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Abstract

Large Bayesian VARs with stochastic volatility are increasingly used in empirical

macroeconomics. The key to make these highly parameterized VARs useful is the

use of shrinkage priors. We develop a family of priors that captures the best fea-

tures of two prominent classes of shrinkage priors: adaptive hierarchical priors and

Minnesota priors. Like the adaptive hierarchical priors, these new priors ensure

that only ‘small’ coefficients are strongly shrunk to zero, while ‘large’ coefficients

remain intact. At the same time, these new priors can also incorporate many use-

ful features of the Minnesota priors, such as cross-variable shrinkage and shrinking

coefficients on higher lags more aggressively. We introduce a fast posterior sampler

to estimate BVARs with this family of priors—for a BVAR with 25 variables and 4

lags, obtaining 10,000 posterior draws takes about 3 minutes on a standard desktop.

In a forecasting exercise, we show that these new priors outperform both adaptive

hierarchical priors and Minnesota priors.
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1 Introduction

Vector autoregressions (VARs) are the main workhorse in empirical macroeconomics,

and increasingly large Bayesian VARs are used after the influential work by Banbura,

Giannone, and Reichlin (2010).1 VARs tend to be highly parameterized, and the key to

make these VARs useful is the introduction of shrinkage priors. The most prominent of

these are the Minnesota prior (Doan, Litterman, and Sims, 1984; Litterman, 1986) and

its modern variants (see, e.g., Kadiyala and Karlsson, 1993, 1997; Giannone, Lenza, and

Primiceri, 2015). More recently, adaptive hierarchical shrinkage priors with good theo-

retical properties have been introduced to the large VAR settings. Examples include the

normal-gamma prior in Huber and Feldkircher (2019) and the horseshoe prior in Follett

and Yu (2019).2 While the Minnesota prior has the undesirable property of shrinking all

VAR coefficients, these adaptive hierarchical priors tend to leave ‘large’ coefficients intact

and only shrink ‘small’ coefficients strongly to zero.

Despite this good theoretical property, empirically these adaptive hierarchical priors do

not seem to forecast better than a variant of the Minnesota prior where the hyperpa-

rameters are selected based on the data. This is, for example, demonstrated in a recent

forecasting exercise by Cross, Hou, and Poon (2020). One reason for this surprising re-

sult could be because under these adaptive hierarchical priors, all VAR coefficients are

treated identically—e.g., a coefficient on the first lag has the same prior distribution as

that of the fourth lag.3 In contrast, the Minnesota prior incorporates many plausible

prior beliefs, such as cross-variable shrinkage—i.e., coefficients on lags of other variables

are shrunk more aggressively than those of own lags—and the prior belief that variables

of higher lags are less important.4

1Important examples include Carriero, Kapetanios, and Marcellino (2009), Koop (2013), Koop and
Korobilis (2013), Banbura, Giannone, Modugno, and Reichlin (2013), Carriero, Clark, and Marcellino
(2015) and Carriero, Clark, and Marcellino (2016).

2For more examples of these adaptive hierarchical priors in the context of large Bayesian VARs, see
Kastner and Huber (2018), Korobilis and Pettenuzzo (2019) and Gefang, Koop, and Poon (2019).

3There are two notable exceptions. The first is the adaptive hierarchical priors developed by Huber
and Feldkircher (2019), where additional lag-specific shrinkage parameters are introduced so that higher-
order lags are more strongly shrunk toward zero. Secondly, Korobilis and Pettenuzzo (2019) consider a
class of hierarchical shrinkage priors that incorporate some features of the Minnesota prior.

4There is empirical support for these prior beliefs. For example, Chan (2019) finds cross-variable
shrinkage to be critical in improving forecasting performance. Chan, Jacobi, and Zhu (2020) find evidence
that shrinking coefficients associated with higher lags more strongly increases the value of the marginal
likelihood.
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We introduce a class of priors that captures the best features of both the adaptive hier-

archical priors and the Minnesota prior. Like the adaptive hierarchical priors, these new

priors have both heavy tails and substantial mass around zero. These features ensure

that only ‘small’ coefficients are strongly shrunk to zero, while ‘large’ coefficients remain

intact. At the same time, these new priors can also incorporate many useful features of

the Minnesota prior, such as cross-variable shrinkage and shrinking coefficients on higher

lags more aggressively.5

To estimate large BVARs with this new family of priors, we introduce a reparameter-

ization of the standard reduced-form BVAR with stochastic volatility. Specifically, we

rewrite the BVAR in the structural form, where the time-varying error covariance matri-

ces are diagonal. Hence, we can treat the structural BVAR as a system of n independent

regressions, which substantially speeds up computations. This approach is similar to

the equation-by-equation estimation approach in Carriero, Clark, and Marcellino (2019),

which is designed for the reduced-form parameterization. Since under our parameteriza-

tion there is no need to obtain the ‘orthogonalized’ shocks at each iteration as in Carriero,

Clark, and Marcellino (2019), our approach is substantially faster. For example, for a

BVAR with 25 variables and 4 lags, simulating 10,000 posterior draws using the proposed

posterior sampler takes about 3 minutes on a standard desktop. In addition, similar to

Giannone, Lenza, and Primiceri (2015) and Amir-Ahmadi, Matthes, and Wang (2020),

we treat the overall shrinkage hyperparameters as parameters to be estimated, not just

set their values at the maximum a posteriori.

We illustrate the empirical relevance of the proposed Minnesota-type adaptive hierar-

chical priors with a forecasting exercise that involves 23 US quarterly macroeconomic

and financial variables. More specifically, we consider a Minnesota-type normal-gamma

prior, and show that this new prior outperforms two important benchmarks: 1) a stan-

dard normal-gamma prior that treats all coefficients identically; and 2) a Minnesota prior

where the hyperparameters are estimated from the data. These results suggest that both

the Minnesota prior and the normal-gamma prior have useful features, and combining

them gives us the best of both worlds.

The rest of the paper is organized as follows. We first introduce in Section 2 a repa-

5In previous works (such as Chan, 2019, 2020a; Chan, Jacobi, and Zhu, 2020), we considered some
variants of the Minnesota priors (all Gaussian), but none of them attempted to incorporate features of
the Minnesota prior into a class of adaptive hierarchical priors (all non-Gaussian).
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rameterization of the reduced-form BVAR with stochastic volatility. We then outline

various shrinkage priors for large BVARs, including the Minnesota prior and some re-

cently introduced adaptive hierarchical priors. Then, Section 3 develops the new class of

Minnesota-type adaptive hierarchical priors that combines the best features of popular

priors. Section 4 describes an efficient posterior simulator to estimate the BVAR with the

proposed Minnesota-type adaptive hierarchical priors. It is followed by a macroeconomic

forecasting exercise to illustrate the usefulness of the proposed priors in Section 5. Lastly,

Section 6 concludes and briefly discusses some future research directions.

2 Bayesian VARs and Shrinkage Priors

In this section we first provide some background on Bayesian VARs with stochastic volatil-

ity. We then outline various shrinkage priors for large BVARs, including the Minnesota

prior and some recently introduced adaptive hierarchical priors.

Let yt = (y1,t, . . . , yn,t)
′ be an n× 1 vector of endogenous variables at time t. A standard

reduced-form VAR can be written as:

yt = b̃ + B̃1yt−1 + · · ·+ B̃pyt−p + ε̃yt , ε̃yt ∼ N (0, Σ̃t), (1)

where b̃ is an n×1 vector of intercepts and B̃1, . . . , B̃p are n×n VAR coefficient matrices.

Here we allow the covariance matrix Σ̃t to be time-varying, as a large empirical literature

has demonstrated that this is an important feature for improving forecasting performance

(Clark, 2011; D’Agostino, Gambetti, and Giannone, 2013; Cross and Poon, 2016; Chan,

2020a).

More specifically, we follow Cogley and Sargent (2005) and Carriero, Clark, and Mar-

cellino (2019) to decompose the inverse covariance matrix, or the precision matrix, as

Σ̃
−1
t = B′0Σ

−1
t B0, where Σt = diag(eh1,t , . . . , ehn,t) is a diagonal matrix and B0 is a lower

triangular matrix with ones on the main diagonal. Each log-volatility hi,t for i = 1, . . . , n

in turn follows an independent random walk process:

hi,t = hi,t−1 + εhi,t, εhi,t ∼ N (0, σ2
h,i) (2)
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for t = 1, . . . , T , where the initial condition hi,0 is treated as an unknown parameter to

be estimated.

2.1 The Bayesian VAR in Structural Form

Next, we introduce a reparameterization of the reduced-form VAR in (1) that facilitates

posterior simulation. In a nutshell, this reparameterization allows us to rewrite the VAR

as n independent regressions, and it leads to a more efficient sampling scheme. Con-

sequently, we are able to improve upon the pioneering equation-by-equation estimation

approach proposed in Carriero, Clark, and Marcellino (2019). The relative gains in pos-

terior simulation are illustrated in Section 4.

Now, left multiply the reduced-form VAR in (1) by B0 to obtain the following structural

form:

B0yt = b + B1yt−1 + · · ·+ Bpyt−p + εyt , εyt ∼ N (0,Σt). (3)

Since the covariance matrix Σt in this structural form is diagonal, we can estimate this

recursive system equation by equation without loss of efficiency. To write the structural

VAR in (3) as n independent regressions, we first introduce some notations. Let bi

denote the i-th element of b and let bj,i represent the i-th row of Bj. Then, βi =

(bi,b1,i, . . . ,bp,i)
′ is the intercept and VAR coefficients for the i-th equation. Furthermore,

let αi denote the free elements in the i-th row of the impact matrix B0. We then follow

Chan and Eisenstat (2018) to write the i-th equation of the system in (3) as:

yi,t = w̃i,tαi + x̃tβi + εyi,t, εyi,t ∼ N (0, ehi,t),

where w̃i,t = (−y1,t, . . . ,−yi−1,t) and x̃t = (1,y′t−1, . . . ,y
′
t−p). Here we have a recursive

system in which yi,t depends on the contemporaneous variables y1,t, . . . , yi−1,t. But since

the system is recursive, the Jacobian of the change of variables from εyt to yt has unit

determinant, and therefore the likelihood function has the usual Gaussian form.

Finally, let xi,t = (w̃i,t, x̃t). We can further simplify the i-th equation as:

yi,t = xi,tθi + εyi,t, εyi,t ∼ N (0, ehi,t), (4)
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where θi = (α′i,β
′
i)
′ is of dimension ki = np+ i. Hence, we have rewritten the structural

VAR in (3) as a system of n independent regressions. This representation facilitates

equation-by-equation estimation, as we will discuss in detail in Section 4. In addition,

by stacking the elements of the impact matrix αi and the VAR coefficients βi, we can

sample them together to improve efficiency.6

2.2 The Minnesota Prior

In this section we outline a data-based Minnesota prior on the structural VAR in (4).

We will then use this version of the Minnesota prior to construct the proposed adaptive

hierarchical priors in Section 3. For a general discussion of the Minnesota prior, see, e.g.,

Koop and Korobilis (2010), Karlsson (2013) or Chan (2020b).

Early works on shrinkage priors for small and medium VARs were developed by Doan,

Litterman, and Sims (1984) and Litterman (1986). This family of priors, and many

variants developed later, have come to be collectively called the Minnesota priors. In

the original version, the prior is placed on the reduced-form VAR coefficients. Sims and

Zha (1998) later formulated a version for structural VARs, which we will follow here.

More specifically, we assume that the VAR coefficients θ = (θ′1, . . . ,θ
′
n)′ are a priori

independent across equations, and each θi, for i = 1, . . . , n, has a normal prior:

θi ∼ N (mi,Vi). (5)

For growth rates data, we set mi = 0 to shrink the VAR coefficients to zero. For level

data, mi is set to be zero as well except for the coefficient associated with the first own

lag, which is set to be one. Next, for Vi, we assume it to be diagonal with the k-th

6The structural VAR in (3) is a reparameterization of the reduced-form VAR in Cogley and Sargent
(2005) and Carriero, Clark, and Marcellino (2019). The main concern of this paper is on forecasting,
and we will focus on this structural VAR. For structural analysis, one could first transform the posterior
draws of the structural-form parameters to the reduced-form by setting b̃ = B−1

0 b and B̃j = B−1
0 Bj , j =

1, . . . , p. These reduced-form posterior draws could then be used, in conjunction with an appropriate
identification strategy, to produce suitable impulse response functions.
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diagonal element Vi,kk set to be:

Vi,kk =



κ1
l2
, for the coefficient on the l-th lag of variable i,

κ2s2i
l2s2j

, for the coefficient on the l-th lag of variable j, j 6= i,
κ3s2i
s2j
, for the j-th element of αi,

κ4s
2
i , for the intercept,

where s2r denotes the sample variance of the residuals from an AR(4) model for the

variable r, r = 1, . . . , n.7

The prior covariance matrix Vi depends on four hyperparameters, namely, κ1, . . . , κ4, that

control the degree of shrinkage for different types of coefficients. In the baseline model

we set κ3 = 1 and κ4 = 100. These values imply moderate shrinkage for the coefficients

on the contemporaneous variables (the same magnitude as the residual variance) and

essentially no shrinkage for the intercepts. We also consider a version where both κ3 and

κ4 are estimated in Section 5.4.

The hyperparameter κ1 controls the overall shrinkage strength for coefficients on own

lags, whereas κ2 controls those on lags of other variables. We treat them as unknown

parameters to be estimated. This is motivated by a few recent papers, such as Carriero,

Clark, and Marcellino (2015) and Giannone, Lenza, and Primiceri (2015), which show

that by selecting hyperparameters that control the overall shrinkage strength in a data-

based fashion, one can substantially improve forecast performance. Also note that here

we allow κ1 and κ2 to be different, as one might expect that coefficients on lags of other

variables would be on average smaller than those on own lags. In fact, Chan (2019) finds

empirical evidence in support of this so-called cross-variable shrinkage. Finally, in both

cases coefficients on higher lags are shrunk more strongly to zero, at a rate of 1/l2 for

l = 1, . . . , p.

7In the standard setup, s2r is obtained by running auxiliary regressions on the data, implying that
the prior is dependent on the data. Alternatively, one can set aside a training sample, e.g., the first five
years of data, for computing s2r.
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2.3 Global-Local Adaptive Shrinkage Priors

Despite its empirical success, the Minnesota prior has been recently criticized as not be-

ing sufficiently adaptive. There is a common view that a shrinkage prior should shrink

only ‘small’ coefficients to zero, while leaving ‘large’ coefficients intact. But the Min-

nesota prior—being a normal prior with very thin tails—substantially shrinks both types

of coefficients. In addition, this shrinkage effect on large coefficients does not vanish even

when they become very large. For instance, Griffin and Brown (2010) show that the nor-

mal prior shrinks the least squares estimate toward zero even when the latter approaches

infinity. In contrast, if the tails of the prior distribution are heavier than those of the nor-

mal, the posterior mean of a regression coefficient converges to the least squares estimate

as the latter approaches infinite.

In view of this problem of the normal prior, Polson and Scott (2010) consider a class of

scale mixtures of normals priors called the global-local adaptive shrinkage priors:

(θi,j | τ, ψi,j) ∼ N (0, τψi,j),

ψi,j ∼ Fψ(ψi,j),

τ ∼ Fτ (τ),

for i = 1, . . . , n, j = 1, . . . , ki. Each ψi,j is a local variance component associated with the

coefficient θi,j, whereas τ is a global variance component that is common to all coefficients.

By using different mixing distribution Fψ(·), this framework includes a wide variety of

distributions that have heavier tails than those of the normal. Prominent examples

include the t prior (Geweke, 1993), the normal-gamma prior (Griffin and Brown, 2010)

and the horseshoe prior (Carvalho, Polson, and Scott, 2010).

While these global-local priors have the desirable property of shrinking only ‘small’ co-

efficients strongly to zero, one key drawback is that they treat all coefficients identically.

In the context of large BVARs, one might wish to apply cross-variable shrinkage, or to

shrink coefficients on higher lags more aggressively to zero than those of the first lag.

However, these prior beliefs cannot be implemented within the current framework.
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3 Minnesota-Type Adaptive Hierarchical Priors

In this section we introduce a new class of adaptive hierarchical priors that combines the

best features of the Minnesota prior and the global-local priors. Similar to the global-local

priors, these new priors are scale mixtures of normals with heavy tails, which ensures good

theoretical properties. At the same time, they can incorporate many useful features of

the Minnesota prior, such as cross-variable shrinkage and shrinking coefficients on higher

lags more aggressively.

To formulate this new family of priors, let Ci,j be positive constants. Then, consider the

following prior on θi,j:

(θi,j |κ1, κ2, ψi,j) ∼ N (mi,j, κi,jψi,jCi,j), (6)

where ψi,j ∼ Fψ(ψi,j) for some suitably chosen distribution Fψ(·) as in the global-local

priors, κi,j = κ1 for coefficients on own lags, κi,j = κ2 for coefficients on other lags, and

κi,j = 1 otherwise.

The setup in (6) nests both the Minnesota prior specified in Section 2.2 and the global-

local prior discussed in Section 2.3. To verify the former claim, for each i = 1, . . . , n

define the constants Ci,j associated with the VAR coefficients θi,j, j = 1, . . . , ki as follows:

Ci,j =



1
l2
, for the coefficient on the l-th lag of variable i,
s2i
l2s2j

, for the coefficient on the l-th lag of variable j, j 6= i,
κ3s2i
s2j
, for the j-th element of αi,

κ4s
2
i , for the intercept.

(7)

As in the Minnesota prior, we set mi,j = 0 for growth rates data; for level data, mi,j is

set to be zero as well except for the coefficient associated with the first own lag, which

is set to be one. Then, it is easy to see that if all the local variances are degenerated

at 1, i.e., ψi,j ≡ 1, this new family of priors reduces to the Minnesota prior. Hence, (6)

can be viewed as a generalization of the Minnesota prior by introducing a local variance

component that allows the marginal prior distribution of θi,j to have heavier tails than

those of the normal.

If instead we set mi,j = 0, Ci,j = 1 and κ1 = κ2 = τ , then this family of priors becomes

9



the standard global-local priors. Hence, (6) can also be interpreted as a generalization

of the global-local priors that allows for non-identical distributions. By introducing the

constants Ci,j, we can incorporate richer prior beliefs on the VAR coefficients, such as

those useful features of the Minnesota prior.

We have shown that the framework in (6) nests both the Minnesota prior and the global-

local priors. Another possibility is to nudge (6) toward either the Minnesota prior or the

global-local prior. For example, if ψi,j has a prior with more mass around 1, the marginal

prior on θi,j would more closely resemble the Minnesota prior. In contrast, if Ci,j is

assumed, e.g., to have a 2-component normal mixture with components centered around

1 and the value in (7), then the associated marginal prior on θi,j would more closely

resemble the global-local prior. We leave this possibility to future research. In what

follows, we use the constants Ci,j defined in (7) as the benchmark. In addition, we set all

the ψi,j’s associated with the intercepts and αi to be one, although it is straightforward

to treat them as random variables.

4 Bayesian Estimation

We now describe an efficient posterior simulator to estimate the structural VAR in (3)

with the proposed Minnesota-type adaptive hierarchical prior given in (6). For concrete-

ness, we focus on the Minnesota-type normal-gamma prior, as it seems to perform best

in the context of forecasting using large BVARs. We emphasize that our framework can

handle all global-local priors, including the horseshoe prior and the Dirichlet-Laplace

prior (Bhattacharya, Pati, Pillai, and Dunson, 2015). Estimating BVARs with other

global-local priors requires only minor modifications of the proposed sampler.

More specifically, we adapt the parameterization of the normal-gamma prior in Huber

and Feldkircher (2019), and consider the following Minnesota-type normal-gamma prior:

(θi,j |κ1, κ2, ψi,j) ∼ N (mi,j, 2κi,jψi,jCi,j), (8)

ψi,j ∼ G(νψ, νψ/2), (9)

where G(a, b) denotes the gamma distribution with mean a/b, Ci,j is given in (7), κi,j = κ1

for coefficients on own lags, κi,j = κ2 for coefficients on other lags, and κi,j = 1 otherwise.
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This parameterization of the normal-gamma prior includes the Bayesian Lasso (Park and

Casella, 2008) as a special case with νψ = 1.

To complete the model specification, we assume gamma priors for the hyperparameters

κ1, κ2 and νψ: κj ∼ G(c1,j, c2,j), j = 1, 2 and νψ ∼ G(d1, d2). We set c1,1 = c1,2 = 1,

c2,1 = 1/0.04 and c2,2 = 1/0.042. These values imply that the prior means of κ1 and κ2

are 0.04 and 0.042 respectively, which are the fixed values used in Carriero, Clark, and

Marcellino (2015) for κ1 and κ2. We set d1 = d2 = 1, implying prior mean of 1 for νψ.

Finally, for the parameters in the state equation of hi,j, we assume hi,0 ∼ N (ah,i, Vh,i)

and σ2
h,i ∼ IG(νh,i, Sh,i), i = 1, . . . , n. We set ah,i = 0, Vh,i = 10, νh,i = 5, and Sh,i = 0.04.

In particular, these values imply prior means of σ2
h,i to be 0.01.8

Next, we derive the (conditional) likelihood function of the structural VAR given the

latent variables. To that end, we stack yi = (yi,1, . . . , yi,T )′ and hi = (hi,1, . . . , hi,T )′ over

t = 1, . . . , T , and define Xi and εyi similarly. Then, we rewrite (4) in matrix form:

yi = Xiθi + εyi , εyi ∼ N (0,Ωhi),

where Ωhi = diag(ehi,1 , . . . , ehi,T ). Finally, let θ = (θ′1, . . . ,θ
′
n)′ and h = (h′1, . . . ,h

′
T )′.

Then, the likelihood function of the VAR in (3) is given by

p(y |θ,h) =
n∏
i=1

p(yi |θi,hi) =
n∏
i=1

(2π)−
T
2 e
− 1

2
1′Thi− 1

2
(yi−Xiθi)

′Ω−1
hi

(yi−Xiθi), (10)

where 1T is a T × 1 column of ones.

4.1 Posterior Simulator

To introduce the posterior sampler, we first define a few terms. Let ψi denote the

free elements of ψi,j, j = 1, . . . , ki and stack ψ = (ψ′1, . . . ,ψ
′
n)′. Further, let Σh =

(σ2
h,1, . . . , σ

2
h,n)′, h0 = (h1,0, . . . , hn,0)

′ and κ = (κ1, κ2)
′. Given the above priors and the

likelihood in (10), we can simulate from the joint posterior distribution using the following

posterior sampler that sequentially samples from:

8The inverse-gamma prior for σ2
h,i is chosen for computational convenience. Alternative priors such

as half-Cauchy or gamma have been considered in the literature. They can be adopted here as well with
slightly higher computational cost.
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1. p(θi |y,h,ψ,κ, νψ,h0,Σh), i = 1, . . . , n;

2. p(ψi |y,θ,h,κ, νψ,h0,Σh), i = 1, . . . , n;

3. p(κ |y,θ,h,ψ, νψ,h0,Σh);

4. p(νψ |y,θ,h,ψ,κ,h0,Σh);

5. p(hi |y,θ,ψ,κ, νψ,h0,Σh), i = 1, . . . , n;

6. p(h0 |y,θ,h,ψ,κ, νψ,Σh);

7. p(Σh |y,θ,h,ψ,κ, νψ,h0).

Steps 4-7 are standard and we leave the details to Appendix B. Here we focus on the first

three steps.

Step 1. Note that the likelihood function in (10) can be written as a product of n Gaus-

sian densities, each depends only on (θi,hi). And since the priors on θi are independent

across equations, we can sample θi equation by equation without loss of efficiency. To

that end, let mi = (mi,1, . . . ,mi,ki)
′. Then, we can rewrite the conditional prior of θi in

(8) as:

(θi |κ1, κ2,ψi) ∼ N (mi,Vi),

where Vi = diag(2κi,1ψi,1Ci,1, . . . , 2κi,kiψi,kiCi,ki). Combining the above prior and the

likelihood in (10), we have

(θi |y,h,ψ,κ, νψ,h0,Σh) ∼ N (θ̂i,K
−1
θi

),

where

Kθi = V−1i + X′iΩ
−1
hi

Xi, θ̂i = K−1θi
(V−1i mi + X′iΩ

−1
hi

yi).

Here the covariance matrix K−1θi
is of dimension ki = np + i. Conventional methods

to sample from the normal distribution require the Cholesky factor of K−1θi
. When n is

large, computing the covariance matrix K−1θi
explicitly by inverting Kθi is computationally

intensive. It turns out we do not need an explicit expression of the inverse K−1θi
; see

Appendix B for computational details.

Step 2. First, note that the free elements of ψi are conditionally independent and we

can sample them one by one without loss of efficiency. Next, combining (8) and (9), we
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obtain

p(ψi,j |y,θ,h,κ, νψ,h0,Σh) ∝ ψ
− 1

2
i,j e

− 1
4κi,jCi,jψi,j

(θi,j−mi,j)2 × ψνψ−1i,j e−
νψ
2
ψi,j

= ψ
νψ− 1

2
−1

i,j e
− 1

2

(
νψψi,j+ψ

−1
i,j

(θi,j−mi,j)
2

2κi,jCi,j

)
,

which is the kernel of a generalized inverse Gaussian distribution. More precisely, we

have

(ψi,j |y,θ,h,κ, νψ,h0,Σh) ∼ GIG
(
νψ −

1

2
, νψ,

(θi,j −mi,j)
2

2κi,jCi,j

)
.

Step 3. Note that κ1 and κ2 only appear in their priors κj ∼ G(c1,j, c2,j), j = 1, 2,

and in (8) (recall κi,j = κ1 for coefficients on own lags and κi,j = κ2 for coefficients

on other lags). To sample κ1 and κ2, first define the index set Sκ1 that collects all

the indexes (i, j) such that θi,j is a coefficient associated with an own lag. That is,

Sκ1 = {(i, j) : θi,j is a coefficient associated with an own lag}. Similarly, define Sκ2 as

the set that collects all the indexes (i, j) such that θi,j is a coefficient associated with a

lag of other variables. It is easy to check that the numbers of elements in Sκ1 and Sκ2

are respectively np and (n− 1)np. Then, we have

p(κ1 |y,θ,h,ψ, νψ,h0,Σh) ∝
∏

(i,j)∈Sκ1

κ
− 1

2
1 e

− 1
4κ1Ci,jψi,j

(θi,j−mi,j)2 × κc1,1−11 e−κ1c2,1

= κ
c1,1−np2 −1
1 e

− 1
2

(
2c2,1κ1+κ

−1
1

∑
(i,j)∈Sκ1

(θi,j−mi,j)
2

2ψi,jCi,j

)
,

which is the kernel of the GIG
(
c1,1 − np

2
, 2c2,1,

∑
(i,j)∈Sκ1

(θi,j−mi,j)2
2ψi,jCi,j

)
distribution. Simi-

larly, we have

(κ2 |y,θ,h,ψ, νψ,h0,Σh) ∼ GIG

c1,2 − (n− 1)np

2
, 2c2,2,

∑
(i,j)∈Sκ2

(θi,j −mi,j)
2

2ψi,jCi,j

 .

The implementation details of the remaining steps are given in Appendix B.
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4.2 A Numerical Comparison

In this section we report the estimation times for BVARs of different sizes under the

Minnesota-type normal-gamma prior using the proposed sampler. For comparison, we

also report the estimation times of the same models using the algorithm in Carriero,

Clark, and Marcellino (2019). To have a fair comparison, when we implement their

algorithm, we also avoid any explicit computation of inverse precision matrices whenever

possible. Moreover, to simulate the log-volatilities, we use the more efficient precision

sampler in Chan and Jeliazkov (2009) instead of Kalman filter-based methods.

The main difference between the two approaches is that Carriero, Clark, and Marcellino

(2019) is designed for the reduced-form parameterization in (1), whereas the proposed

sampler is for the structural-form parameterization in (3). A key advantage of the latter

parameterization is that the VAR can be readily written as n separate regressions, and

there is no need to obtain the ‘orthogonalized’ shocks at each MCMC iteration, as is

required in the algorithm in Carriero, Clark, and Marcellino (2019). Hence, one would

expect the proposed sampler would run faster. In addition, estimation of the n separate

regressions is trivially parallelizable, which can be easily distributed on CPU cores or

clusters. Finally, the algorithm in Carriero, Clark, and Marcellino (2019) requires an

extra block to sample the free elements of the impact matrix B0, whereas the proposed

sampler simulates them jointly with the VAR coefficients. Hence, the proposed sampler

is expected to induce less autocorrelation in the Markov chain (at the expense of slower

computation time).

Table 1: The computation times (in minutes) to obtain 10,000 posterior draws under
the Minnesota-type normal-gamma prior using the proposed method compared to the
method in Carriero, Clark, and Marcellino (2019). All BVARs have p = 4 lags.

n = 25 n = 50 n = 100
proposed method 2.9 10.2 71.8
CCM 8.2 20.4 90.0

Table 1 reports the computation times (in minutes) to obtain 10,000 posterior draws. All

the BVARs have p = 4 lags, and the algorithms are implemented using Matlab on a

desktop with an Intel Core i7-7700 @3.60 GHz processor and 64GB memory (we do not

implement parallel computing for a fair comparison). As it is evident from the table,
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the proposed method is fast and scales well. For example, for a BVAR with n = 25

variables, simulating 10,000 posterior draws using the proposed posterior sampler takes

about 3 minutes; when n = 100, it takes about 72 minutes. The proposed algorithm also

compares favorably to the algorithm in Carriero, Clark, and Marcellino (2019), with a

speed-up between 25% to about 3 times.

5 Application: Forecasting with Large BVARs

We consider a forecasting exercise using large BVARs to illustrate the usefulness of the

proposed Minnesota-type adaptive hierarchical priors. We first describe the macroeco-

nomic dataset in Section 5.1, which is followed by some full sample results in Section 5.2.

We then compare in Section 5.3 the forecast performance of the proposed Minnesota-type

normal-gamma prior with two important benchmarks: the normal-gamma prior and the

data-based Minnesota prior. Finally, Section 5.4 reports a range of addtional results,

including the relative forecast performance of a verision of the proposed Minnesota-type

normal-gamma prior in which the hyperparameters κ3 and κ4 are estimated from the

data rather than fixed as in the baseline.

5.1 Data

We use a dataset that consists of 23 US quarterly variables with a sample period from

1959Q1 to 2018Q4. It is constructed from the FRED-QD database at the Federal Reserve

Bank of St. Louis as described in McCracken and Ng (2016). The dataset contains a

range of standard macroeconomic and financial variables, such as Real GDP, industrial

production, inflation rates, labor market variables and interest rates. They are trans-

formed to stationarity, typically to growth rates. The complete list of variables and how

they are transformed is given in Appendix A.
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5.2 Full Sample Results

Next, we present some full sample results that highlight the differences of the proposed

Minnesota-type normal-gamma prior compared to the normal-gamma prior and the data-

based Minnesota prior. We first report in Table 2 the posterior estimates of κ1 and κ2

under the three priors.

Recall that the normal-gamma does not distinguish own lags versus other lags and it

restricts κ1 = κ2. Under the normal-gamma prior, the posterior mean is 0.0007, implying

aggressive global shrinkage. This is a general feature of the family of global-local priors—

strong global shrinkage handles the noise, while the local variance component detects the

signals (see Polson and Scott, 2010, for more discussion). However, if we allow κ1 and κ2

to be different as in the proposed Minnesota-type normal-gamma prior, we obtain very

different results: the posterior mean of κ1 increases about 58 times to 0.041, whereas the

posterior mean of κ2 reduces to 0.0006. These estimates suggest that the data prefers

shrinking the coefficients on lags of other variables much more strongly to zero than those

on own lags. This is consistent with the prior belief that, on average, a variable’s own lags

contain more information about its future evolution than lags of other variables. These

results highlight the empirical relevance of allowing for cross-variable shrinkage.

Table 2: Posterior means and standard deviations (in parenthesis) of κ1 and κ2 under the
normal-gamma prior (κ1 = κ2), the Minnesota prior and the proposed Minnesota-type
normal-gamma prior.

normal-gamma Minnesota Minnesota-type normal-gamma
κ1 0.0007 0.093 0.041

(0.0001) (0.0152) (0.0171)
κ2 0.0007 0.0028 0.0006

(0.0001) (0.0003) (0.0001)
νψ 0.13 – 0.15

(0.004) – (0.012)

In addition, the posterior means of κ1 and κ2 under the Minnesota prior are both sub-

stantially larger than those of the Minnesota-type normal-gamma prior. Specifically, the

posterior means of κ1 and κ2 under the Minnesota prior are, respectively, 2.3 and 4.7

times larger than the latter. This makes intuitive sense as the only difference between

the two priors is the addition of the local variance component in the latter. By allowing
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for a local variance component to handle ‘large’ coefficients, the global component can

shrink all coefficients more aggressively. Hence, the estimates of κ1 and κ2 under the

Minnesota-type normal-gamma prior are both smaller. Figure 1 further plots the poste-

rior draws of κ1 and κ2 under the Minnesota prior and the Minnesota-type normal-gamma

prior. It is clear from the histograms that the posterior distributions of both κ1 and κ2

are substantially different across the two priors. In particular, it reinforces the conclusion

that both κ1 and κ2 are much smaller under the Minnesota-type normal-gamma prior

compared to the Minnesota prior.

Figure 1: Histograms of the posterior draws of κ1 and κ2 under the Minnesota prior (top
panel) and the Minnesota-type normal-gamma prior (bottom panel).

We also report in Table 2 the posterior estimates of νψ for the two BVARs with the

normal-gamma prior. Recall that when νψ = 1, the normal-gamma prior reduces to the

standard Bayesian Lasso prior. In both cases the estimates are far from unity with small

posterior standard deviations. These estimates indicate that the Bayesian Lasso prior

might be too restrictive.
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To further compare the shrinkage performance of the three priors, Figure 2 presents

the scatter plots of the posterior means of VAR coefficients (excluding the intercepts)

under the three priors. The left panel compares the proposed Minnesota-type normal-

gamma prior and the normal-gamma prior. The scatter plot shows two distinct groups

of coefficients. In the first group the estimates under both priors are roughly the same

(they lie on the diagonal lines). In the second group, in contrast, the normal-gamma

prior aggressively shrinks the coefficients toward zero even when the proposed prior does

not (they lie on the x-axis). At first glance this result might appear to be surprising, but

it is in fact consistent with the estimates of κ1 and κ2 reported in Table 2: while both

priors allow for individual local variance parameters, the normal-gamma prior is more

aggressive in global shrinkage compared to the proposed prior.
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Figure 2: Scatter plots of the VAR coefficients under the Minnesota-type normal-gamma
prior vs the normal-gamma prior (left panel) and the Minnesota-type normal-gamma
prior vs the Minnesota prior (right panel). The dash line is the diagonal line.

The right panel of Figure 2 compares the Minnesota-type normal-gamma prior and the

Minnesota prior. On the whole the two priors behave more similarly, but there are a

few subtle differences. The proposed prior tends to shrink the ‘small’ coefficients more

strongly to zero compared to the Minnesota prior. This is consistent with the results in

Table 2 that show stronger global shrinkage under the proposed prior. In contract, the

estimates of the ‘large’ coefficients under both priors are similar (they tend to lie close

to the diagonal line), but with a few exceptions. One prominent exception is the point

on the upper right corner of the panel, which represents the coefficient on the first lag
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of a credit spread variable — Moody’s seasoned Baa corporate bond yield relative to

yield on 10-Year treasury constant maturity — in the S&P 500 equation. In particular,

the estimate under the Minnesota prior is 8.8 versus 27.1 under the proposed prior. By

adding an individual local variance, the proposed prior sometimes allows for a much larger

coefficient estimate.

To conclude, overall the full sample results suggest that the features of both the Minnesota

prior and the normal-gamma prior are empirically useful. More specifically, the results

highlight the importance of the addition of a local variance component, as well as allowing

for different levels of shrinkage on own versus other lags. Hence, these results show the

empirical relevance of the proposed Minnesota-type normal-gamma prior.

5.3 Forecasting Results: Comparison with Benchmarks

Next, we evaluate the forecast performance of BVARs with the proposed Minnesota-type

normal-gamma prior relative to two alternative priors: the normal-gamma and the Min-

nesota prior. The sample period is from 1959Q1 to 2018Q4, and the forecast performance

of the models is evaluated from 1985Q1 till the end of the sample. In each recursive fore-

casting iteration, we use only the data up to time t, denoted as y1:t, to estimate the

models. We evaluate both point and density forecasts, and we use the conditional expec-

tation E(yi,t+m |y1:t) as the m-step-ahead point forecast for variable i and the predictive

density p(yi,t+m |y1:t) as the corresponding density forecast.

We use the root mean squared forecast error (RMSFE) to evaluate the point forecasts

from model M , which is defined as:

RMSFEM
i,m =

√∑T−m
t=t0

(yoi,t+m − E(yi,t+m |y1:t))2

T −m− t0 + 1
,

where yoi,t+m is the observed value of yi,t+m. To evaluate the density forecasts, the metric

we use is the average of log predictive likelihoods (ALPL):

ALPLMi,m =
1

T −m− t0 + 1

T−m∑
t=t0

log p(yi,t+m = yoi,t+m |y1:t),
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where p(yi,t+m = yoi,t+m |y1:t) is the predictive likelihood. For this metric, a larger value

indicates better forecast performance.

To compare the forecast performance of model M against the benchmark B, we follow

Carriero, Clark, and Marcellino (2015) to report the percentage gains in terms of RMSFE,

defined as

100× (1− RMSFEM
i,m/RMSFEB

i,m),

and the percentage gains in terms of ALPL:

100× (ALPLMi,m − ALPLBi,m).

Figure 3 reports the forecasting results from the BVARs with the proposed Minnesota-

type normal-gamma prior relative to the benchmark normal-gamma prior. The top panel

shows the percentage gains in RMSFE for all 23 variables, whereas the bottom panel

presents the corresponding results in ALPL.

For 1-step-ahead point forecasts, the Minnesota-type normal-gamma prior outperforms

the benchmark for most of the variables. For a few variables, such as real output per

hour for nonfarm business section, federal funds rate and 3-month treasury bill rate, the

former outperforms the benchmark between 18%-25%. For 4-step-ahead point forecasts,

the Minnesota-type normal-gamma prior similarly outperforms the benchmark, though

the gains are more modest. The median percentage gains in RMSFE for 1- and 4-step-

ahead forecasts are 2.8% and 1.8%, respectively, whereas the mean percentage gains are

4.1% and 2.4%. Results for density forecasts are similar: the median percentage gains in

ALPL for 1- and 4-step-ahead forecasts are, respectively, 2.5% and 1.5%, while the mean

percentage gains are 3.5% and 3.2%. These results demonstrate that by incorporating

richer prior beliefs such as cross-variable shrinkage, one can substantially improve the

forecast performance of the normal-gamma prior.
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Figure 3: Forecasting results from BVAR with the Minnesota-type normal-gamma prior
versus BVAR with the normal-gamma. The top panel shows the percentage gains in root
mean squared forecast error of the Minnesota-type normal-gamma prior. The symbols
* and # after the mnemonic indicate rejection of equal forecast accuracy at significance
level 0.05 using the test in Diebold and Mariano (1995) for 1- and 4-step-ahead point
forecasts, respectively. The bottom panel presents the percentage gains in the average of
log predictive likelihoods.

To further investigate the differences in forecast performance, Figure 4 presents the one-

quarter-ahead point forecasts of federal funds rate under the Minnesota-type normal-

gamma prior and the normal-gamma prior, as well as the corresponding forecast errors.

Both priors perform similarly except for two periods: from 1985 to early 1990s and around

the Great Recession of 2007-2009. Consistent with the results reported in Figure 2, it

seems that the normal-gamma prior over-shrinks the VAR coefficients, and consequently

underestimates the persistence of the interest rate variable. In particular, the coefficients

on the first and second lags of the federal funds rate in the federal funds rate equation are

0.69 and −0.01 for the normal-gamma prior versus 0.84 and −0.15 for the Minnesota-type
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normal-gamma prior.

More generally, the pattern in Figure 4 is typical of interest rate variables (e.g., 3-Month

treasury bill, 1-Year and 10-Year treasury constant maturity rates, etc.). That is, the

Minnesota-type normal-gamma prior tends to forecast better than the normal-gamma

prior for the two periods from 1985 to early 1990s and around the Great Recession of

2007-2009. The reason is apparently the same: the normal-gamma prior tends to over-

shrinks the VAR coefficients and underestimates the persistence of variable of interest.
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MNG forecasts
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Figure 4: The top panel reports the 1-quarter-ahead point forecasts of federal funds
rate under the Minnesota-type normal-gamma prior and the normal-gamma prior. The
bottom panel presents the squared forecast errors of the two priors.

Next, we compare the forecast performance of the Minnesota-type normal-gamma prior

with that of the Minnesota prior, and the results are reported in Figure 5. For the

1-step-ahead point forecasts, the Minnesota-type normal-gamma prior outperforms the

Minnesota prior for a majority of variables. The median and mean percentage gains in
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RMSFE are 0.5% and 0.9%, respectively. For 4-step-ahead point forecasts, the results are

more mixed. The median percentage gains in RMSFE is 0.5%, whereas the mean percent-

age gains is −0.26%. However, the Minnesota-type normal-gamma prior performs better

than the benchmark for density forecasts for both 1- and 4-step-ahead forecast horizons.

For example, the mean percentage gains in ALPL are 1.6% and 1.7%, respectively.
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Figure 5: Forecasting results from BVAR with the Minnesota-type normal-gamma prior
versus BVAR with the Minnesota prior. The top panel shows the percentage gains in root
mean squared forecast error of the Minnesota-type normal-gamma prior. The symbols
* and # after the mnemonic indicate rejection of equal forecast accuracy at significance
level 0.05 using the test in Diebold and Mariano (1995) for 1- and 4-step-ahead point
forecasts, respectively. The bottom panel presents the percentage gains in the average of
log predictive likelihoods.

Relative to the large differences in forecast performance presented in Figure 3, the point

forecasts under the two priors here are more similar. This is perhaps not surprising.

As shown in Figure 2, the estimates of the VAR coefficients under the Minnesota-type

normal-gamma prior and the Minnesota prior are mostly similar. The main differences
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between the estimates are that under the Minnesota-type normal-gamma prior the ‘small’

coefficients are often smaller in magnitude, and a few ‘large’ estimates are substantially

larger. On the whole, these differences have a larger impact on the density forecasts than

on the point forecasts. Overall, these results show that one can improve the forecast

performance of the Minnesota prior by the addition of a local variance component as in

the normal-gamma prior.

5.4 Forecasting Results: Other Variants

After demonstrating the good forecast performance of the proposed Minnesota-type

normal-gamma prior, in this section we investigate the performance of two variants.

In particular, we consider a version of the Minnesota-type normal-gamma prior where

the hyperparameters κ3 and κ4 are estimated from the data rather than fixed at some

subjective values. Moreover, we also investigate the role of stochastic volatility by consid-

ering a BVAR with the Minnesota-type normal-gamma prior but homoscedastic errors.

Then, we expand the dataset to include 7 more variables in order to study the relative

performance of the proposed prior relative to the Minnesota prior.

First, Figure 6 reports forecasting results that compares the baseline prior in which κ3 = 1

and κ4 = 100 versus the version where κ3 and κ4 are estimated.9 Overall the results show

that one can substantially improve both point and density forecast performance of the

baseline by estimating these two hyperparameters (negative values indicate better per-

formance than the baseline prior). This thus contributes to the growing body of evidence

that highlights the empirical relevance of determining key shrinkage hyperparameters

in a data-based fashion (Carriero, Clark, and Marcellino, 2015; Giannone, Lenza, and

Primiceri, 2015; Amir-Ahmadi, Matthes, and Wang, 2020; Chan, Jacobi, and Zhu, 2020).

9Using the full sample, the estimates of κ3 and κ4 are, respectively, 0.028 and 2.21, suggesting strong
shrinkage in both error covariance matrices (to diagonal matrices) and intercepts (to zero).
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Figure 6: Forecasting results from BVAR with the Minnesota-type normal-gamma prior
versus the variant where both κ3 and κ4 are estimated. The top panel shows the percent-
age gains in root mean squared forecast error of the Minnesota-type normal-gamma prior.
The symbols * and # after the mnemonic indicate rejection of equal forecast accuracy
at significance level 0.05 using the test in Diebold and Mariano (1995) for 1- and 4-step-
ahead point forecasts, respectively. The bottom panel presents the percentage gains in
the average of log predictive likelihoods.

Next, we investigate the empirical importance of allowing stochastic volatility by con-

sidering a BVAR with a constant error covariance matrix. Figure 7 reports the fore-

casting results from two BVARs with and without stochastic volatility (both assume the

Minnesota-type normal-gamma prior). In this case the benchmark is the BVAR with

constant volatility, and positive values indicate better performance than the benchmark.

For both point and density forecasts, the BVAR with stochastic volatility substantially

out forecasts the BVAR with constant volatility, especially for interest rate variables,

highlighting the usefulness of adding stochastic volatility. Our results are also consistent

with those in numerous other studies, such as Clark (2011), D’Agostino, Gambetti, and
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Giannone (2013) and Clark and Ravazzolo (2015), which find that BVARs with stochastic

volatility generally outperform their counterparts with only constant volatility.
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Figure 7: Forecasting results from BVARs with and without stochastic volatility (both
use the Minnesota-type normal-gamma prior). The top panel shows the percentage gains
in root mean squared forecast error of the BVAR with stochastic volatility. The symbols
* and # after the mnemonic indicate rejection of equal forecast accuracy at significance
level 0.05 using the test in Diebold and Mariano (1995) for 1- and 4-step-ahead point
forecasts, respectively. The bottom panel presents the percentage gains in the average of
log predictive likelihoods.

Finally, we study the relative performance of the proposed prior versus the Minnesota

prior when the number of variables n increases. Figure 8 reports the results from two 30-

variable BVARs, one under the Minnesota-type normal-gamma prior and the other under

the Minnesota prior. (We only report the results for same 23 variables as before). These

forecasting results show that the performance of the proposed Minnesota-type normal-

gamma prior improves relative to the Minnesota prior when the number of variables n

increases. Even though the number of additional local variances ψi,j in the proposed prior
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increases with n2, this increase in model complexity is apparently more than compensated

by the greater flexibility.
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Figure 8: Forecasting results from 30-variable BVARs with the Minnesota-type normal-
gamma prior versus the Minnesota prior. The top panel shows the percentage gains
in root mean squared forecast error of the Minnesota-type normal-gamma prior. The
symbols * and # after the mnemonic indicate rejection of equal forecast accuracy at
significance level 0.05 using the test in Diebold and Mariano (1995) for 1- and 4-step-
ahead point forecasts, respectively. The bottom panel presents the percentage gains in
the average of log predictive likelihoods.

6 Concluding Remarks and Future Research

We have developed a new family of shrinkage priors that combines the useful features

of both the Minnesota prior and the global-local priors. Using a large US dataset, we

demonstrated that the gains in forecast accuracy of these new priors can be substantial

compared to the Minnesota prior and the global-local priors. In particular, our results
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highlighted the importance of allowing for cross-variable shrinkage, as well as the addition

of a local variance component.

The family of Minnesota priors has stood the test of time, and continues to be an impor-

tant benchmark. In future work, it would be useful to develop more flexible Minnesota-

type priors, where key hyperparameters are selected by the data. For example, coefficients

on lags under a standard Minnesota prior are shrunk at a rate of 1/l2, where l is the lag

length. It would be interesting to consider other types of shrinkage. For instance, Huber

and Feldkircher (2019) propose a lag-wise normal-gamma shrinkage prior that implies

increasing degree of shrinkage associated with higher lag orders. This idea can be in-

corporated within the proposed framework. Another interesting research direction is to

formally compare large Bayesian VARs with different shrinkage priors via the marginal

likelihood. These model comparison results would help practitioners to choose a suitable

prior specification for their applications.
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Appendix A: Data

The dataset is sourced from the FRED-QD database at the Federal Reserve Bank of

St. Louis (McCracken and Ng, 2016). It covers the quarters from 1959Q1 to 2018Q4.

Table 3 lists the 30 quarterly variables and describes how they are transformed. For

example, ∆ log is used to denote the first difference in the logs, i.e., ∆ log x = log xt −
log xt−1. The first 23 variables are the baseline variables and are used to produce the

main forecasting results. The next 7 are the additional variables used in two 30-variable

VARs in Section 5.4.

Table 3: Description of variables used in the forecasting application.
Variable Mnemonic Transformation
Real Gross Domestic Product GDPC1 400∆ log
Personal Consumption Expenditures PCECC96 400∆ log
Industrial Production Index INDPRO 400∆ log
Industrial Production: Final Products IPFINAL 400∆ log
All Employees: Total nonfarm PAYEMS 400∆ log
All Employees: Manufacturing MANEMP 400∆ log
Civilian Employment CE16OV 400∆ log
Civilian Labor Force Participation Rate CIVPART no transformation
Civilian Unemployment Rate UNRATE no transformation
Nonfarm Business Section: Hours of All Persons HOANBS 400∆ log
Housing Starts: Total HOUST 400∆ log
New Private Housing Units Authorized by Building Permits PERMIT 400∆ log
Personal Consumption Expenditures: Chain-type Price index PCECTPI 400∆ log
Consumer Price Index for All Urban Consumers: All Items CPIAUCSL 400∆ log
Nonfarm Business Section: Real Output Per Hour of All Persons OPHNFB 400∆ log
Effective Federal Funds Rate FEDFUNDS no transformation
3-Month Treasury Bill: Secondary Market Rate TB3MS no transformation
1-Year Treasury Constant Maturity Rate GS1 no transformation
10-Year Treasury Constant Maturity Rate GS10 no transformation
Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield
on 10-Year Treasury Constant Maturity BAA10YM no transformation
Real M1 Money Stock M1REAL 400∆ log
Real M2 Money Stock M2REAL 400∆ log
S&P’s Common Stock Price Index : Composite S&P 500 400∆ log

Real personal consumption expenditures: Durable goods PCECC96 400∆ log
Real Disposable Personal Income IMPGSC1 400∆ log
Gross Domestic Product: Chain-type Price index GDPCTPI 400∆ log
Producer Price Index for All commodities PPIACO 400∆ log
Real Average Hourly Earnings of Production and Nonsupervisory CES3000000008x 400∆ log
Employees: Manufacturing
10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill GS10TB3Mx no transformation
Total Reserves of Depository Institutions TOTRESNS ∆2 log
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Appendix B: Estimation Details and Convergence Di-

agnostics

In this appendix we first discuss the estimation details of the structural VAR in (3) with

the proposed Minnesota-type adaptive hierarchical prior given in (6). We then provide

some diagnostics to assess the convergence of the Markov sampler.

In the main text we outline Steps 1-3. Here we describe some technical details of Step 1

and the details of Steps 4-7.

Step 1. We first outline a method to sample from the N (θ̂i,K
−1
θi

) distribution without

explicitly computing the inverse K−1θi
. To explain the method, we introduce the following

notations: given a non-singular square matrix F and a conformable vector d, let F\d
denote the unique solution to the linear system Fz = d, i.e., F\d = F−1d. When F is

lower triangular, this linear system can be solved quickly by forward substitution; when

F is upper triangular, it can be solved by backward substitution.10 Now, compute the

Cholesky factor CKθi
of Kθi such that Kθi = CKθi

C′Kθi
. It is easy to verify that θ̂i can be

calculated as: C′Kθi
\(CKθi

\(V−1i mi+X′iΩ
−1
hi

yi)) by forward then backward substitution.

Next, let u be a ki × 1 vector of independent N (0, 1) random variables. Then, return

θ̂i + C′Kθi
\u,

which has the N (θ̂i,K
−1
θi

) distribution.

Step 4. To implement Step 4, we first derive the log conditional density of νψ:

log p(νψ |y,θ,h,ψ,κ,h0,Σh) = p(νψ |ψ). It follows from (9) and the prior νψ ∼ G(d1, d2)

that we have:

log p(νψ |ψ) = n2p(νψ log(νψ/2)− log Γ(νψ)) + (νψ − 1)
∑

logψi,j

− νψ
2

∑
ψi,j + (d1 − 1) log νψ − d2νψ + c1,

where Γ(·) is the gamma function and c1 is a normalization constant. It is easy to check

10Forward and backward substitutions are implemented in standard packages such as Matlab, Gauss
and R. For instance, in Matlab it is done by mldivide(F,d) or simply F\d.
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that the first and second derivatives of this log-density with respect to νψ are given by

d log p(νψ |ψ)

dνψ
= n2p(log(νψ/2) + 1−Ψ(νψ)) +

∑
logψi,j

− 1

2

∑
ψi,j + (d1 − 1)ν−1ψ − d2,

d2 log p(νψ |ψ)

dν2ψ
= n2p(ν−1ψ −Ψ′(x))− (d1 − 1)ν−2ψ ,

where Ψ(x) = d
dx

log Γ(x) and Ψ′(x) = d
dx

Ψ(x) are respectively the digamma and trigamma

functions.

Since the first and second derivatives can be evaluated quickly, we can maximize log p(νψ |ψ)

using Newton-Raphson method and obtain the mode and the negative Hessian evaluated

at the mode, denoted as ν̂ψ and Kνψ , respectively. Then, we implement an independence-

chain Metropolis-Hastings step with proposal distribution N (ν̂ψ, K
−1
νψ

).

Step 5. Step 5 is straightforward to implement as (4) is already in the form of a uni-

variate regression. Specifically, we can directly apply the auxiliary mixture sampler in

Kim, Shephard, and Chib (1998) in conjunction with the precision sampler of Chan and

Jeliazkov (2009) to simulate (hi |y,θ,ψ,κ, νψ,h0,Σh) for i = 1, . . . , n.

Step 6. Step 6 is also straightforward, as the full conditional distribution of h0 is Gaus-

sian:

(h0 |y,θ,h,ψ,κ, νψ,Σh) ∼ N (ĥ0,K
−1
h0

),

where Kh0 = V−1h + Σ−1h and ĥ0 = K−1h0
(V−1h ah + Σ−1h h1) with h1 = (h1,1, . . . , hn,1)

′.

Step 7. Lastly, the elements of Σh are conditionally independent and follow inverse-

gamma distributions:

(σ2
h,i |y,θ,h,ψ,κ, νψ,h0) ∼ IG

(
νh,i +

T

2
, Sh,i +

1

2

T∑
t=1

(hi,t − hi,t−1)2
)

for i = 1, . . . , n.

Next, we provide Geweke’s diagnostics described in Geweke (1992) to assess the conver-

gence properties of the Markov sampler described above. Since there are a large number

of parameters in the model, for easy assessment Table 4 reports the rejection rates for
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different types of parameters at confidence level of 0.05. Overall the results show that

the test has about the correct rejection rates.

Table 4: Rejection rates of Geweke’s diagnostics at confidence level of 0.05.

αi,j 0.051
βi,j 0.067
Other parameters 0.039
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