, K−1ν ), where ν̂ is the mode of log p(ν |Y,A,B,Σr,Σc,ω) and

Kν is the negative Hessian evaluated at the mode. For implementation details of this

step, see Chan and Hsiao (2014).

Example 2 Outlier detection

The proposed framework can also be used to incorporate the approach in Stock and

Watson (2016) and Carriero, Clark, Marcellino, and Mertens (2022) to handle potential

outliers. To that end, let ωt = o2t , where ot follows a mixture distribution that distin-

guishes between regular observations with ot = 1 and outliers for which ot > 2. More

specifically, ot equals 1 with probability 1−po; ot follows a uniform distribution on (2, 20)

with probability po. The outlier probability po is assumed to have a beta prior B(a0, b0),

where the hyperparameters a0 and b0 are calibrated so that the mean outlier frequency

is once every 4 years in quarterly data.

Posterior draws can then be obtained by sequentially sampling from: 1) p(A,Σr |Y,B,Σc,κ,ω);

2) p(B,Σc |Y,A,Σr,κ,ω); 3) p(κ |Y,A,B,Σr,Σc,ω, po); 4) p(ω |Y,A,B,Σr,Σc,κ, po);

and 5) p(po |Y,A,B,Σr,Σc,κ,ω). Steps 1-3 remain the same as before. To implement

Step 4, we discretize the distribution using a fine grid as proposed in Stock and Watson

(2016). Consequently, each ot follows a discrete distribution that can be easily sampled

from. In particular, we have

p(ω |Y,A,B,Σr,Σc,κ, po) =
T∏
t=1

p(ot |Y,A,B,Σr,Σc,κ, po) ∝
T∏
t=1

p(ot | po)o−nkt e
− s2t

2o2t ,

where p(ot | po) is the prior for ot and s2t = tr
(
Σ−1c E′tΣ

−1
r Et

)
. Hence, we can sample each

ωt from its discrete distribution. Lastly, Step 5 can be implemented easily as po follows
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the following beta distribution

(po |Y,A,B,Σr,Σc,κ,ω) ∼ B(a0 + no, b0 + T − no),

where no =
∑T

t=1 1(ot > 1) is the number of outliers.

Example 3 The common stochastic volatility

Next, we incorporate the common stochastic volatility introduced in Carriero, Clark, and

Marcellino (2016) to our matrix autoregression with ωt = eht , where ht follows an AR(1)

process: ht = φht−1 + εht , where εht ∼ N (0, σ2
h).

We assume independent truncated normal and inverse-gamma priors for φ and σ2
h: φ ∼

N (φ0, Vφ)1(|φ| < 1) and σ2
h ∼ IG(νh, Sh). Then, posterior draws can be obtained by sam-

pling from: 1) p(A,Σr |Y,B,Σc,κ,ω); 2) p(B,Σc |Y,A,Σr,κ,ω); 3) p(κ |Y,A,B,Σr,Σc,ω, φ, σ
2
h);

4) p(ω |Y,A,B,Σr,Σc,κ, φ, σ
2
h); 5) p(φ |Y,A,B,Σr,Σc,κ,ω, σ

2
h); and 6) p(σ2

h |Y,A,B,Σr,Σc,κ,ω, φ).

Steps 1-2 again can be implemented exactly as described in Section 3 of the main text

and Step 3 as outlined in Section A2. For Step 4, note that

p(ω |Y,A,B,Σr,Σc,κ, φ, σ
2
h) = p(h |Y,A,B,Σr,Σc,κ, φ, σ

2
h)

∝ p(h |φ, σ2
h)

T∏
t=1

p(Yt |A,B,Σr,Σc, ht),

where p(h |φ, σ2
h) is a Gaussian density implied by the state equation,

log p(Yt |A,B,Σr,Σc, ht) = ct −
nk

2
ht −

1

2
e−hts2t

and ct is a normalizing constant that does not dependent on ht and s2t = tr
(
Σ−1c E′tΣ

−1
r Et

)
.

It is easy to check that

∂

∂ht
log p(Yt |A,B,Σr,Σc, ht) = −nk

2
+

1

2
e−hts2t ,

∂2

∂h2t
log p(Yt |A,B,Σr,Σc, ht) = −1

2
e−hts2t .

Then, one can implement a Newton-Raphson algorithm to obtain the mode of the log
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density log p(h |Y,A,B,Σr,Σc, φ, σ
2
h) and the negative Hessian evaluated at the mode,

which are denoted as ĥ and Kh, respectively. UsingN (ĥ,K−1h ) as a proposal distribution,

one can sample h directly using an acceptance-rejection Metropolis-Hastings step. We

refer the readers to Chan (2017) for details. Finally, Steps 4 and 5 are standard and can

be easily implemented (see., e.g., Chan and Hsiao, 2014).
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Appendix B: Data

The US state-level data are sourced from the Federal Reserve Bank of St. Louis and the

Bureau of Labor Statistics. For each of the 50 states, 6 quarterly time-series from 1991Q1

to 2023Q1 are obtained. Table 1 lists the 6 quarterly variables and describes how they

are transformed. For example, ∆ log is used to denote the first difference in the logs, i.e.,

∆ log yt = log yt − log yt−1.

Table 1: Description of state-level variables in the empirical application.

Variable Source Transformation
Initial unemployment insurance claims FRED log
Continued unemployment insurance claims FRED log
Total nonfarm employment BLS 400∆ log
Unemployment rate FRED no transformation
New housing permits FRED log
Real home price index FRED 400∆ log
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