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Abstract

Bayesian vector autoregressions (BVARs) are the workhorse in macroeconomic fore-

casting. Research in the last decade has established the importance of allowing

time-varying volatility to capture both secular and cyclical variations in macroeco-

nomic uncertainty. This recognition, together with the growing availability of large

datasets, has propelled a surge in recent research in building stochastic volatil-

ity models suitable for large BVARs. Some of these new models are also equipped

with additional features that are especially desirable for large systems, such as order

invariance—i.e., estimates are not dependent on how the variables are ordered in

the BVAR—and robustness against COVID-19 outliers. Estimation of these large,

flexible models is made possible by the recently developed equation-by-equation

approach that drastically reduces the computational cost of estimating large sys-

tems. Despite these recent advances, there remains much ongoing work, such as

the development of parsimonious approaches for time-varying coefficients and other

types of nonlinearities in large BVARs.
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1 Introduction

Bayesian vector autoregressions (BVARs) are the workhorse in empirical macroeconomics,

especially for forecasting applications and structural analysis. Since the pathbreaking

work by Sims (1980) and Doan, Litterman, and Sims (1984) in the early 1980s, there

have been many important methodological advances in the BVAR literature. The most

notable are the following two developments that motivate a large and expanding body of

research in the last decade or so.

First, there is a growing interest in exploiting richer information in macroeconomic analy-

sis, following the seminal paper by Bańbura, Giannone, and Reichlin (2010) that demon-

strates the benefits of including a large number of variables in BVARs.1 Indeed, there

are many situations in which it is necessary to consider many variables simultaneously.

For example, central banks and policy institutions routinely monitor and forecast dozens

of key macroeconomic variables (Crump, Eusepi, Giannone, Qian, and Sbordone, 2021).

In applications involving regional time-series, where a region can be a country within

an economic union or a state/province within a country, it is often essential to explic-

itly model the interactions among the regions (Canova and Ciccarelli, 2009; Koop and

Korobilis, 2016; Koop, McIntyre, and Mitchell, 2020). For nowcasting applications, it

is important to incorporate the flow of data releases in real time, which necessitates a

data-rich approach (Giannone, Reichlin, and Small, 2008; Bańbura, Giannone, Modugno,

and Reichlin, 2013).

Many other applications also naturally call for the inclusion of a large number of time-

series, such as those involving data in multiple frequencies (Schorfheide and Song, 2015;

McCracken, Owyang, and Sekhposyan, 2021), disaggregated data (Giannone, Lenza,

Momferatou, and Onorante, 2014; Ellahie and Ricco, 2017), firm-level data (Demirer,

Diebold, Liu, and Yilmaz, 2018) and financial data (Carriero, Kapetanios, and Mar-

cellino, 2009). Finally, the wide availability of large time-series datasets (McCracken and

Ng, 2016, 2020; Baumeister, Leiva-León, and Sims, 2022; Bokun, Jackson, Kliesen, and

Owyang, 2023) further propels this development.

1The earlier paper by Leeper, Sims, and Zha (1996) develops various medium-sized structural VARs
to study the effects of monetary policy, including one with 18 variables. Koop (2013) compares the
forecast performance of a range of shrinkage priors for BVARs using a dataset containing 168 variables,
and finds that BVARs tend to forecast better than factor models.
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The second development is the increasing recognition of the need to allow for time-

varying volatility in modeling most macroeconomic datasets. Influential papers by Cogley

and Sargent (2005), Primiceri (2005) and Sims and Zha (2006) underscore the secular

variations in volatility—e.g., many key macroeconomic variables were more volatile in the

Great Inflation of the 1970s than the following Great Moderation. At the business cycle

frequency, a large body of evidence has shown that macroeconomic volatility is strongly

counter-cyclical (see, e.g., Bloom, 2014; Jurado, Ludvigson, and Ng, 2015). Lastly, the

unexpected drastic movements in many macroeconomic variables at the onset of the

COVID-19 pandemic and the subsequent heightened volatility further underline the need

to allow for time-varying volatility.

Within the BVAR literature, papers such as Clark (2011), D’Agostino, Gambetti, and

Giannone (2013), Clark and Ravazzolo (2015), Cross and Poon (2016) and Chan and

Eisenstat (2018) highlight the empirical relevance of time-varying volatility for model-fit

and forecasting in small BVARs. For large BVARs, Carriero, Clark, and Marcellino (2016)

and Chan (2023a) present Bayesian model comparison results that show overwhelming

data support in favor of stochastic volatility. Koop and Korobilis (2013) and Carriero,

Clark, and Marcellino (2019) demonstrate that BVARs with stochastic volatility forecast

better than their homoskedastic counterparts. Clark and Mertens (2023) provide a recent

review on the wide range of applications of BVARs with stochastic volatility.

The convergence of these two developments drives a surge in recent research in building

stochastic volatility models suitable for large BVARs and designing efficient methods for

estimating these models. We first introduce in Section 2 three classes of stochastic volatil-

ity models—the common stochastic volatility, the Cholesky stochastic volatility and the

factor stochastic volatility—that are especially suitable for large BVARs. We then dive

into some recent research in developing BVARs with features that are particularly de-

sirable for large systems in Section 3. These include order invariance—i.e., estimation

results that are not dependent on how the variables are ordered in the BVAR—and ro-

bustness against COVID-19 outliers. Section 4 first reviews Bayesian shrinkage priors,

particularly the family of Minnesota priors. It then outlines Markov chain Monte Carlo

(MCMC) methods for estimating BVARs with various types of stochastic volatility, fol-

lowed by a discussion on alternative Bayesian approaches and additional strategies to

speed up computations. Section 5 further explores BVARs with time-varying parame-

ters and other types of nonlinearities. Finally, Section 6 highlights a few outstanding
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challenges and ongoing research directions.

2 Stochastic Volatility Models for VARs

In this section we discuss a few commonly-used stochastic volatility models in empirical

studies involving macroeconomic forecasting and structural analysis. Since there is an

increasing demand to incorporate a large number of time-series, we pay special attention

to the trade-off between model flexibility and tractability in larger systems.

Let yt = (y1,t, . . . , yn,t)
′ denote the n-vector of endogenous variables for t = 1, . . . , T .

Consider the following VAR with a generic time-varying error covariance matrix Σt:

yt = a + A1yt−1 + · · ·+ Apyt−p + εt, εt ∼ N (0n,Σt), (1)

where a is an n× 1 vector of intercepts, A1, . . . ,Ap are n×n coefficient matrices and 0n

denotes an n-vector of zeros. To model volatility clustering—e.g., the empirical observa-

tion that large changes tend to be followed by large changes, and small changes followed

by small changes—it is important to specify a persistent law of motion for Σt. While

there are many ways to construct persistent processes, the key challenge here is that for

any time t, Σt needs to be a positive-definite covariance matrix. In what follows, we

discuss various models for Σt that satisfy these requirements.

2.1 Common Stochastic Volatility

We first consider the common stochastic volatility model introduced in Carriero, Clark,

and Marcellino (2016), which is the very first stochastic volatility model designed for

large BVARs. The model is motivated by the observation that the estimated time-varying

volatilities of many US macroeconomic variables have broadly similar low-frequency move-

ments: they tend to have high volatility in the 1970s, a drastic decrease in volatility

starting in the early 1980s that mark the beginning of the Great Moderation, followed by

a new surge in volatility at the onset of the Great Recession of 2007-2009. In particular,

Carriero, Clark, and Marcellino (2016) obtain the estimated volatilities of 14 major US

macroeconomic time-series from univariate autoregressive models with stochastic volatil-
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ity, and find that the first principal component explains about 66% of the variation in

the individual volatility time-series.

Motivated by this common component in volatilities, Carriero, Clark, and Marcellino

(2016) propose the common stochastic volatility model in which the error covariance

matrix is scaled by a common, time-varying factor that may be interpreted as the overall

macroeconomic volatility:

Σt = ehtΣ, (2)

where Σ is a time-invariant covariance matrix. The log-volatility ht in turn follows a

stationary AR(1) process:

ht = φht−1 + uht , uht ∼ N (0, σ2), (3)

for t = 2, . . . , T , where |φ| < 1 and the initial condition is specified as h1 ∼ N (0, σ2/(1−
φ2)). Note that for identification purposes, the unconditional mean of the AR(1) process

is assumed to be zero.

For large systems, estimation of the generic VAR with stochastic volatility in (1) is compu-

tationally intensive because of the large number of VAR coefficients A = (a0,A1, . . . ,Ap)
′:

it grows quadratically in the number of endogenous variables n. The key advantage of

the common stochastic volatility model is that it leads to many useful analytical results

that make estimation fast, with computational complexity of the order O(n3)—provided

that the natural conjugate prior on (A,Σ) is used (see, e.g., Koop and Korobilis, 2010;

Karlsson, 2013, and Chapter 2 of this volume by Hauzenberger, Huber and Koop). Con-

sequently, estimation of BVARs with dozens endogenous variables can be done in minutes

instead of hours for other multivariate stochastic volatility models.

The main drawback of the common stochastic volatility model is that it appears to be

restrictive along two dimensions. First, fast estimation with computational complexity

O(n3) is only possible when the natural conjugate prior is used, but the natural conjugate

prior can be restrictive as it rules out cross-variable shrinkage (see, e.g. Carriero, Clark,

and Marcellino, 2015; Chan, 2022). Second, the common stochastic volatility model as-

sumes in particular that all variances and covariances are scaled by a single factor. Con-

sequently, they are always proportional to each other. Nevertheless, as discussed above,

there is empirical evidence that the error variances of many US macroeconomic variables
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share broadly similar low-frequency movements, and a common stochastic volatility is a

parsimonious way to model this empirical feature.

The common stochastic volatility model in (2)–(3) can be extended in various ways. In

particular, Chan (2020) considers a more general family of BVARs that can accommodate

non-Gaussian, heteroskedastic and serially dependent errors. In addition, fast estimation

of complexity O(n3) can be attained for this wide family of BVARs.

Recent empirical applications using this common stochastic volatility model and its exten-

sions include Mumtaz (2016), Mumtaz and Theodoridis (2017), Götz and Hauzenberger

(2018), Poon (2018), Louzis (2019), LeSage and Hendrikz (2019), Hartwig (2021), Chan,

Poon, and Zhu (2023) and Hou, Nguyen, and Zhang (2023).

2.2 Cholesky Stochastic Volatility

Instead of scaling the error covariance matrix by a common volatility factor, a more

flexible approach for modeling time-varying volatilities and correlations is to incorporate

multiple stochastic volatility processes. In particular, Cogley and Sargent (2005) build a

multivariate stochastic volatility model based on the modified Cholesky decomposition.

More specifically, consider again the VAR in (1), but now the error covariance matrix is

constructed via

Σt = B−10 Dt(B
−1
0 )′, (4)

where B0 is an n × n lower triangular matrix with ones on the diagonal and Dt =

diag(eh1,t , . . . , ehn,t). The law of motion for each element of ht = (h1,t, . . . , hn,t)
′ is specified

as an independent autoregressive process:

hi,t = µi + φi(hi,t−1 − µi) + uhi,t, uhi,t ∼ N (0, σ2
i ) (5)

for t = 2, . . . , T , where the initial condition is specified as hi,1 ∼ N (µi, σ
2
i /(1− φ2

i )). Due

to its construction using the modified Cholesky decomposition, this stochastic volatility

model is sometimes called the Cholesky stochastic volatility.

Comparing to the common stochastic volatility model in (2), it is clear that the Cholesky

stochastic volatility is more flexible—it contains n stochastic volatility processes—and can

accommodate more complex co-volatility patterns. In particular, the Cholesky stochastic
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volatility can in principle recover the common stochastic volatility specification if we

reparameterize the model in (4) so that B0 is the lower Cholesky factor of Σ−1 and

Dt = ehtIn, where In is the n-dimensional identity matrix.

This modeling flexibility, however, comes at a cost of more computationally intensive

posterior simulations. In particular, the conventional approach of drawing all VAR co-

efficients jointly, which has O(n6) computational complexity, becomes excessively time-

consuming when n is large. To tackle this computational problem, Carriero, Clark, and

Marcellino (2019) introduce a blocking scheme that makes it possible to estimate the

model equation by equation that drastically reduces the computational complexity to

O(n4); see Section 4 for more details. Nevertheless, the estimation of the Cholesky

stochastic volatility model is still an order of magnitude slower than that of the common

stochastic volatility (when the natural conjugate prior is used).

There are various useful extensions of the basic setup in (4)-(5). First, instead of the

independent autoregressive processes specified in (5), ht can be modeled as a VAR(1)

to allow for potential correlations among the volatility processes. In the extreme, Chan,

Eisenstat, and Strachan (2020) consider a singular VAR for ht to capture the idea that

only a few common shocks drive the evolution of the n volatility processes. Second, the

modified Cholesky factor B0 in (4) can be made time-varying, as introduced in Primiceri

(2005). In fact, the multivariate stochastic volatility model of Primiceri (2005) is perhaps

the most widely used specification in empirical macroeconomics, at least for small systems.

Recent applications using large BVARs with the Cholesky stochastic volatility include

Bańbura and van Vlodrop (2018), Bianchi, Guidolin, and Ravazzolo (2018), Huber and

Feldkircher (2019), Cross, Hou, and Poon (2019), Koop, McIntyre, Mitchell, and Poon

(2020), Tallman and Zaman (2020), Zens, Böck, and Zörner (2020), Baumeister, Koro-

bilis, and Lee (2022), Fischer, Hauzenberger, Huber, and Pfarrhofer (2023) and Gianfreda,

Ravazzolo, and Rossini (2023).

2.3 Factor Stochastic Volatility

Another approach to model the law of motion of the error covariance matrix in (1)

is through the class of factor stochastic volatility models (Pitt and Shephard, 1999;

Aguilar and West, 2000; Chib, Nardari, and Shephard, 2006). A conventional factor
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model with homoskedastic factors and idiosyncratic errors is typically used for dimen-

sionality reduction—to model linear relationships among a large number of variables in

a very parsimonious way. For instance, an unrestricted n × n covariance matrix Σ has

n(n + 1)/2 free elements; the number of parameters thus grows quadratically in n. To

reduce the number of parameters to be estimated, a factor model in essence specifies Σ

using simpler matrices G,D and L via Σ = LGL′ + D, where G and D are r × r and

n × n diagonal matrices, respectively, and L is an n × r matrix, typically with r � n.

Even for an unrestricted L, the number of parameters in a factor model is only nr+n+r;

it grows linearly in n. Consequently, for high-dimensional settings with a large n but a

small r, a factor model can substantially reduce the number of parameters.

Factor stochastic volatility models extend the classic factor model by introducing time-

varying volatility. An example is to specify the error covariance matrix Σt as

Σt = LGtL
′ + Dt, (6)

where Dt = diag(eh1,t , . . . , ehn,t) and Gt = diag(ehn+1,t , . . . , ehn+r,t), and hi,t, i = 1, . . . , n+

r, follows the AR(1) process in (5). To facilitate estimation, data augmentation is typically

used to represent the model in terms of latent factors. More specifically, consider the same

VAR in (1), but now the innovation is constructed via

εt = Lft + ut, (7)

where ft = (f1,t, . . . , fr,t)
′ is an r × 1 vector of latent factors and L is the associated

n × r factor loadings matrix. The errors ut and the latent factors ft are assumed to be

independent at all leads and lags and jointly Gaussian:(
ut

ft

)
∼ N

((
0

0

)
,

(
Dt 0

0 Gt

))
, (8)

where Dt = diag(eh1,t , . . . , ehn,t) and Gt = diag(ehn+1,t , . . . , ehn+r,t). Under the represen-

tation in (7)-(8), it is clear that the correlations among the elements of εt are induced

solely by the latent factors.

For identification purposes, it is common to assume L to be lower triangular with ones on

the main diagonal. However, Chan, Eisenstat, and Yu (2022) show that in the presence
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of stochastic volatility and r 6 (n − 1)/2, the factor loadings matrix L is identified up

to permutations and sign switches (with the restriction that µi, i = n+ 1, . . . , n+ r, the

unconditional means of the log-volatilities associated with the factors, are set to 0).2

In practice one also needs to determine the number of factors r. A common approach

is to first fix the number of factors r in the estimation, and then select r using the

marginal likelihood or some information criterion. An alternative approach is to include

a large number of factors, and then use a shrinkage prior on the factor loadings so that

they are increasingly shrunk to 0 as the column index increases, as considered in, e.g.,

Bhattacharya and Dunson (2011) and Kastner (2019). This latter approach circumvents

the need to select the number of factors, but it makes the interpretation of the factors

more difficult.

Compared to the Cholesky stochastic volatility, the factor stochastic volatility contains

r additional volatility processes and is apparently more flexible. However, as discussed

earlier, and is clear in the decomposition in (6), the latter inherits the dimensionality

reduction property of the classic factor model. As such, whether it fits macroeconomic

time-series better than the two other stochastic volatility models is an empirical question.

In terms of estimation, the factor stochastic volatility is more computationally intensive to

estimate relative to the common stochastic volatility, but it can still be fitted reasonably

quickly even when n is large. In particular, given the latent factors, the VAR becomes

n unrelated regressions. Consequently, the n-equation system can be estimated equation

by equation.

While a variety of factor stochastic volatility models are commonly employed in financial

applications, with recent examples in Jin, Maheu, and Yang (2019), Hautsch and Voigt

(2019), Kastner (2019), Loaiza-Maya and Smith (2020) and McCausland, Miller, and

Pelletier (2020), they are not yet widely used in the context of large BVARs. Notable

exceptions are Kastner and Huber (2020) and Hauzenberger, Huber, Koop, and Mitchell

(2022).

2To handle the so-called label switching problem (the latent factors are permutations invariant), one
can postprocess the posterior draws to sort them into the correct categories using, e.g., the approach in
Kaufmann and Schumacher (2019).
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3 Order-Invariant and Outlier-Augmented Models

In this section we introduce a variety of recently proposed stochastic volatility models

with features that are especially relevant for large systems and for fitting post COVID-19

data.

3.1 Order-Invariant Stochastic Volatility Models

As outlined in Section 2, the law of motion for Σt is typically constructed by combining

multiple volatility processes using some version of matrix decomposition or factorization.

This construction process often leads to order dependence—estimates might depend on

the order of variables arranged in the vector yt. For instance, the Cholesky stochastic

volatility, which is based on a lower triangular parameterization, is not order invariant.

In particular, as explained in Carriero, Clark, and Marcellino (2019), since the model is

constructed using a lower triangular impact matrix B0 and the priors are independently

elicited on B0 and the volatility processes, the implied prior on Σt is not order invariant.

Even though this ordering issue is well-known and is explicitly discussed in Cogley and

Sargent (2005) and Primiceri (2005), its empirical relevance has only been appreciated

relatively recently. For example, Arias, Rubio-Ramirez, and Shin (2022) use the model

of Primiceri (2005) to produce point and density forecasts of 4 macroeconomic variables.

They show that while the point forecasts are essentially the same across all the permu-

tations of the 4 variables, the density forecasts can differ substantially across different

variable orderings. Since the number of permutations grows exponentially as the number

of variables increases, this ordering issue is expected to be more acute in large BVARs

involving dozens of dependent variables. In fact, Chan, Doucet, León-González, and Stra-

chan (2018) find evidence that estimates of reduced-form error variances based on the

Cholesky stochastic volatility can drastically change across different variable orderings in

large systems.3

3The structural analysis in both Cogley and Sargent (2005) and Primiceri (2005) are based on a
recursive identification scheme. As such, the order of the variables is part of the identification scheme and
is therefore predetermined. However, many later studies (e.g., Benati, 2008; Baumeister and Peersman,
2013) use the BVARs in Cogley and Sargent (2005) and Primiceri (2005) as reduced-form models and
implement other, non-recursive identification schemes. In those cases, the reduced-form models do not
have a natural ordering. One such example is given in Bognanni (2018), who demonstrates that responses
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Given the sensitivity of the estimates and forecasts on different variable orderings, it

is therefore desirable to employ order-invariant stochastic volatility models in empirical

applications. Which of the stochastic volatility models discussed in Section 2 are order

invariant? It is clear that the common stochastic volatility is order invariant, whereas,

as discussed earlier, the Cholesky stochastic volatility is not. However, the latter can

be extended to be order invariant by a slight modification: avoid the use of the lower

triangular parameterization of B0 in (4). Based on this observation, Chan, Koop, and Yu

(2023) extend the Cholesky stochastic volatility model by allowing the impact matrix B0

to be any dense, non-degenerate matrix. They prove that the model is order invariant,

and based on the results in Bertsche and Braun (2022), the impact matrix B0 is identified

up to permutations and sign switches. Moreover, estimation can be done similarly as in

the Cholesky stochastic volatility model, particularly that the VAR coefficients can be

sampled equation by equation. Chan, Koop, and Yu (2023) also consider a version of

the model with a time-varying impact matrix B0, thus extending the model of Primiceri

(2005). An alternative approach based on a different factorization of Σt is considered in

Wu and Koop (2022). More specifically, they construct Σt using the eigendecomposition,

where the n log-eigenvalues evolve as random walks. They develop a fast posterior sampler

to estimate the model and show that it is applicable to large datasets.

Finally, whether a factor stochastic volatility model is order invariant depends on the type

of restrictions imposed on the factor loadings. As noted in Kastner (2019), if one imposes

the usual identification restrictions that the factor loadings matrix is triangular, then the

model is not order invariant. By contrast, Chan, Eisenstat, and Yu (2022) show that,

under some mild conditions discussed in the previous section, a factor stochastic volatility

model is order invariant and the factor loadings are identified up to permutations and

sign switches.

There are other order-invariant modeling approaches, though they are typically designed

for small systems. One popular approach is to construct multivariate stochastic volatil-

ity models using Wishart or inverse-Wishart processes; examples include Philipov and

Glickman (2006) and Asai and McAleer (2009). A few papers extend these multivari-

ate stochastic volatility models to BVARs, including Chan, Doucet, León-González, and

Strachan (2018), Shin and Zhong (2020) and Arias, Rubio-Ramirez, and Shin (2022).

to structural shocks identified with sign restrictions—using the reduced-form BVAR of Primiceri (2005)—
can be sensitive to how the variables are ordered; see also Hartwig (2020) for another example.
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More recently, Arias, Rubio-Ramirez, and Shin (2022) introduce a new order-invariant

approach that builds on the new parameterization of correlation matrices proposed in Ar-

chakov and Hansen (2021). More specifically, they construct a time-varying correlation

matrix based on random walk processes under the new parameterization. However, esti-

mation of these stochastic volatility models is generally computationally intensive, as it

often involves drawing from high-dimensional, non-standard distributions. Consequently,

these stochastic volatility models do not scale well to large datasets.

Another order-invariant approach is based on the discounted Wishart process, which

admits efficient filtering and smoothing algorithms for estimation. Stochastic volatility

models constructed under this approach are considered in Uhlig (1997), West and Harrison

(2006), Prado and West (2010), Bognanni (2018) and Arias, Rubio-Ramirez, and Shin

(2022). However, the discounted Wishart process appears to be too tightly parameterized

for typical macroeconomic data, and it tends to underperform in terms of both point and

density forecasts relative to standard stochastic volatility models such as Cogley and

Sargent (2005) and Primiceri (2005), as demonstrated in a forecasting exercise in Arias,

Rubio-Ramirez, and Shin (2022).

3.2 Outlier-Augmented Stochastic Volatility Models

The COVID-19 pandemic has caused extreme movements in many macroeconomic and

financial time-series. One consequence is that impulse response functions and fore-

casts from homoskedastic BVARs are heavily distorted by these extreme observations, as

demonstrated in Schorfheide and Song (2021) and Lenza and Primiceri (2022) using US

data and Bobeica and Hartwig (2023) using euro area data. This problem can be amelio-

rated by using BVARs with stochastic volatility, which downweight extreme observations.

However, as pointed out by Carriero, Clark, Marcellino, and Mertens (2022), extreme ob-

servations, by definition, should reflect transitory spikes, not permanent increases, in

volatility. But in a typical stochastic volatility, changes in volatility are assumed to be

highly persistent. It is therefore useful to augment standard stochastic volatility models

to include an explicit component to model infrequent volatility spikes.

There is a general approach to directly model infrequent volatility spikes, and it can be

incorporated into the many multivariate stochastic volatility models discussed earlier.
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The key idea is to replace the normal distribution in (1) with a more robust distribution

that puts more mass on extreme events. A common example is a continuous heavy-

tailed distribution, such as the Student-t distribution. As long as the robust distribution

can be represented as a scale, finite or an infinite mixture of normals, estimation is

straightforward thanks to data augmentation and the modular nature of MCMC methods.

As an example, take the Cholesky stochastic volatility model with a generalized t distribu-

tion considered in Clark and Ravazzolo (2015), Cross and Poon (2016) and Chiu, Mumtaz,

and Pinter (2017), which is constructed from n univariate Student-t distributions with

different degree of freedom parameters.4 It can be represented as a conditionally Gaussian

VAR specified in (1) with Σt constructed as

Σt = B−10 ΛtDt(B
−1
0 )′. (9)

Compared to the standard Cholesky stochastic volatility in (4), the new addition is the

diagonal matrix of latent variables Λt = diag(λ1,t, . . . , λn,t), where λi,t ∼ IG(νi/2, νi/2)

and IG(a, b) denotes the inverse-gamma distribution with mean b/(a− 1) when a > 1.5

Another example is the outlier-augmented stochastic volatility model proposed by Car-

riero, Clark, Marcellino, and Mertens (2022), which extends the Cholesky stochastic

volatility by incorporating a discrete mixture representation first introduced in Stock

and Watson (2016) for handling outliers in unobserved components models. More specif-

ically, it has the same conditionally Gaussian VAR representation with Σt specified in (9),

but the latent variable λi,t is specified as λi,t = o2i,t, where oi,t follows a 2-part distribution

with a point mass at 1 and a uniform distribution on the interval (2, 20). The first part of

the distribution represents ‘regular’ observations with scale normalized to 1, whereas the

second part captures ‘outliers’ that have 2-20 times larger standard deviations relative to

regular observations.6

4A similar heavy-tailed stochastic volatility model is introduced by Cúrdia, Del Negro, and Greenwald
(2014) to construct a dynamic stochastic general equilibrium model that can accommodate extreme events
during the Great Recession.

5For the special case with λ1,t = · · · = λn,t = λt ∼ IG(ν/2, ν/2), the marginal distribution of the
innovation εt (unconditional on the latent variable λt) is a Student-t distribution with degree of freedom
parameter ν (see, e.g., Geweke, 1993; Ni and Sun, 2005).

6In the original setup in Stock and Watson (2016), the range of the uniform distribution is from 2 to
10. As noted in Carriero, Clark, Marcellino, and Mertens (2022), many macroeconomic variables exhibit
extreme variability at the onset of the COVID-19 pandemic, and the upper range is accordingly increased
to 20.
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Other distributional assumptions for λi,t are possible and they would induce different

marginal distributions on the innovations. Examples include the multivariate Laplace

distribution (Eltoft, Kim, and Lee, 2006), a finite mixture of scale mixtures of normals

(Karlsson and Mazur, 2020) and an infinite mixture of normals (Braun, 2021). These

non-Gaussian distributions can also be incorporated in other stochastic volatility models,

as is done in Chan (2020) and Hartwig (2021).

4 Shrinkage Priors and Posterior Simulations

What makes BVARs Bayesian is the use of informative priors on the large number of VAR

coefficients. Below we first outline a family of priors generally referred to as the Minnesota

priors. We then discuss Bayesian estimation of BVARs with various types of stochastic

volatility introduced earlier, particularly the posterior simulation of the log-volatilities

and the VAR coefficients.

4.1 Shrinkage Priors on the VAR Coefficients

We first discuss a family of priors on the VAR coefficients that can be traced back to the

work in the 1980s by Doan, Litterman, and Sims (1984) and Litterman (1986). Due to

their affiliations at that time, this family of priors is commonly known as the Minnesota

priors. In the original formulation for homoskedastic VARs, the error covariance matrix

is fixed at some estimate, and a normal prior is elicited on the VAR coefficients α =

vec(A′). Later Kadiyala and Karlsson (1993, 1997) extend the original version to a joint

prior on α and the time-invariant error covariance matrix. Since then many other more

flexible variants have been developed, for both homoskedastic and heteroskedastic VARs,

and they can be written as a conditionally normal prior given some latent variables or

hyperparameters ξ:

(α | ξ) ∼ N (α0,V), (10)

where the prior covariance matrix V may depend on ξ. The prior mean α0 is typically

set to zero for growth rates data, such as GDP growth. This reflects the prior belief that

growth rates data are generally not very persistent, and the VAR coefficients are thus

shrunk to 0. For levels data such as private investment or inflation indices, α0 is set to
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be zero except for the coefficients associated with the first own lag, which are set to be

one. This reflects the prior belief that levels data are highly persistent—in particular, it

expresses the preference for a random walk specification.

In early versions of the Minnesota priors there are no latent variables and the prior

hyperparameters are fixed at some subjective values. The prior covariance matrix V is

typically assumed to be diagonal, and the diagonal elements are elicited to reflect a range

of subjective beliefs, such as cross-variable shrinkage—i.e., the idea that coefficients on

other variables’ lags are on average smaller than coefficients on own lags. This is often

implemented by introducing two hyperparameters, say, ξ1 and ξ2, where ξ1 controls the

overall prior variance for coefficients on own lags, whereas ξ2 for coefficients on other lags.

Then, ξ1 and ξ2 are carefully calibrated to incorporate the belief that ξ2 is much smaller

than ξ1.

Naturally, one set of fixed values for ξ1 and ξ2 is not expected to be optimal for all

datasets with widely different time-series and sample periods. Indeed, Giannone, Lenza,

and Primiceri (2015) demonstrate that substantial benefits can be obtained—e.g., better

out-of-sample forecast performance using real data and more accurate impulse response

functions using simulated data—simply by estimating these prior hyperparameters from

the data instead of fixing them at some commonly-used subjective values. In a Bayesian

model comparison exercise, Chan (2023a) finds strong evidence in favor of estimating

these prior hyperparameters across BVARs with a variety of stochastic volatility specifi-

cations.7

There is a surge of interest in the statistics literature to develop hierarchical shrinkage

priors, such as the Bayesian Lasso (Park and Casella, 2008), the normal-gamma prior

(Griffin and Brown, 2010), the horseshoe prior (Carvalho, Polson, and Scott, 2010) and

the Dirichlet-Laplace prior (Bhattacharya, Pati, Pillai, and Dunson, 2015). These shrink-

age priors are originally designed for the setting of a linear regression with a large number

of arbitrary predictors. More recently, they have been introduced in BVAR settings. Ap-

plications include Huber and Feldkircher (2019), Follett and Yu (2019), Kastner and

7Earlier papers such as Del Negro and Schorfheide (2004) and Carriero, Kapetanios, and Marcellino
(2012) have adopted an empirical Bayes approach of selecting these prior hyperparameters by maximizing
the marginal likelihood of the homoskedastic BVAR, which is available analytically. For time-varying
parameter models, Amir-Ahmadi, Matthes, and Wang (2020) show similar benefits in treating the prior
hyperparameters as unknown parameters to be estimated.
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Huber (2020), Korobilis and Pettenuzzo (2019) and Gefang, Koop, and Poon (2023). In

contrast to Minnesota priors that tend to shrink all VAR coefficients, these adaptive hier-

archical priors have the desirable theoretical property of only shrinking ‘small’ coefficients

strongly to zero, while leaving ‘large’ coefficients mostly intact.

In practice, however, these new hierarchical priors do not seem to forecast better than

some sophisticated Minnesota priors, as demonstrated in Cross, Hou, and Poon (2019).

One reason for this surprising result could be because the new hierarchical priors typically

treat all VAR coefficients identically, and do not take into account the many plausible

prior beliefs, such as cross-variable shrinkage and that variables of higher lags are less

important, incorporated into the Minnesota priors. There are a few papers that aim to

adapt the new adaptive hierarchical priors so that they are more suitable for BVARs.

For instance, Huber and Feldkircher (2019) develop a normal-gamma prior in which

additional lag-specific shrinkage parameters are introduced with the goal of shrinking

higher-order lags more strongly to zero. Korobilis and Pettenuzzo (2019) consider a

class of hierarchical shrinkage priors that incorporate some features of the Minnesota

priors. Chan (2021) develops a framework that explicitly nests both the Minnesota priors

and the new adaptive hierarchical priors. These Minnesota-type adaptive hierarchical

priors can be written as conditionally Gaussian priors with additional latent variables ξ

given in (10). For example, under the Minnesota-type normal-gamma prior ξ becomes a

vector of gamma random variables; for the Minnesota-type horseshoe prior, elements of ξ

have a half-Cauchy distribution. Chan (2021) shows that these Minnesota-type adaptive

hierarchical priors forecast better than both the conventional Minnesota priors and the

standard adaptive hierarchical priors.

The literature on shrinkage priors on VAR coefficients is vast and expanding. Here we

have focused on the family of Minnesota priors. More discussions on other shrinkage

priors and approaches can be found in Chapter 2 of this volume by Hauzenberger, Huber

and Koop and excellent reviews by Koop and Korobilis (2010) and Karlsson (2013).

4.2 Bayesian Estimation

Estimating BVARs with stochastic volatility tends to be computationally intensive, es-

pecially for large systems. But a lot of progress has been made in the last decade, and
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it is now feasible to fit large BVARs with a variety of stochastic volatility specifications

using MCMC methods. Below we discuss the posterior simulation of the two most com-

putationally intensive parts: sampling the log-volatilities and the VAR coefficients.

4.2.1 Posterior Simulation of the Log-Volatilities

Conditional on the data and other model parameters, the VAR in (1) defines the ob-

servation equation for the log-volatilities. But since the log-volatilities enter the model

via the time-varying covariance matrix, the state space representation is nonlinear and

high-dimensional, which makes estimation very challenging in general. However, many

multivariate stochastic volatility models, such as common, Cholesky and factor stochas-

tic volatility, are constructed in such a way that they can be transformed into a linear

(though non-Gaussian) state space model, for which the auxiliary mixture sampler of

Kim, Shephard, and Chib (1998) can be applied to sample the log-volatilities efficiently.

More specifically, after transforming the original nonlinear Gaussian representation into

a linear non-Gaussian state space model, Kim, Shephard, and Chib (1998) observe that

the non-Gaussian errors in the new observation equation can be well approximated using

a 7-component mixture of normals. Then, given the mixture indicators, the approximate

model becomes a linear Gaussian state space model for which sampling the latent states

can be done using standard algorithms, such as the Kalman-filter based smoothers of

Carter and Kohn (1994) and Durbin and Koopman (2002) or the precision-based samplers

of Chan and Jeliazkov (2009) and McCausland, Miller, and Pelletier (2011). Estimation

details of the common, Cholesky and factor stochastic volatility models can be found

in Chan (2023a). Other stochastic volatility models with additional features can also be

estimated using the auxiliary mixture sampler with minor modifications; see, for example,

Carriero, Clark, Marcellino, and Mertens (2022) and Chan, Koop, and Yu (2023).

One important point to emphasize is that, as pointed out in Del Negro and Primiceri

(2015), when the auxiliary mixture sampler is used as part of a larger posterior simulator,

the latter becomes a collapsed Gibbs sampler, where the augmented mixture indicators

and all other model parameters should be sampled jointly. This joint sampling can be

done by first drawing the model parameters given the log-volatilities but marginal of the

mixture indicators, followed by sampling the mixture indicators given the log-volatilities
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and other model parameters. In contrast to a standard Gibbs sampler, here the sampling

order is important.8 In practice, the main implication is that the log-volatilities should

be sampled immediately after the mixture indicators.9

For other stochastic volatility models for which the auxiliary mixture sampler cannot

be applied, there are two alternatives. While they are both very general and can be

applied to a wide range of stochastic volatility models, they are more computationally

demanding. The first is to use sequential Monte Carlo (SMC) or particle filters. There

is a large and rapidly expanding literature on sequential Monte Carlo methods; Doucet,

De Freitas, and Gordon (2001) and Creal (2012) provide excellent reviews on this large

family of algorithms. The most widely used member is perhaps the bootstrap particle

filter, where the state equation is used to generate particle values from time t to values

at time t + 1. While the bootstrap particle filter is easy to implement, its empirical

performance is often poor. The main reason is that the generated particle values from

the state equation are unlikely to be consistent with the data in typical settings. There

are a number of more sophisticated filters that use information from the observation

equation to construct better proposal distributions. A recent example is the tempered

particle filter proposed in Herbst and Schorfheide (2019) that adaptively constructs the

proposal distribution through a sequence of tempering steps.

The second general approach is to implement a Metropolis-Hastings step to sample the

log-volatilities. This can be done by using either a random-walk Metropolis-Hastings

algorithm as in Asai and McAleer (2009), or an independence-chain Metropolis-Hastings

algorithm with a tailored proposal distribution. The first option is straightforward to

implement, but is often very inefficient in terms of highly autocorrelated posterior draws,

especially in high-dimensional settings. The second option requires a good proposal dis-

tribution that well approximates the conditional distribution of the log-volatilities. As

such, it demands more analysis and is therefore more difficult to implement. However,

8It is also feasible to apply a standard Gibbs sampler by conditioning on the mixture indicators in
all the Gibbs steps. This approach is typically more cumbersome as, e.g., the VAR in (1) is no longer
Gaussian given the mixture indicators. See Stock and Watson (2016) for an example of this alternative
approach.

9For stochastic volatility models with multiple time-series of log-volatilities, where each series has
an associated vector of mixture indicators, it is often more convenient to sample each pair of mixture
indicators and log-volatilities separately. This approach is valid if the time-series of log-volatilities are
conditionally independent given the model parameters—an example is the Cholesky stochastic volatility
model specified in (4)-(5). If they are not conditionally independent, then all the mixture indicators
should be sampled first before the log-volatilities.
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there has been a lot of progress in developing good proposal distributions. For exam-

ple, McCausland (2012) introduces the HESSIAN method based on a fifth-order Taylor

approximation that works remarkably well for a range of univariate stochastic volatility

models. Chan and Eisenstat (2018) and Cross, Hou, Koop, and Poon (2023) instead

consider quadratic (hence, Gaussian) approximations of the target distributions in the

context of BVARs with stochastic volatility, which are easier to obtain and work well for

their applications.10 In addition, sequential Monte Carlo methods can also be used to

construct good proposal distributions; see, e.g., Andrieu, Doucet, and Holenstein (2010).

4.2.2 Posterior Simulation of the VAR Coefficients

Given the conditionally Gaussian VAR in (1) and the conditionally Gaussian prior on the

VAR coefficients α in (10), the conditional posterior distribution of α is also Gaussian

by standard linear regression results. Hence, in principle sampling α is straightforward.

In practice, however, when the number of endogenous variables in the VAR is large,

conventional ways of drawing all VAR coefficients jointly—e.g., by first obtaining the

Cholesky factor of the covariance matrix or the precision matrix—become excessively

computationally intensive. In particular, for an n-variable VAR with p lags, the number

of VAR coefficients (ignoring intercepts) is n2p. Since the covariance matrix of the joint

distribution is of dimension n2p × n2p, obtaining its Cholesky factor has computational

complexity of the order O(n6p3).11

To tackle this computational problem, Carriero, Clark, and Marcellino (2019) consider

an alternative sampling scheme of drawing the VAR coefficients equation by equation

that can drastically reduce the computational complexity by two orders of magnitude

to O(n4p3).12 The key reason for the speed-up is as follows. Since the number of VAR

10This approach of using Gaussian approximations is first introduced to estimate univariate stochastic
volatility models in the seminal papers by Durbin and Koopman (1997) and Shephard and Pitt (1997).
They formulate the approximating algorithm via a linear Gaussian state space model, which implies a
Gaussian density for the states. Chan and Eisenstat (2018) and Cross, Hou, Koop, and Poon (2023)
improve upon this approach by directly computing the Gaussian approximating density using Newton-
Raphson method based on fast band matrix routines.

11Sampling the VAR coefficients using the Cholesky factor of the precision matrix is faster, as it avoids
explicitly inverting the precision matrix to obtain the covariance matrix. But since the precision matrix
is dense in this case, its computational complexity is of the same order of O(n6p3).

12As noted in Bognanni (2022), the algorithm in Carriero, Clark, and Marcellino (2019) can only be
viewed as an approximation. Carriero, Chan, Clark, and Marcellino (2022) provide an exact algorithm
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coefficients in each equation is np, drawing these coefficients conditional on coefficients in

other equations can be done in O(n3p3) operations. Iterating this step over n equations,

the total computational complexity is therefore O(n4p3). This equation-by-equation es-

timation algorithm is formulated for the Cholesky stochastic volatility model, but it can

be used for other types of stochastic volatility or homoskedastic VARs with minor modi-

fications.13 Carriero, Chan, Clark, and Marcellino (2022) report a 10-50 times speed-up

of the equation-by-equation approach for n up to 40 compared to sampling all coefficients

jointly.

Another venue to improve sampling speed is to find faster ways to simulate from high-

dimensional Gaussian distributions. For a linear regression with r observations and m

covariates, the conventional, Cholesky-factor based sampling approach to simulate the m-

vector of coefficients requires O(m3) operations. Bhattacharya, Chakraborty, and Mallick

(2016) propose an alternative way to sample the coefficients based on the Woodbury

formula, which has computational complexity of O(r2m). As such, this new algorithm

is expected to be faster in cases where there are far more covariates than observations.

For our BVAR setting with r = Tn and m = np (sampling the coefficients in one

equation), the new algorithm has computational complexity of O(T 2n3p) compared to

the conventional sampling approach of O(n3p3). Both have the same order of complexity

in n, but they have different complexity in other dimensions. For instance, when T is

small and p is large, the algorithm of Bhattacharya, Chakraborty, and Mallick (2016) is

expected to perform better.

4.2.3 Alternative Bayesian Approaches

So far we have focused on various MCMC methods to estimate the reduced-form VAR

given in (1). There is a range of additional strategies to speed up computations so that

one can fit larger BVARs with more flexible features.

One approach is to reparameterize the standard reduced-form VAR in the structural

form with a recursive system (see, e.g., Chan, 2021; Gefang, Koop, and Poon, 2023). The

to draw the VAR coefficients equation by equation that has the same order of computational complexity.
13For some special cases, other faster algorithms are available. For example, under the natural con-

jugate prior, the common stochastic volatility model and its variants can be estimated using algorithms
with complexity O(n3p3); see Carriero, Clark, and Marcellino (2016) and Chan (2020).
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structural-form parameter estimates can then be transformed to obtain the corresponding

reduced-form estimates. The main advantage of this approach is that the n-variable VAR

can be directly written as a system of n unrelated univariate regressions, which can be

estimated separately. This reparameterization can offer up to 10 times speed up compared

to estimation of the reduced form, depending on the size of the system. Moreover, further

speed-up can be achieved via parallelization. The key drawback of this approach is that

to apply standard conjugacy results, one needs to use normal priors on the structural-

form VAR coefficients, which often imply order-dependent priors on the reduced-form

parameters. One way to ameliorate this ordering issue is to first elicit prior beliefs on the

reduced-form parameters, and then work out the implied prior beliefs on the structural-

form parameters; see, e.g., Chan (2022) for an example.

There are other Bayesian estimation approaches that offer substantial reduction in com-

putation time compared to conventional MCMC methods. For example, Bognanni and

Zito (2020) introduce a sequential Monte Carlo (SMC) algorithm for estimating BVARs

with stochastic volatility that leverages parallelization. In addition, the algorithm is espe-

cially suitable for online learning tasks, such as out-of-sample forecasting, where new data

can be incorporated to update the posterior distribution without completely reestimating

the model.

While MCMC and SMC are exact methods in the sense that they can approximate the

posterior distribution arbitrarily well by increasing the simulation size, there are approx-

imate methods available in settings where neither MCMC nor SMC are computationally

feasible. One prominent example is the fast growing collection of variational Bayesian

methods, which are deterministic algorithms for approximating the posterior distribution

using a more tractable distribution. More specifically, given a family of tractable den-

sities, the variational Bayesian approach locates the optimal density within this family

by minimizing the Kullback-Leibler divergence of the approximating density to the pos-

terior density. Key references on variational Bayesian methods can be found in Jordan,

Ghahramani, Jaakkola, and Saul (1999), Bishop (2006) and Ormerod and Wand (2010).

Hajargasht and Woźniak (2018) appear to be the first to apply the variational Bayesian

approach to the estimation of a 7-variable homoskedastic VAR. Chan and Yu (2022) and

Gefang, Koop, and Poon (2023) develop variational Bayesian methods for estimating

large BVARs with stochastic volatility. In particular, Chan and Yu (2022) use a 96-
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variable BVAR to measure global bank network connectedness, whereas Gefang, Koop,

and Poon (2023) conduct an out-of-sample forecasting exercise using a large data set of

100 variables. While both Chan and Yu (2022) and Gefang, Koop, and Poon (2023)

parameterize their BVARs in the structural form, Bernardi, Bianchi, and Bianco (2023)

develop a variational Bayes algorithm to estimate a reduced-form BVAR with stochas-

tic volatility. Hierarchical shrinkage priors on the reduced-form VAR coefficients seem

to perform better than those elicited on the structural form, but estimation under the

reduced-form parameterization is slightly more costly.

5 Time-Varying Parameter and Nonlinear VARs

Since the pioneering works of Cogley and Sargent (2001, 2005) and Primiceri (2005),

BVARs with time-varying VAR coefficients have been widely used to model time-series

with structural changes. In these time-varying parameter (TVP) models, it is crucial to

also allow for time-varying volatility—as highlighted in Sims (2001), a failure to account

for heteroskedasticity in a TVP model with constant error variances might give an ap-

pearance of time variation in the VAR coefficients. In fact, Sims and Zha (2006) compare

various regime-switching BVARs and find that the best model is the one that allows for

time variation in error variances only. Chan and Eisenstat (2018) report similar findings

in BVARs with TVP and stochastic volatility.

Of course, TVP models are but one nonlinear approach to model the conditional mean

in BVARs. For applications that study the impact of macroeconomic or financial un-

certainty on key macroeconomic variables, BVARs with stochastic volatility in mean

are an especially convenient framework. For example, Mumtaz and Zanetti (2013) de-

velop a TVP-VAR with stochastic volatility where the log-volatilities and their lags enter

the conditional mean as regressors. Using this new model, they then study the impact of

monetary shocks volatility. An alternative approach based on a large BVAR with a multi-

plicative factor stochastic volatility model is proposed in Carriero, Clark, and Marcellino

(2018). In their model the log-volatilities are driven by common factors representing

macroeconomic and financial uncertainty. The two common factors and their lags then

enter the conditional mean in the BVAR as regressors. Estimation of these stochastic

volatility in mean models is typically more computationally intensive, as the auxiliary
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mixture sampler does not apply. In view of this difficulty, Cross, Hou, Koop, and Poon

(2023) develop an efficient precision-based sampler for posterior and predictive inference

in large stochastic volatility in mean BVARs. They report substantial computational and

statistical efficiency gains over a standard particle filter.

There are also a few nonparametric approaches designed for BVARs. For example,

Hauzenberger, Huber, Marcellino, and Petz (2021) develop a nonparametric BVAR us-

ing a Gaussian process prior to model the relationship of each endogenous variable on

its own lags and lags of all other variables. The model also features a multivariate

stochastic volatility specification similar to the Cholesky stochastic volatility. An alter-

native nonparametric approach based on Bayesian additive regression trees is considered

in Hauzenberger, Huber, Koop, and Mitchell (2022) and Clark, Huber, Koop, Marcellino,

and Pfarrhofer (2022). Specifically, a TVP-VAR with stochastic volatility is first repre-

sented in the structural form, and in each equation both the time-varying conditional

mean and the conditional variance are modeled using Bayesian additive regression trees.

Both find forecast accuracy gains over linear BVARs. For more detailed discussions on

Bayesian nonparametric methods, see Chapter 5 of this volume by Marcellino and Pfar-

rhofer.

6 The Road Ahead

Over the last decade substantial progress has been made in developing a wide range of

stochastic volatility models and efficient estimation approaches for large datasets. There

remains, however, a lot of ongoing work in building more flexible time-varying BVARs.

One direction tackles the problem of modeling time variation in large systems, since stan-

dard TVP models of Cogley and Sargent (2005) and Primiceri (2005) cannot be directly

applied to those settings due to computational and overparameterization concerns. In

addition, allowing all VAR coefficients to be time-varying appears to be unnecessary. For

example, Chan (2023b) finds evidence that in a large BVAR, the coefficients in some, but

not all, equations are time-varying, and forcing all coefficients to be time-varying wors-

ens forecast performance. Papers such as Koop and Korobilis (2013, 2018) propose fast

estimation methods to approximate the posterior distributions of large TVP models. Hu-

ber, Koop, and Onorante (2019) develop an algorithm that first shrinks the time-varying
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coefficients, followed by setting the small values to zero. The nonparametric approach

based on Bayesian additive regression trees developed in Hauzenberger, Huber, Koop,

and Mitchell (2022) can also accommodate time-varying coefficients.

Another research direction involves developing more general VAR models able to accom-

modate the augmentation of typical macroeconomic datasets with additional types of

data. A promising recent approach is the functional VAR developed in Chang, Chen,

and Schorfheide (2021) that jointly models standard macroeconomic time-series and

individual-level cross-sectional data. This framework is especially suitable for studying,

for example, the distributional effects of various structural macroeconomic shocks.
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Götz, T., and K. Hauzenberger (2018): “Large mixed-frequency VARs with a par-
simonious time-varying parameter structure,” Deutsche Bundesbank Discussion Paper.

Griffin, J., and P. Brown (2010): “Inference with normal-gamma prior distributions
in regression problems,” Bayesian Analysis, 5(1), 171–188.
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