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1 Introduction

The 2008 meltdown of the global financial market has attracted renewed attention on
speculative bubbles among academics and policy-makers. Speculative bubbles might be
the answer to the question posed by Shiller (1980): If not dividend growth or expected
returns, what does move prices? When investors share the belief that a variable or a group
of variables, not related to fundamentals, influences prices, it is rational to include this
piece of information into prices (Diba and Grossman, 1988). In this context, an explosive
behaviour of stock prices is still consistent with a rational behaviour of economic agents.
Experimental evidence has also confirmed that bubbles are fueled by symmetrically in-
formed traders (Asako et al., 2020). Recently, Zheng (2020) has found that investors’
coordination on fundamental strategy impacts the occurrence and burst of the bubble.
This paper aims at detecting speculative bubbles in stock-price data by jointly studying
the return and dividend dynamics. Specifically, we want to capture the information in
the present-value relations among price-dividend ratios, expected returns, expected div-
idend growth rates and an eventual rational bubble. Thus, we contribute to both the
present-value literature in the spirit of Campbell and Shiller (1988), and the literature on
the identification of speculative bubbles.

Variation through time in the price-dividend ratio on corporate stocks conveys essential
information about expected returns or expected dividend growth rates (Campbell and
Shiller, 1988). Recently, Binsbergen and Koijen (2010) have pioneered a latent variables
approach to estimate the expected returns and expected dividend growth rates of the
aggregate stock market. They find that returns and dividend growth rates are predictable
with R2 values ranging from 8.2% to 8.9% for returns and 13.9% to 31.6% for dividend
growth rates. More recently, Choi et al. (2017) have shown that incorporating regime
shifts in the mean of price-dividend ratios into the present value model of Binsbergen
and Koijen (2010) increases in-sample predictability. Another extension of Binsbergen
and Koijen (2010) is considered by Piatti and Trojani (2017), who use a latent variables
approach to estimate a present-value model with time-varying risk.

Despite the relevance of the phenomenon of periodically collapsing bubbles in stock prices,
present-value approaches above do not account for it. This paper proposes to incorporate
a speculative bubble subject to a surviving and a collapsing regime into the state space
framework by Binsbergen and Koijen (2010). Specifically, we contribute to the literature
on the present-value model in the spirit of Campbell and Shiller (1988) by allowing prices
to deviate from fundamentals because of a latent rational bubble component subject to a
surviving and a collapsing regime. Our framework allows us to estimate expected returns
and expected dividend growth rates, as well as to identify bubble’s collapse dates.
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This paper also contributes to the literature on the identification of speculative bubbles.
Within the field, empirical papers have mainly proposed two different approaches for the
detection of bubbles: indirect and direct bubble tests.1

The first group of studies is based on the so-called indirect bubble tests. Here, the authors
apply sophisticated cointegration and unit-root tests to a dividend-price relationship (see,
e.g., Diba and Grossman, 1988; Evans, 1991; Froot and Obstfeld, 1991; Hall et al., 1999;
Sarno and Taylor, 2003; Bohl, 2003; Bohl and Siklos, 2004; Kanas, 2005; Jiang and Lee,
2007; McMillan, 2007; Cerqueti and Costantini, 2011; Phillips et al., 2011; Chen et al.,
2016). Among the indirect tests to detect bubbles, some researchers have proposed a
Bayesian approach; among them Li and Xue (2009); Miao et al. (2015); Check (2014); Shi
and Song (2014); Fulop and Yu (2017).

The second group of studies, which are more relevant to this work, implements direct
tests for speculative bubbles by explicitly formulating the existence of a bubble in the
alternative hypothesis (see West, 1987; Wu, 1997; Balke and Wohar, 2009; Al-Anaswah
and Wilfling, 2011; Lammerding et al., 2013). The basic idea in the seminal paper of
West (1987) is to compare two alternative estimators for the set of parameters needed to
compute the expected present discounted values of a stock’s dividend stream, where expec-
tations is conditional on current and past dividends. Specifically, West (1987) constructs
one set of estimates by regressing the stock price on a suitable set of lagged dividends.
Instead, the other set of estimates is obtained using a pair of equations with one be-
ing an arbitrage equation yielding the discount rate, and the other being the ARIMA
equation of the dividend process. Then the Hansen and Sargent (1980) formulas may
be applied to this pair of equations to obtain a second set of estimates of the expected
present discounted value parameters. Under the null hypothesis of no-bubble, the two sets
of estimates should be the same, apart from sampling error. West (1987) finds that the
test usually rejects the null hypothesis of no bubbles for the US market. More recently,
Wu (1997) suggests a state space representation of the deviations of stock prices from
the present-value model in which the bubble is included as an unobservable component.
In Wu (1997), dividends are assumed to follow an autoregressive process. The analysis
attributes large portions of stock price movements to speculative bubbles in the S&P
500. Al-Anaswah and Wilfling (2011); Lammerding et al. (2013) extend the state space
model in Wu (1997) by allowing the bubble to switch between two alternative regimes,
namely an explosive and a stationary regime. Al-Anaswah and Wilfling (2011) adopt the
methodology of Kim and Nelson (1999) to identify regime-switching of speculative bubbles
in stock price monthly data. Differently, Lammerding et al. (2013) propose a Bayesian
approach to estimate the Markov-switching state space model of speculative bubbles in oil
price data. This paper extends the state space model in Al-Anaswah and Wilfling (2011);

1Readers are referred to Gürkaynak (2008) for a survey of econometric tests on asset price bubbles.
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Lammerding et al. (2013) by adding a bubble to the state space framework of Binsber-
gen and Koijen (2010) which model expected returns and expected dividend growth rates
as latent variables. Thus, our state space model includes three latent variables namely,
expected returns, expected dividend growth rates, and a rational bubble as opposed to
one (Wu, 1997; Al-Anaswah and Wilfling, 2011; Lammerding et al., 2013). Moreover,
we adopt a Markov-switching approach to identify the bubble’s collapsing and surviving
regimes. In contrast to Al-Anaswah and Wilfling (2011); Lammerding et al. (2013), we
allow regime-switching also in fundamentals.

Markov-switching models (Hamilton, 1989) have been used extensively in the bubble
literature. Driffill and Sola (1998) allow fundamentals to switch between alternative
regimes in a stock price model which includes an intrinsic bubble. Hall et al. (1999)
propose a univariate Markov-switching Augmented-Dickey-Fuller test to detect bubble
episodes, later extended by Shi (2013) to allow for heteroskedasticity. Further, Brooks
and Katsaris (2005) show that a three-regime model that allows for dormant, explosive
and collapsing speculative behaviour can explain the dynamics of the S&P 500. Shi
and Song (2014) propose an infinite hidden Markov model, which allows for an infinite
number of regimes to detect, date stamp and estimate speculative bubbles. In a recent
contribution, Fulop and Yu (2017) have developed a new model for real time bubbles
detection where the dynamic structure of the asset price, after the fundamental value is
removed, is subject to two different regimes.

A common drawback of the bubble literature is that rejection of the present-value model
that are interpreted as evidence of the presence of bubbles can still be explained by alter-
native structures of the fundamentals. In this paper we mitigate this issue in two ways.
First, we restrict our analysis to rational bubbles which impose fairly strong restrictions
on the dynamics of the bubble component. Hence these restrictions can help us identify
the non-fundamental component in the data. Second, we use a less restrictive fundamen-
tals model. Indeed, our econometric procedure allows us to analyse a more complex model
with time-varying discount rates and regime-switching in fundamentals and the bubble.
In doing so, we allow the fundamentals part to fit the data better, leaving less room for
a bubble. This is an improvement with respect to the model in Al-Anaswah and Wilfling
(2011), which allows regime-switching only in the bubble process and assumes constant
return rates. Moreover, in their specification the dividend process follows a pure random
walk.

In line with previous research on the identification of speculative bubbles, we employ
artificial as well as real-world datasets. The artificial bubble processes are defined in the
sense of Evans (1991), whereas the real-world datasets are drawn from Datastream. We
consider 20 years of monthly data (November 1997 - October 2017) for the price index, the
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dividend yield and the market value. We use data for five countries: United States, United
Kingdom, Malaysia, Japan and Brazil. We choose this set of countries because of their
economic relevance and the severe bubble episodes experienced in the past (Kindleberger
and Aliber, 2003). The advantage of the artificial datasets with respect to real-world data
is that the bubbles’ collapse dates are known, hence they allow us to assess the accuracy
of our bubble-detection method. For the real-world datasets, we rely on what economic
historians have classified as bubble periods (Kindleberger and Aliber, 2003).

In order to estimate this new high-dimensional model, we adopt the Bayesian approach
and use Markov chain Monte Carlo (MCMC) methods to simulate from the joint posterior
distribution. Indeed, when the number of model parameters is large, standard maximum
likelihood estimation tends to be numerically unstable and may result in estimates that
are locally, but not globally, maximal. In contrast, MCMC methods are numerically more
robust and can handle a large number of parameters and latent variables. In addition,
one novel feature of our implementation is that it builds upon the band and sparse matrix
algorithms for state space models developed in Chan and Jeliazkov (2009), McCausland
et al. (2011) and Chan (2013), which are shown to be more efficient than the conventional
Kalman filter-based algorithms.

We find that our new bubble-detection method is able to correctly identify 92.27% of all
the bubble collapsing dates in the artificial datasets. Moreover, it never signals a bubble
when there is none in the price process. These results represent an improvement with
respect to the methodology discussed in Al-Anaswah and Wilfling (2011) which correctly
identifies around 50% of all the bubble collapsing dates. Also, we find that our framework
is able to identify most of the bubble periods classified as such by Kindleberger and
Aliber (2003). Consistent with Al-Anaswah and Wilfling (2011) and Lammerding et al.
(2013), we document the existence of statistically significant Markov-switching in the
data-generating process of real-world stock price bubbles.

Our framework is also able to predict dividend growth rates as well as returns with R2

values ranging from 74.07% to 78.89% for dividend growth rates and 4.04% and 20.71%
for returns in the artificial datasets. In the real-world datasets, the R2 values for dividend
growth rates are quite high, the highest value is recorded for the US where it is equal to
70.49% while the lowest value is registered for Brazil where it is equal to 49.10%. However,
the R2 values for returns are less than 1% with the exception of Brazil where it is above
3%.

We show that present-value models should not ignore the bubble component of stock
prices. Indeed, we find that in the surviving bubble regime most of the variation in
the price-dividend ratio is related to the bubble variation. Specifically, bubble variation
accounts for more than 50% of the price-dividend variation in all the countries under study
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with the exception of Brazil where it accounts for about 36%. Further, bubble variation
explains also a large share of unexpected return variation in the surviving bubble regime.2

The paper is structured as follows: next section reviews the present-value model by Camp-
bell and Shiller (1988). In Section 3, we present the econometric model, and Section 4
discusses the posterior sampler. In Section 5, we present the data sources and some
descriptive statistics. Section 6 discusses the results, and Section 7 concludes.

2 Economic Model

In this section we briefly review the log-linearized present-value model in the spirit of
Campbell and Shiller (1988) in which both expected returns and expected dividend growth
rates are treated as latent variables as suggested by Binsbergen and Koijen (2010).

Let denote with pdt and ∆dt+1 respectively the log price-dividend ratio and the log divi-
dend growth rate

pdt ≡ log

(
Pt
Dt

)
,

∆dt+1 ≡ log

(
Dt+1

Dt

)
.

The log gross return, denoted as rt+1, is defined as follows

rt+1 ≡ log

(
Pt+1 +Dt+1

Pt

)
= log

(
Pt+1 +Dt+1

)
− log

(
Pt
)
. (1)

Equation (1) is nonlinear since it involves the log of the sum of price and dividend.
However, using the first order Taylor expansion it can be well approximated by

rt+1 ' κ+ ρpdt+1 + ∆dt+1 − pdt, (2)

where κ and ρ are parameters of linearizations, κ = log(1 + exp(p̄d)) − ρp̄d and ρ =
exp(p̄d)

1 + exp(p̄d)
, p̄d = E[pd] (Campbell and Shiller, 1988).

Iterating forward Eq. (2) and imposing the transversality condition, we obtain the unique
2This result is consistent with Balke and Wohar (2009) which find that the bubble component is

substantially important in explaining fluctuations in the log price-dividend ratio when there are no
permanent components in market fundamentals.
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no-bubble solution

pdft =
κ

1− ρ
+
∞∑
j=1

ρj−1Et[∆dt+j − rt+j |Ψt], (3)

where Ψt denotes the economic agents’ information set at time t. Similar to Binsbergen
and Koijen (2010), we assume that both expected returns (µt ≡ Et[rt+1 |Ψt]) and expected
dividend growth rates (gt ≡ Et[∆dt+1 |Ψt]) follow an AR(1) process

µt+1 = δ0 + δ1(µt − δ0) + εµt+1, (4)

gt+1 = γ0 + γ1(gt − γ0) + εgt+1. (5)

The dividend growth rate and the return rate are respectively equal to their expected
value plus an orthogonal shock:

∆dt+1 = gt + εdt+1, (6)

rt+1 = µt + εrt+1. (7)

Assuming that limj→∞ ρ
jpdt+j = 0 and taking expectations conditional upon time t we

obtain the fundamental price-dividend ratio:

pdft =
κ

1− ρ
+
∞∑
j=1

ρj−1Et[∆dt+j − rt+j |Ψt]

=
κ

1− ρ
+
∞∑
j=1

ρj−1Et[gt+j−1 − µt+j−1 |Ψt]

=
κ

1− ρ
+
∞∑
j=0

ρjEt[gt+j − µt+j |Ψt]

=
κ

1− ρ
+
∞∑
j=0

ρjEt[γ0 + γj1(gt − γ0)− δ0 − δj1(µt − δ0) |Ψt]

=
κ

1− ρ
+
γ0 − δ0

1− ρ
+
∞∑
j=0

ρjEt[γ
j
1(gt − γ0)− δj1(µt − δ0) |Ψt]

=
κ

1− ρ
+
γ0 − δ0

1− ρ
+
gt − γ0

1− ργ1

− µt − δ0

1− ρδ1

,

(8)
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which uses

Et[xt+j] = α0 + αj1(xt − α0), (9)

provided that

xt+1 = α0 + αj1(xt − α0) + εt+1. (10)

Finally, the fundamental price-dividend ratio can be written

pdft = A−B1µ̂t +B2ĝt, (11)

where A =
κ− δ0 + γ0

1− ρ
, B1 =

1

1− ρδ1

, B2 =
1

1− ργ1

, µ̂t = µt − δ0, and ĝt = gt − γ0.

It is important to stress that if the transversality solution does not hold, the no-bubble
solution pdf in (11) represents only a particular solution to the difference equation (2),
and the general solution has the form

pdt = pdft + bt. (12)

where bt is a rational speculative bubble, that is a deviation of the stock price from
fundamentals generated by extraneous factors or rumors and driven by self-fulfilling ex-
pectations. The bubble component of the price-dividend ratio satisfies the homogeneous
difference equation

Et[bt+i |Ψt] =
bt
ρi
. (13)

In line with the literature (i.e., Wu, 1997; Al-Anaswah and Wilfling, 2011; Lammerding
et al., 2013), we assume that the bubble component follows a linear AR(1) process

bt+1 =
bt
ρ

+ εbt+1, ε
b v N(0, σ2

b ). (14)

When estimating the price-dividend equation (12), we are confronted with the problem
that expected returns, expected dividend growth rates, and the bubble component are
unobservables. Hence, we have to express our model in state space form.
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3 Econometric Model

Bubbles are empirically plausible only if they are likely to collapse after reaching high
levels. For instance, Al-Anaswah and Wilfling (2011) and Lammerding et al. (2013) allow
the bubble in the present-value model in Wu (1997) to switch between two alternative
regimes: an explosive and a stationary regime. Using both stock and oil price data, they
document statistically significant Markov-switching between these two regimes. Their
findings motivate us to extend the present-value model of Binsbergen and Koijen (2010)
to incorporate a speculative bubble that switches between two regimes. The two regimes
aim to represent the two distinct phases in the bubble process, namely, one in which the
bubble survives and one in which it collapses.

Differently from Al-Anaswah and Wilfling (2011), we allow all the model parameters in the
bubble and fundamentals equations to switch between two distinct regimes St ∈ {1, 2}.
The regime indicator St, which is independent of all the other shocks in our model, is
governed by a first-order Markov process with constant transition probabilities,

Π =

(
p11 1− p11

1− p22 p22

)
,

where p11 = P (St = 1|St−1 = 1) and p22 = P (St = 2|St−1 = 2) are between 0 and 1.

By the end of time t or at the beginning of time t+ 1, economic agents observe St but not
future states. Thus, economic agents’ information set at the end of time t is specified as

Ψt = {It; St}, (15)

where It consists of the observed data up to time t.

The model transition equations can be written as:

ĝt = γ1,St+1 ĝt−1 + εgt ,

µ̂t = δ1,St+1µ̂t−1 + εµt ,

bt = 1/ρSt+1bt−1 + εbt .

(16)

The dividend growth rate is then equal to

∆dt+1 = γ0,St+1 + ĝt + εdt+1, (17)
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and the price-dividend equation is

pdt+1 = ASt+1 +B2,St+1 ĝt+1 −B1,St+1µ̂t+1 + bt+1

= ASt+1 +B2,St+1 γ̃1,St+1 ĝt −B1,St+1 δ̃1,St+1µ̂t + 1/ρ̃St+1 bt +B2,St+1ε
g
t+1

−B1,St+1ε
µ
t+1 + εbt+1 + εet+1,

(18)

where, for i, j ∈ {1, 2} and j 6= i, we have defined:

γ̃1,St+1 = Et+1[γ1,St+2 |St+1 = i] = piiγ1,i + (1− pii)γ1,j,

δ̃1,St+1 = Et+1[δ1,St+2 |St+1 = i] = piiδ1,i + (1− pii)δ1,j,

ρ̃St+1 = Et+1[ρSt+2 |St+1 = i] = piiρ1,i + (1− pii)ρ1,j.

(19)

Notice that we have added to the equation for the price-dividend an orthogonal error εet+1.
Indeed when we substitute the transition variables at t + 1, we are confronted with the
fact that next period regime is unknown. Hence, we use their expectation conditioned on
the information available at time t+ 1 which generate an error, measured by εet+1.

In line with Al-Anaswah and Wilfling (2011) and Lammerding et al. (2013), we express
the price-dividend equation in first difference to circumvent nonstationarity problems:

∆pdt+1 = ASt+1 − ASt + (B2,St+1 γ̃1,St+1 −B2,St)ĝt − (B1,St+1 δ̃1,St+1 −B1,St)µ̂t+

(1/ρ̃St+1 − 1)bt +B2,St+1ε
g
t+1 −B1,St+1ε

µ
t+1 + εbt+1 + εet+1.

(20)

Concerning the return process, approximation (2) together with equation (12) imply that
the return shock has the following form:

εrt+1 = εdt+1 + ρεpdt+1, (21)

where εpdt+1 = B2ε
g
t+1 − B1ε

µ
t+1 + εbt+1. Since the series of market returns is fully described

by the dividend growth rates and the price-dividend ratio, we omit it from our state space
specification. Let αt denote the 7×1 vector of unobservable variables, and yt be the 2×1

vector of observable variables:

αt+1 =
(
ĝt µ̂t bt εgt+1 εµt+1 εdt+1 εbt+1

)′
, yt+1 =

(
∆dt+1 ∆pdt+1

)′
.

We can now express the model in matrix form:

αt+1 = GSt+1αt + Γξt+1,

yt+1 = MSt+1,St + ZSt+1,Stαt+1 + ηt+1.
(22)
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where α1 ∼ N(0,ΓV1Γ′), G, M , and Z are time invariant matrices of the appropriate
dimensions, and ξt and ηt are (4× 1) and (2× 1) vector of disturbances, respectively

ξt+1 =
(
εgt+1 εµt+1 εdt+1 εbt+1

)′
, ηt+1 =

(
0 εet+1

)′
,

with
ξt ∼ N(0, VSt),

ηt ∼ N(0, RSt).

The model matrices are defined as follows:

GSt =


γ1,St 0 0 1 0 0 0

0 δ1,St 0 0 1 0 0

0 0 1/ρSt 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

 , Γ =


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , ΩSt =

(
σ2
g,St

σgµ,St σgd,St

σgµ,St σ2
µ,St

σµd,St

σgd,St σµd,St σ2
d,St

)
,

VSt =

(
ΩSt 0

0 σ2
b,St

)
, RSt =

(
0

σ2
e,St

)
, MSt,St−1 =

(
γ0,St

ASt − ASt−1

)
,

ZSt,St−1 =

(
1 0 0 0 0 1 0

B2,St γ̃1,St −B2,St−1 −B1,St δ̃1,St +B1,St−1 1/ρ̃St − 1 B2,St −B1,St 0 1

)
.

Given that the bubble process is exogenous, we have assumed σgb = σµb = σdb = 0.

4 Bayesian Estimation

In this section we describe a Bayesian approach for estimating our Markov-switching state
space model. Since the number of model parameters is quite large, standard maximum
likelihood estimation tends to be numerically unstable and may result in estimates that
are locally, but not globally, maximal. For this reason we apply MCMC methods which
are numerically more robust. A key novel feature of our approach is that it builds upon
the band and sparse matrix algorithms for state space models developed in Chan and
Jeliazkov (2009), McCausland et al. (2011) and Chan (2013), which are shown to be more
efficient than conventional Kalman filter-based algorithms.

In what follows we use the index i to denote the regime, i ∈ {1, 2}. There are two
sets of regime-specific parameters. When it does not cause confusion, we would drop
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the regime index i. For estimation, we split the latent states and model parameters
into 7 blocks: states α, covariance matrices Ωi, variances (σ2

b,i, σ2
e,i), parameters Θ1 =

(γ0,1, δ0,1, γ0,2, δ0,2), Θ2 = (ρ1, γ1,1, δ1,1, ρ2, γ1,2, δ1,2),3 regime indicators S, and Markov
regime-switching probabilities p11 and p22.

We assume the following prior distributions: i. Ωi ∼ IW (ν01, S01); ii. σ2
k,i ∼ IG(ν02, S0k),

k = {b, e}; iii. Θ1 ∼ N(Θ1, VΘ1); iv. Θ2 ∼ N(Θ2, VΘ2); v. p11 ∼ Beta(u11, u12), and
p22 ∼ Beta(u22, u21). For brevity, we use Θ to denote the vector (Θ1,Θ2).

We define Regime 1 as the bubble surviving regime, while Regime 2 represents the bubble
collapsing regime. The main model parameter is ρ, which governs the growth rate of
the bubble process. When ρ increases, the bubble’s growth rate decreases. In particular,
when ρ ≤ 1, the bubble is explosive; when ρ > 1, the bubble follows a stationary AR(1)
process. We assume a Normal prior for ρ with mean equal to 0.75 in Regime 1 and 1.25
in Regime 2. For other parameters we assume the same priors across the two regimes.
The values of the hyperparameters are informed by the the estimation results of previous
studies (Binsbergen and Koijen, 2010; Choi et al., 2017; Piatti and Trojani, 2017). Finally,
we adopt a conjugate prior Beta(15, 1) for the transition probabilities p11 and p22. Table
1 summarizes the priors and starting values for the MCMC algorithm.

Table 1: Priors and Starting values
Parameters Regime 1 Regime 2

Prior Starting value Prior Starting value

Ω IW (3 + 2, 0.01 ∗ I3) 0.001 ∗ I3 IW (3 + 2, 0.01 ∗ I3) 0.001 ∗ I3
σ2
b IG(5, 0.04) 0.001 IG(5, 0.04) 0.001
σ2
e IG(5, 0.0004) 0.001 IG(5, 0.0004) 0.001
ρ N(0.75, 0.052) 0.900 N(1.25, 0.052) 1.100
γ0 N(0.00, 0.052) 0.000 N(0.00, 0.052) 0.000
γ1 N(0.50, 0.052) 0.500 N(0.50, 0.052) 0.500
δ0 N(0.02, 0.052) 0.000 N(0.02, 0.052) 0.000
δ1 N(0.80, 0.052) 0.800 N(0.80, 0.052) 0.800
p11, p22 Beta(15, 1) 0.800

We implement the following 7-block Metropolis-within-Gibbs sampler to simulate from
the joint posterior distribution:

1. Sample from f(α|Y, Θ, Ω, σ2
b , σ

2
e , S, p11, p22).

It can be shown that the full conditional distribution of α is Gaussian. As a first
step, we rewrite the transition and the measurement equations in matrix form:

HGα = Γ̃ξ, Γ̃ξ ∼ N(0,W ), (23)
3The parameter of linearization κ is expressed as a function of ρ; κ(ρ) = log(1 + exp(p̄d)) − ρp̄d,

where p̄d is the unconditional expected price-dividend ratio. We set it equal to the sample average of the
price-dividend ratio of each dataset.
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Y = M̃ +HZα + η, η ∼ N(0,Φ), (24)

where

HG =


I7

−GS2 I7

. . . . . .

−GST I7

 , W 4 =


ΓVS1Γ

′

ΓVS2Γ
′

. . .

ΓVSTΓ′



HZ =


ZS1,S0

ZS2,S1

. . .

ZST ,ST−1

 , Φ =


RS1

RS2

. . .

RST



α =


α1

...
αT

 , Γ̃ =


Γ
...
Γ

 , ξ =


ξ1

...
ξT

 , Y =


y1

...
yT

 , M̃ =


MS1,S0

...
MST ,ST−1

 , η =


η1

...
ηT

 .

Then, the conditional posterior [α|Y,Θ, Ω, σ2
b , σ

2
e , S, p11, p22] ∼ N(α̂, P−1), where

P = H ′GW
−1HG +H ′ZΦ−1HZ ,

α̂ = P−1(H ′ZΦ−1
(
Y − M̃

)
).

(25)

To simulate from N(α̂, P−1), we first obtain the Cholesky factor C of P such that
C ′C = P . Then, given u ∼ N(0, I), we solve Cx = u for x by back substitution and
take α = α̂+ x. It can be shown that α ∼ N(α̂, P−1); see, e.g., Chan and Jeliazkov
(2009).

2. Sample from f(Ω|y, α, Θ, σ2
b , σ

2
e , S, p11, p22). This step is standard as Ω follows an

Inverse-Wishart distribution:

[Ωi|y, α, Θ, σ2
b , σ

2
e , S, p11, p22] ∼ IW

(
ν01 +

T∑
t=1

I(St = i), S01 +
T∑
t=1

(
ete
′
t)I(St = i)

)
,

where IW stands for the Inverse-Wishart distribution, et = (εgt , ε
µ
t , ε

d
t ).

3. Sample from f(σ2
k|y, α, Θ,Ω, S, p11, p22) , k = {b, e}. This step is standard as each

4Note that the first three diagonal elements of ΓVStΓ
′ are zero, hence matrix W is singular. We

substitute the zero elements with 10−8 in order to preserve the invertibility of W .
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of the variances follows an Inverse-Gamma distribution:

[σ2
k,i|y, α, Θ,Ω, S, p11, p22] ∼ IG

(
ν02 +

∑T
t=1 I(St = i)

2
, S0k +

∑T
t=1(εkt )

2I(St = i)

2

)
,

where IG stands for the Inverse-Gamma distribution.

4. Sample from f(Θ1|y, α,Θ2, Ω, σ2
b , σ

2
e , S, p11, p22). This step is also standard as Θ1

follows a Normal distribution. To see that, we first write the measurement equation
as

yt = MSt,St−1 + (ZSt,St−1GSt)αt−1 + ZSt,St−1Γξt + ηt. (26)

We can then express the constant term MSt,St−1 as MSt,St−1 = CSt,St−1 +XSt,St−1Θ1,
where CSt,St−1 =

(
0, κ(ρSt)/(1− ρSt)− κ(ρSt−1)/(1− ρSt−1)

)′,
X1,1 =

(
1 0 0 0

0 0 0 0

)
, X1,2 =

 1 0 0 0
1

1− ρ1

− 1

1− ρ1

− 1

1− ρ2

1

1− ρ2

 ,

X2,2 =

(
0 0 1 0

0 0 0 0

)
, X2,1 =

 0 0 1 0

− 1

1− ρ1

1

1− ρ1

1

1− ρ2

− 1

1− ρ2

 .

Using standard linear regression results, one can show that the conditional posterior
is [Θ1|y, α,Θ2,Ω, σ

2
b , σ

2
e , S, p11, p22] ∼ N(Θ̂1, KΘ1), where

KΘ1 =
(
V −1

Θ1
+ X̃ ′Σ−1X̃

)−1
,

Θ̂1 = KΘ1

(
V −1

Θ1
Θ1 + X̃ ′Σ−1(Y − C̃ −HZGα)

)
.

(27)

The matrix X̃ is a 2T×4 matrix X̃ = (XS1,S0 , ..., XST ,ST−1
)′, C̃ = (CS1,S0 , ..., CST ,ST−1

)′,
and Y , α are the stacked vectors of yt and αt respectively, HZG and Σ are defined
as:

HZG =


0

ZS2,S1GS2 0
. . . . . .

ZST ,ST−1
GST 0

 ,

Σ5 =


(ZS1,S0(ΓVS1Γ

′)Z ′S1,S0
+RS1)

. . .

(ZST ,ST−1
(ΓVSTΓ′)Z ′ST ,ST−1

+RST )

 .

5. Sample from f(Θ2|Y, α,Θ1,Ω, σ
2
b , σ

2
e , S, p11, p22). Since this conditional distribution

5The matrix ΓVStΓ
′ is singular as the first three diagonal elements are zero. To avoid numerical

problems, we substitute them with 10−8.
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is nonstandard, we sample Θ2 using an adaptive Random Walk Metropolis-Hastings
algorithm (Roberts and Rosenthal, 2009). In particular, we update each element of
Θ2 at a time. Given the current draw Θ

(s)
2 , we update the j-th variable by adding

a normal random variable centered at zero to obtain the candidate draw Θ∗2.6 The
candidate is then accepted with probability

a(Θ
(s)
2 ; Θ∗2) = min

{
f(Θ2 = Θ∗2|Y, α,Θ1,Ω, σ

2
b , σ

2
e , S, p11, p22)

f(Θ2 = Θ
(s)
2 |Y, α,Θ1,Ω, σ2

b , σ
2
e , S, p11, p22)

, 1

}
. (28)

We impose stationarity conditions for expected dividend growth rates and expected
returns, i.e., −1 < γ1 < 1, −1 < δ1 < 1.

6. Sample from f(S|Y, α, Θ, Ω, σ2
b , σ

2
e , p11, p22). This step can be done using the al-

gorithm proposed by Chib (1996); see also Kim and Nelson (1999). Specifically, we
use the following decomposition of the joint conditional density:7

f(S|Y, α) = f(ST |Y, α)
T−1∏
t=1

f(St|St+1, Y1:t, α1:t), (29)

where Y1:t denotes all the data up to time t, and α1:t is similarly defined.

To compute each of these conditional distributions, we first run the Hamilton fil-
ter (Hamilton, 1989) to get the filtered distributions f(St|Y1:t, α1:t), t = 1, 2, ..., T .
The last iteration of the filter provides f(ST |Y, α). More specifically, these filtered
distributions are defined by

f(St|Y1:t, α1:t) ∝ f(yt|St, αt−1, yt−1)f(St|Y1:t−1, α1:t−1),

where f(yt|St, αt−1, yt−1) is a multivariate normal distribution defined by the model.

Then, the conditional distribution f(St|St+1, Y1:t, α1:t) can be computed by using:

f(St|St+1, Y1:t, α1:t) ∝ f(St+1|St)f(St|Y1:t, α1:t),

where f(St+1|St) is the transition probability and f(St|Y1:t, α1:t) is calculated us-
ing the Hamilton filter as described above. Note that the probability Pr(St =

6For the first batch of 50 iterations, we update each variable j by adding a N(0, 0.12) distributed
random variable. Then, after the l-th batch of 50 iterations, we update the logarithm of the standard
deviation of the proposed normal increment log(sj), by adding or subtracting an adaptation amount
δ(l) = min(0.01, l−1/2). Specifically, if the fraction of acceptances of variable j was greater than 0.44
on the l-th batch, we increase log(sj) by δ(l); otherwise we decrease it by the same amount. Note that
Roberts et al. (1997) and Roberts et al. (2001) show that in various one-dimensional settings the optimal
acceptance rate is around 0.44.

7For notational convenience, in what follows we suppress the dependence on the model parameters.
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2|St+1, Y1:t, α1:t) can be obtained after the normalization:

Pr(St = 2|St+1, Y1:t, α1:t) =
f(St+1|St = 2)f(St = 2|Y1:t, α1:t)∑2
j=1 f(St+1|St = j)f(St = j|Y1:t, α1:t)

. (30)

Finally, to obtain a draw from f(St|St+1, Y1:t, α1:t), we generate a random number
from a uniform distribution between 0 and 1. If the generated number is less than
Pr(St = 2|St+1, Y1:t, α1:t), we set St = 2; otherwise we set it equal to 1.

7. Sample from f(p11, p22|Y, α, Θ, Ω, σ2
b , σ

2
e , S).

Conditional on S, the transition probabilities p11 and p22 are independent of the
data y, the state variables α, and other model parameters.

Since we choose conjugate priors for both p11 and p22, we only need to calculate the
number of switches between the regimes in order to derive the posterior distributions
of p11 and p22. The posterior distributions are two independent beta distributions:

p11 ∼ Beta(u11 + n11, u12 + n12), p22 ∼ Beta(u22 + n22, u21 + n21),

where nij refers to the transitions from state i to j; i, j ∈ {1, 2}.

5 Data and Descriptive Statistics

We apply our two-regime Markov-switching state space model to artificial as well as real-
world datasets. The artificial bubble processes are defined in the sense of Evans (1991),
whereas the real-world datasets are drawn from Datastream. For computational reasons
we focus our analysis on the last 20 years of monthly data (November 1997 - October
2017) for the price index (PI), the dividend yield (DY) and the market value (MV).8 We
use data for five countries: United States (US), United Kingdom (UK), Malaysia (MY),
Japan (JP) and Brazil (BR). We choose this set of countries because of their economic
relevance and the severe bubble episodes experienced in the past (Kindleberger and Aliber,
2003). Moreover, this allow us to compare our results with those of previous studies. The
model can also be used to study bubbles in investment styles such as industry, size and
value, and in individual stocks. The model can be applied to stocks not paying dividends,
however it needs to use alternative measures of fundamentals such as earnings.

8We use monthly data as we aim to also identify bubble episodes with a duration shorter than a
year, which could not be identified with annual data. However, we refrain from using data at a higher
frequency because they are generally more noisy, making it more difficult to identify the two bubble
regimes. Moreover, historical bubble episodes documented by economic historians have typically lasted
for at least a few months (Kindleberger and Aliber, 2003).
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5.1 Simulated Datasets

Evans (1991) considers a class of rational bubbles that are positive and periodically col-
lapsing defined as follows:

Bt+1 =


Bt

1 + r
ut+1 ifBt ≤ λ

(
δ +

1 + r

π

(
Bt −

δ

1 + r

)
θt+1

)
ut+1 ifBt > λ,

 (31)

Table 2: Parameter specification for artificial datasets
Parameters Values

Panel A: Evans-bubble process parameters

λ 1.0000
τ2 0.0025
r 0.0500
δ 0.5000
B0 0.5000
π 0.5000
# observations 100 or 200

Panel B: state space model parameters

Regime 1 Regime 2
γ0 0.0500 0.0100
δ0 0.0100 0.0500
κ 1.8600 -0.1500
ρ 0.5000 1.0500
γ1 0.6000 0.5000
δ1 0.9000 0.7000
σ2
g 0.0010 0.0020
σ2
µ 0.0020 0.0010
σ2
d 0.0015 0.0015
σgµ 0.0013 0.0013
σgd 0.0009 0.0012
σµd 0.0009 0.0006

Panel A reports the parameter specification for the Evans-bubble in (31). Panel B
reports the parameters used for generating the time-series from equations (4), (5), (6),
and (11).

where δ and λ are real positive parameters such that 0 < δ < λ(1 + r). The variable
ut is assumed to be independent and identically distributed (iid) lognormally with unit
mean. Specifically, we assume ut = exp(xt − τ 2/2) with xt iid N(0, τ 2). The process θt
is an exogenous iid Bernoulli process which assumes the value 1 with probability π and
the value 0 with probability 1 − π, 0 < π ≤ 1. The parameters δ, λ, and π govern the
frequency with which bubbles erupt, the scale of the bubble and the average length of
time before collapse.

As long as the bubble process is below λ, the bubble grows at the mean rate 1 + r. When
Bt > λ the bubble grows at the faster mean rate (1 + r)π−1 and it can collapse with a
probability 1 − π in each period. Whenever the bubble collapses, it falls to δ and the
process starts again. For the sake of comparison, we use the parameter specifications of
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the Evans-bubble process adopted by Al-Anaswah and Wilfling (2011) (see Panel A of
Table 2).

We simulate expected returns and expected dividend growth rates according to equations
(4) and (5) respectively. We use equations (6) and (11) to generate the dividend growth
rate and the fundamental price-dividend ratio series. We generate the bubble stock price-
dividend ratio by adding the logarithm of the Evans-bubble (31) to the fundamental
price-dividend ratio:

pdt = pdft + log(Bt). (32)

Figure 1 shows a realization for the log-price-dividend ratio and the log-Evans-bubble.

Figure 1: Artificial dataset 1

Finally, the time series of returns is built from the series of the dividend growth rate and
the price-dividend ratio using approximation (2). In Panel B of Table 2 we present the
parameters used for generating the time-series of our state space model. We generate five
artificial datasets with either 100 or 200 observations, for space constraint we report only
the results for the biggest datasets of 200 observations.

5.2 Real-World Datasets

In line with the literature, we use monthly data on the price index (PI), the dividend
yield (DY) and the market value (MV) for the Datastream country indices for: United
States (US), United Kingdom (UK), Malaysia (MY), Japan (JP), and Brazil (BR).9 We
consider data from November 1997 to October 2017, a total of 20 years of monthly data.
All the data are sourced from Datastream (see Appendix A for further details on the data
used).

9Datastream country indices include a representative list of stocks for each country. The sample covers
a minimum of 75 - 80% of total market capitalisation. Suitability for inclusion is determined by market
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Table 3: Descriptive Statistics of the Log-Price-Dividend ratio
United States United Kingdom Malaysia Japan Brazil

Panel A: Summary statistics
Mean 6.5562 6.5585 5.0764 6.6452 4.2627
Std 0.3225 0.2980 0.4924 0.4847 0.8850
Range 1.9831 1.6619 2.8625 2.4947 3.4539
Num.obs. 240 240 240 240 240

Panel B: Correlation matrix
US 1.0000
UK 0.7563 1.0000
MY 0.3726 0.4361 1.0000
JP 0.5911 0.5195 -0.1743 1.0000
BR -0.0257 0.3348 0.5490 -0.3843 1.0000

This table presents summary statistics and correlations for the price-dividend ratio (in log) of the United States, United
Kingdom, Malaysia, Japan and Brazil.

Table 3 reports some descriptive statistics for the log-price-dividend ratio of the country
indices. The US, the UK and Japan have an average log-price-dividend ratio of about
6.50, while the average for Malaysia is 5.08 and 4.26 for Brazil, with the latter being more
volatile. The correlations among the developed countries (US, UK and Japan) are quite
high, and they range from 0.75 between the US and the UK, to 0.52 between Japan and the
UK. The price-dividend ratio of Malaysia is positively correlated with the other countries
with the exception for Japan where the correlation is negative. The price-dividend ratio
of Brazil is negatively correlated to Japan and it shows almost no correlation with the
US.

Figure 2: Price-dividend ratio by country

Figure 2 shows the time series plot of the price-dividend ratio for the five country indices.
The series for Japan hits a maximum in year 2000, then it decreases and it maintains levels
comparable to those of the US and the UK. The price-dividend ratio for Malaysia and
Brazil is lower compared to those of the other economies, and they are highly correlated.

value and availability of data.
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We can observe that all the countries have experienced a sharp drop in the price-dividend
ratio in 2008 in correspondence with the Global Financial Crises.

6 Results

We estimate the present-value model in equations (16) to (18) using the MCMC method
described in Section 4. We run a total of 1,000,000 iterations, and discard the first 100,000
as burn-in. To improve the efficiency of the sampler, we perform thinning every 100
draws.10 Using the sample of the posterior draws, we report the sample means as point
estimates. 95% credible intervals are constructed using the 2.50% and 97.50% sample
quantiles.

The parameter ρ is the main variable of interest, indeed 1/ρ is the autoregressive pa-
rameter of the bubble process. A value of ρ less than one implies that the bubble
is explosive, while a value greater than one means that the bubble process is stable.
p11 = P (St = 1|St−1 = 1) and p22 = P (St = 2|St−1 = 2) are the transition probabilities
of the two-regime Markov process. If p11 > p22, then the bubble surviving regime is more
persistent than the bubble collapsing regime.

Table 4 reports the posterior estimates of the parameters for our state space model for the
artificial datasets. The main variables are presented in bold characters. Table 5 shows
the bubble 95% credible intervals for the parameters ρ1 and ρ2, we can observe that the
two parameters are statistically significant and significantly different from each other.
In particular, ρ1 is significantly less than one, while ρ2 is significantly greater than one,
meaning that we correctly find significant regime-switch in our artificial datasets. More-
over, in Regime 1 the bubble is explosive while in Regime 2 it collapses. The transition
probability p11 is always greater than p22, suggesting that the surviving bubble regime is
more persistent than the collapsing bubble regime.

Table 6 reports the posterior estimates of the real-world datasets, while Table 7 shows the
95% credible intervals for the autoregressive bubble parameter ρ. Again, we observe ρ to
be significantly different in the two regimes for all the real-world datasets except Malaysia.
Moreover, we find that ρ1 is not significantly greater than one and ρ2 is significantly
greater than one at the 5%-level for the US, the UK, Japan and Brazil. Instead, in
Malaysia ρ1 does not appear to be significantly smaller than 1 at 5%-level, meaning that
we do not find statistical significance of an explosive behaviour of the bubble process in
this country. Consistent with Al-Anaswah and Wilfling (2011), and Lammerding et al.
(2013), we find that the transition probability p11 is always greater than p22, meaning

10Appendix B discusses the efficiency of the Metropolis-within-Gibbs sampler.
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Table 4: Parameter estimates - Artificial datasets
Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Regimes 1 2 1 2 1 2 1 2 1 2

γ0 0.0469 0.0360 0.0027 0.0039 0.0027 0.0021 0.0305 0.0567 0.0566 0.0454
δ0 -0.0272 -0.0159 0.0169 0.0180 0.0175 0.0178 -0.0112 -0.0369 -0.0368 -0.0258
ρ 0.7673 1.3224 0.7619 1.3132 0.7920 1.3296 0.7865 1.2557 0.7716 1.3216
γ1 0.5793 0.4947 0.5772 0.5249 0.6058 0.5075 0.6062 0.4943 0.5909 0.4868
δ1 0.8014 0.8552 0.7811 0.8025 0.7546 0.8583 0.8055 0.8316 0.7960 0.8491
p11, p22 0.8972 0.6750 0.8779 0.6903 0.9170 0.7179 0.9095 0.6784 0.8960 0.6341
σ2
g 0.0012 0.0019 0.0012 0.0016 0.0014 0.0025 0.0013 0.0020 0.0012 0.0018
σ2
µ 0.0017 0.0032 0.0014 0.0037 0.0026 0.0036 0.0015 0.0028 0.0015 0.0030
σ2
d 0.0039 0.0067 0.0031 0.0073 0.0043 0.0061 0.0043 0.0159 0.0063 0.0101
σ2
b 0.0115 0.8209 0.0069 0.1200 0.0084 0.0348 0.0090 0.5212 0.0106 0.7752
σgµ -0.0001 -0.0001 -0.0002 0.0000 -0.0002 -0.0001 -0.0001 0.0000 -0.0001 -0.0001
σgd 0.0005 0.0006 0.0004 0.0006 0.0006 0.0006 0.0005 0.0006 0.0005 0.0008
σµd -0.0003 -0.0002 -0.0001 -0.0003 -0.0000 -0.0001 0.0000 -0.0001 -0.0001 -0.0004
σ2
e 0.0018 0.0014 0.0009 0.0012 0.0010 0.0018 0.0014 0.0042 0.0016 0.0026

We present the estimation results of the present-value model in equations (16) to (18) for the five artificial datasets. The
model is estimated according to the procedure described in Section 4. Note that 1/ρ is the autoregressive parameter of
the bubble process. When ρ is less than one the bubble is explosive, when it is greater than one the bubble is stable.
p11 = P (St = 1|St−1 = 1) and p22 = P (St = 2|St−1 = 2) are the transition probabilities of the two-regime Markov-
switching model.

Table 5: 95% credible intervals - Artificial datasets
Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

ρ1 0.6966 0.8274 0.6710 0.8478 0.6776 0.9310 0.6761 0.8936 0.6979 0.8468
ρ2 1.2157 1.4234 1.1453 1.4439 1.1516 1.4618 1.0544 1.4300 1.2249 1.4331

We present the 95% credible intervals for the bubble parameter ρ in Regime 1 (ρ1) and Regime 2 (ρ2). The 95% credible
intervals consists of the 2.50% and 97.50% quantiles of the posterior distribution of ρ1 and ρ2.

that the surviving bubble regime is more persistent than the collapsing bubble regime in
all the real-world datasets. In particular, the probability of remaining in Regime 1 (p11)
is higher than 99% in the US, the UK and Japan, while in Malaysia it is 98.40% and it
equals 97.23% in Brazil. The estimates of the transition probability p22, instead, vary
between 80.29% (Brazil) and 92.89% (Japan). These results also imply that the expected
duration of the surviving regime 1/(1 − p11) is higher than the expected duration of the
collapsing regime 1/(1− p22). Concerning the remaining model parameters, we find that
they are not significantly different across the two regimes. The unconditional expected
log dividend growth rate (γ0) and the unconditional expected log return (δ0) are not
significantly different from zero. Consistently with Fama and French (1988), Campbell
and Cochrane (1999), Ferson et al. (2003), Pástor and Stambaugh (2009), Binsbergen and
Koijen (2010) and others, we find expected returns to be highly persistent with a monthly
persistence coefficient (δ1) of above 0.75 for all the datasets. The estimated persistence
of expected dividend growth rates (γ1) instead is generally lower, it ranges between 0.49
and 0.56. Furthermore, shocks to expected dividend growth rates and expected returns
are generally positively correlated.

We next examine the identification of speculative bubbles, the prediction of returns and
dividend growth rates, and the variance decomposition of the price-dividend ratio and
unexpected returns in Sections 6.1, 6.2, and 6.3, respectively.
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Table 6: Parameter estimates - Real-world datasets
United States United Kingdom Malaysia Japan Brazil

Regimes 1 2 1 2 1 2 1 2 1 2

γ0 0.0025 0.0007 0.0031 0.0021 0.0011 -0.0000 0.0007 -0.0003 0.0032 0.0018
δ0 0.0167 0.0193 0.0161 0.0192 0.0192 0.0195 0.0188 0.0195 0.0170 0.0182
ρ 0.9331 1.2458 0.9236 1.2385 0.9990 1.2487 0.9407 1.2503 0.8732 1.2182
γ1 0.5661 0.4911 0.5573 0.4921 0.5536 0.5133 0.5650 0.5007 0.5382 0.5065
δ1 0.7723 0.7870 0.7527 0.7761 0.8649 0.7926 0.7949 0.7989 0.8331 0.7485
p11, p22 0.9915 0.9159 0.9905 0.9061 0.9840 0.8777 0.9948 0.9289 0.9723 0.8029
σ2
g 0.0004 0.0069 0.0004 0.0059 0.0004 0.0025 0.0004 0.0085 0.0006 0.0024
σ2
µ 0.0004 0.0072 0.0004 0.0067 0.0004 0.0034 0.0004 0.0098 0.0006 0.0037
σ2
d 0.0030 0.0115 0.0031 0.0173 0.0044 0.0391 0.0040 0.0117 0.0067 0.1130
σ2
b 0.0035 0.0106 0.0039 0.0116 0.0047 0.0314 0.0047 0.0103 0.0081 0.0162
σgµ 0.0001 -0.0000 0.0002 -0.0005 0.0001 -0.0001 0.0001 0.0005 0.0002 0.0002
σgd 0.0001 -0.0000 0.0000 -0.0004 0.0000 -0.0004 0.0000 -0.0002 0.0000 -0.0001
σµd 0.0002 -0.0000 0.0002 0.0005 0.0001 0.0002 0.0002 -0.0013 0.0003 0.0007
σ2
e 0.0009 0.0011 0.0009 0.0012 0.0012 0.0019 0.0012 0.0010 0.0056 0.0958

We present the estimation results of the present-value model in equations (16) to (18) for the five real-world datasets.
The model is estimated according to the procedure described in Section 4. Note that 1/ρ is the autoregressive parameter
of the bubble process. When ρ is less than one the bubble is explosive, when it is greater than one the bubble is stable.
p11 = P (St = 1|St−1 = 1) and p22 = P (St = 2|St−1 = 2) are the transition probabilities of the two-regime Markov-
switching model.

Table 7: 95% credible intervals - Real-world datasets
United States United Kingdom Malaysia Japan Brazil

ρ1 0.8254 0.9977 0.8199 0.9918 0.7881 1.2441 0.8591 0.9999 0.7756 0.9960
ρ2 1.1096 1.3766 1.1010 1.3746 1.0930 1.4092 1.1456 1.3571 1.0323 1.3682

We present the 95% credible intervals for the bubble parameter ρ in Regime 1 (ρ1) and Regime 2 (ρ2). The 95% credible
intervals consists of the 2.50% and 97.50% quantiles of the posterior distribution of ρ1 and ρ2.

6.1 Bubble Identification

In this section, we analyze the smoothed surviving-probabilities P (St = 1|ΨT ) that the
bubble process has been in Regime 1 at time t, (t = 1, ..., T ), in order to distinguish
between dates on which either the surviving bubble Regime 1 or the collapsing bubble
Regime 2 has been in force. The business-cycle literature generally suggests using the
following decision rule: Regime 1 has been in force if P (St = 1|ΨT ) >0.50, while Regime
2 has been in force if P (St = 1|ΨT ) ≤ 0.50 (see for instance Goodwin, 1993). However,
we expect the bubble process to be in the surviving Regime 1 most of the time, and in
the collapsing Regime 2 only for few short periods. This intuition is confirmed by our
results which show that the expected duration of the surviving Regime 1 is higher than
the expected duration of the collapsing Regime 2, moreover it is confirmed by the findings
of Al-Anaswah and Wilfling (2011), and Lammerding et al. (2013). Hence, the threshold
value of 0.50 may fail to correctly identify regime switch dates. We follow Al-Anaswah
and Wilfling (2011) who suggest to take into consideration the first two moments of
P (St = 1|ΨT ). They adopt the threshold value m− 2sd, where m and sd are respectively
the sample mean and sample standard deviation of {P (St = 1|ΨT )}(t=1,...,T ).
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Figure 3: Smoothed Surviving-probabilities and Log-price-dividend - Artificial datasets 1
to 4
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Figure 4: Smoothed Surviving-probabilities and Log-price-dividend - Artificial dataset 5

Figures 3 and 4 display the time series of the smoothed surviving-probabilities and the
log-price-dividend for the artificial datasets, shaded areas denote bubble collapsing regime
dates. Figure 3 refers to the artificial datasets 1 to 4. For datasets 1 and 2 our procedure
is able to identify eleven out of twelve bubbles. In dataset 3 (third panel Figure 3) we
identify twelve out of fourteen bubbles. The bottom panel of Figure 3 refers to dataset
4, in this case all the bubbles are detected correctly, and in dataset 5 (Figure 4) we can
identify twelve out of thirteen bubbles.

Summing up, as can be seen from the figures above, our methodology correctly identifies
57 out of 62 (92.27%) of all the bubble collapsing dates in the five artificial datasets. We
also observe that our procedure may fail to recognize bubbles of smaller size, in particular
we may fail to identify those bubbles which emerge after a bubble of a bigger size. Further,
our procedure never signals a bubble which has no counterpart in the price process.

We now turn our attention to the results for the real-world datasets. Figure 5 graphs the
smoothed surviving-probabilities and the log-price-dividend ratio for the US. We identify
only one collapsing period from October 2008, that is after the collapse of the investment
bank Lehman Brothers, until May 2009. The smoothed surviving-probabilities slightly
decrease in two episodes at the beginning of the series and again after the 2008 collapse,
however the decrease is not sharp enough to be signaled as a bubble collapse. Consistent
with Balke and Wohar (2009), we cannot say that the decline in stock prices in the 2000s
has been caused by a bubble bursting. Similar comments apply to the United Kingdom
(Figure 6) for which the series of the price-dividend ratio is strongly correlated with that
of the US.
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Figure 5: Smoothed Surviving-probabilities and Log-price-dividend - United States

Figure 6: Smoothed Surviving-probabilities and Log-price-dividend - United Kingdom

Figure 7: Smoothed Surviving-probabilities and Log-price-dividend - Malaysia
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Figure 8: Smoothed Surviving-probabilities and Log-price-dividend - Japan

Figure 9: Smoothed Surviving-probabilities and Log-price-dividend - Brazil

For Malaysia (Figure 7), we observe three clusters of smoothed probabilities indicating
collapsing regimes. The first lasts from November 1997 until December 1998, the second
from May 1999 until October 1999, and the third is in January 2000 which reflect the
Asian financial crisis. By end of 1997, Malaysian ratings fell from investment grade to
junk. In January 1998, the Malaysian currency (the ringgit) had already lost 50% of its
value to the US dollar. The economy started to recover in 1999.

Japan (Figure 8) was affected less significantly by the Asian financial crises. The smoothed
surviving-probabilities signal collapsing regimes in November 1997 and April 1999. Fur-
ther, like the US and the United Kingdom, Japan experiences a collapse from October to
November 2008 in correspondence of the 2008 global financial crises.

Figure 9 display the results for Brazil. The smoothed probabilities exhibit some clusters
signaling a collapsing regime from November 1997 until April 1998, from July 1998 until
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September 1998, and from December 1999 until January 2000. These episodes reflect the
Brazilian stock-market and currency crisis which culminated in a sharp devaluation of the
Brazilian currency (the real) to the US dollar in 1999. The effect was caused by the 1997
Asian financial crisis which led Brazil to increase interest rates and to institute spending
cuts and tax increases in an attempt to maintain the value of its currency. The devaluation
also precipitated fears that the ongoing economic crisis in Asia would spread to South
America, as many South American countries were heavily dependent on industrial exports
from Brazil. We register also a drop in the smoothed surviving-probabilities in May 2001
in correspondence of the Brazil energy crises, and in November 2008, one month after the
US, the United Kingdom and Japan collapse for the 2008 global financial crises. However,
we do not detect a collapsing regime associated with the 2014 Brazilian economic crises.

6.2 Prediction of Returns and Dividend Growth Rates

We now investigate the in-sample predictability of our state space model. We use the
estimated series of expected dividend growth rates (ˆ̂gt) and expected returns ( ˆ̂µt) as if
they were observables and we regress them on realized dividend growth rates and realized
returns.

∆dt+1 = αd + βd ˆ̂gt + εd∗t+1,

rt+1 = αr + βr ˆ̂µt + εr∗t+1.
(33)

Table 8 shows the results for the artificial datasets, for dividend growth rates the R2

ranges from 74.07% to 78.89% while for returns it is between 4.04% and 20.71%.

Table 8: Regression results - Artificial datasets
Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

∆dt+1 rt+1 ∆dt+1 rt+1 ∆dt+1 rt+1 ∆dt+1 rt+1 ∆dt+1 rt+1

Constant 0.0473∗∗ -0.1948∗∗ -0.001 0.1415∗∗ 0.0021 0.1148∗∗ 0.0381∗∗ 0.0777∗∗ 0.0586∗∗ -
0.0571

(0.0027) (0.0612) (0.0029) (0.0221) (0.0031) (0.0179) (0.0028) (0.0303) (0.0031) (0.0464)
ˆ̂gt 2.0699∗∗ 2.0522∗∗ 1.8021∗∗ 1.8918∗∗ 2.0773∗∗

(0.0785) (0.0763) (0.0686) (0.0695) (0.0873)
ˆ̂µt 6.8698∗∗ 6.5605∗∗ 3.6952∗∗ 3.5828∗∗ 4.4319∗∗

(1.5246) (0.9837) (0.5139) (1.1197) (1.5355)

R2 0.7783 0.093 0.7853 0.1834 0.7771 0.2071 0.7889 0.0492 0.7407 0.0404
Adj.R2 0.7772 0.0884 0.7842 0.1793 0.776 0.2031 0.7879 0.0444 0.7394 0.0355

We report regression results for respectively dividend growth rates and returns on their estimated expected values repre-
sented by ˆ̂gt and ˆ̂µt. Standard errors are reported in parenthesis. Note:∗∗p ≤ 0.05, ∗p ≤ 0.1.
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Figure 10: Realized and Expected series - Artificial datasets 1 to 3.
The solid lines represent the realized time series of dividend growth rates (left) and returns
(right), while the dashed lines represent the estimated series of expected dividend growth
rates (left) and expected returns (right).
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Figure 11: Realized and Expected series - Artificial datasets 4 to 5.
The solid lines represent the realized time series of dividend growth rates (left) and returns
(right), while the dashed lines represent the estimated series of expected dividend growth
rates (left) and expected returns (right).

Expected dividend growth rates explains a large fraction of actual dividend growth, while
the fraction of explained return variability is lower. Also, given that the goodness-of-fit
measures of returns vary substantially in the five datasets, we argue that the return pre-
dictability features of this model are less robust with respect to the dividend predictability
features.

Figures 10, and 11 plot the realized and estimated expected dividend growth rates on the
left, and the realized and estimated expected returns on the right for the five artificial
datasets. The realized and expected dividend growth series are strongly correlated, how-
ever the latter series is more stable. Concerning returns, their expectation is less volatile
than the series of realized returns. Further, the correlation between realized and expected
returns is lower than that for dividend growth rates.
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Table 9: Regression results - Real-world datasets
United States United Kingdom Malaysia Japan Brazil

∆dt+1 rt+1 ∆dt+1 rt+1 ∆dt+1 rt+1 ∆dt+1 rt+1 ∆dt+1 rt+1

Constant 0.0041∗∗ 0.0062∗∗ 0.0069∗∗ 0.0032 0.0021 0.0099∗ 0.0004 0.0026 0.0136∗∗ 0.024∗∗
(0.0017) (0.0031) (0.002) (0.0033) (0.0033) (0.0052) (0.002) (0.0034) (0.0057) (0.0066)

ˆ̂gt 3.8308∗∗ 3.9518∗∗ 4.9302∗∗ 4.4305∗∗ 6.4918∗∗
(0.1606) (0.1851) (0.2481) (0.1896) (0.4284)

ˆ̂µt 0.2511 0.2636 -0.0834 0.0901 0.5914∗∗
(0.1722) (0.1784) (0.3721) (0.1468) (0.2136)

R2 0.7049 0.0089 0.6569 0.0091 0.6239 0.0002 0.6964 0.0016 0.4910 0.0312
Adj.R2 0.7037 0.0047 0.6554 0.0049 0.6223 -0.004 0.6951 -0.0026 0.4889 0.0271

We report regression results for respectively dividend growth rates and returns on their estimated expected values repre-
sented by ˆ̂gt and ˆ̂µt. Standard errors are reported in parenthesis. Note:∗∗p ≤ 0.05, ∗p ≤ 0.1.

Table 9 reports the results for the real-world datasets. The R2 values for dividend growth
rates are quite high in all the datasets, the highest value is recorded for the US where
it is equal to 70.49% while the lowest value is registered for Brazil where it is equal to
49.10%.11 Instead, the coefficient βr in the regressions for returns is significant only for
Brazil and the goodness-of-fit measure is equal to 3.12%. In the other countries the R2

values for returns are less than 1% meaning that the estimated series of expected returns
( ˆ̂µt) do not help in predicting stock returns.

Visual inspection of Figures 12–16 confirms what we have observed in the regression
results.

Figure 12: Realized and Expected series - United States
The solid lines represent the realized time series of dividend growth rates (left) and returns
(right), while the dashed lines represent the estimated series of expected dividend growth
rates (left) and expected returns (right).

11Since the dividend growth predictability we find may be driven by the seasonality in dividend pay-
ments, we apply a stable seasonal filter to estimate the seasonal component in the series of dividend
growth rates and expected dividend growth rates. Then we estimate the regression equation using the
deseasonalized series. The dividend growth predictability is confirmed and the results are available upon
request.
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Figure 13: Realized and Expected series - United Kingdom

Figure 14: Realized and Expected series - Malaysia

Figure 15: Realized and Expected series - Japan
The solid lines represent the realized time series of dividend growth rates (left) and returns
(right), while the dashed lines represent the estimated series of expected dividend growth
rates (left) and expected returns (right).
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Figure 16: Realized and Expected series - Brazil
The solid lines represent the realized time series of dividend growth rates (left) and returns
(right), while the dashed lines represent the estimated series of expected dividend growth
rates (left) and expected returns (right).

6.3 Variance Decomposition

In this section we derive the variance decomposition of both the price-dividend ratio and
unexpected returns. The variance decomposition of the price-dividend ratio is given by

V ar(pdt) = B2
2V ar(gt) +B2

1V ar(µt) + V ar(bt)− 2B1B2Cov(gtµt)− 2B1Cov(btµt)+

2B2Cov(gtbt).

(34)

The first term, B2
2V ar(gt), represents the variation in the price-dividend ratio due to

expected dividend growth rate variation. The second term, B2
1V ar(µt), measures the

variation in the price-dividend ratio due to expected return variation. The third term,
V ar(bt), accounts for the variation in the price-dividend ratio due to bubble variation.
The remaining terms represent the covariation among these three components. The un-
expected returns can be written as

rt+1 − µt = ρB2ε
g
t+1 − ρB1ε

µ
t+1 + ρεbt+1 + εdt+1. (35)

As before, we decompose the unexpected return variation into the influence of dividend
growth variation, discount rate variation, bubble variation and the covariance among these
terms.

Table 10 summarizes the results for the variance decomposition of the price dividend
ratio and unexpected returns for the real-world datasets. We use sample covariances
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Table 10: Variance decomposition - Real-world datasets
United States United Kingdom Malaysia Japan Brazil

Regimes 1 2 1 2 1 2 1 2 1 2

Panel A: Price-dividend ratio

Discount rate
7.5399

96.2946 7.8771 88.2220 45.2701 84.2113 10.7564 99.9907 18.2560 50.4675

Div. growth 0.8436 0.4624 1.0325 0.9127 2.6420 1.0683 0.5748 0.0028 0.8314 2.3222
Bubble 63.4978 0.8138 52.7685 3.2424 56.4073 10.1861 51.2994 0.0064 35.9414 27.2425
Covariances 28.1188 2.4292 38.3219 7.6229 -4.3193 4.5343 37.3695 0.0002 44.9711 19.9677

Panel B: Unexpected returns

Discount rate 124.1429 100.6786 82.1027 121.5784 80.4225 93.3425 111.9314 99.9597 79.6270 234.0628
Div. growth 171.6528 0.7922 150.0561 12.2131 267.8176 4.5416 160.3030 0.0015 201.7372 424.8113
Bubble 94.6137 0.4122 92.0662 1.2156 103.1748 1.8223 95.5578 0.0016 58.0041 13.6928
Covariances −290.4094−1.8830 −224.2250−35.0071 −351.41480.2935 −267.79220.0372 −239.3683−572.5669

We report the decomposition of the price-dividend variation and the unexpected returns variation into discount rate
variation, dividend growth variation, bubble variation and the covariances among these three terms.

and we standardize all terms so that the sum is equal to 100%. We find that in the
surviving bubble regime, most of the variation in price-dividend ratio is related to the
bubble variation. Specifically, bubble variation accounts for more than 50% of the price-
dividend variation in all the countries under study with the exception of Brazil where it
accounts for about 36%. Instead, consistent with Binsbergen and Koijen (2010), in the
collapsing bubble regime discount rate variation accounts for most of the variation in the
price-dividend ratio. Again, consistent with Binsbergen and Koijen (2010) we document
that dividend growth plays a major role in explaining unexpected returns variation in the
surviving bubble regime, while discount rate variation accounts most of the variation in
unexpected returns in the collapsing bubble regime with the exception for Brazil. Also,
bubble variation explains a large share of unexpected return variation in the surviving
bubble regime. These results are consistent with Balke and Wohar (2009) which find that
the bubble component is substantially important in explaining fluctuations in the log
price-dividend ratio when there are no permanent components in market fundamentals.

7 Conclusions

We have shown that in the surviving bubble regime, most of the variation in the price-
dividend ratio is related to the bubble variation. Specifically, bubble variation accounts
for more than 50% of the price-dividend variation in all the countries under study with the
exception of Brazil where it accounts for about 36%. Further, bubble variation explains
also a large share of unexpected return variation in the surviving bubble regime.

These results suggest that present-value models should not ignore the bubble component
of stock prices. This paper proposes to incorporate a speculative bubble subject to a
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surviving and a collapsing regime into the present-value model by Binsbergen and Koijen
(2010), who adopts a latent variables approach to estimate expected returns and expected
dividend growth rates. Further, we suggest an econometrically robust Bayesian MCMC
methodology to estimate our model.

This study applies our two-regime Markov-switching state space model to artificial as well
as real-world datasets. The artificial bubble processes are defined in the sense of Evans
(1991), we show that our bubble-detection methodology is able to identify 92.27% of all
the bubble collapsing dates in the artificial datasets, moreover it never signals a bubble
which has no counterpart in the price process. These results represent an improvement
with respect to the approach discussed in Al-Anaswah and Wilfling (2011) which correctly
identifies around 50% of all the bubble episodes. The real-world datasets consist of the
monthly time series data for the price index, the dividend yield and the market value
for the United States, United Kingdom, Malaysia, Japan and Brazil. We find that our
framework is able to identify most of the bubble periods classified as such by Kindleberger
and Aliber (2003).

In line with Al-Anaswah and Wilfling (2011) and Lammerding et al. (2013), we document
the existence of statistically significant Markov-switching in the data-generating process
of real-world stock price bubbles. Furthermore, our methodology is also able to predict
dividend growth rates as well as returns with R2 values ranging from 74.07% to 78.89%
for dividend growth rates and 4.04% and 20.71% for returns in the artificial datasets. In
the real-world datasets, we find that dividend growth rates are predictable with R2 values
ranging from 70.49% for the US to 49.10% for Brazil. However, the R2 values for returns
are less than 1% with the exception of Brazil where it is above 3%.

A common drawback of the bubble literature is that rejection of the present-value model
that are interpreted as evidence of the presence of bubbles can still be explained by alter-
native structures of the fundamentals. In this paper we mitigate this issue in two ways.
First, we restrict our analysis to rational bubbles which impose fairly strong restrictions
on the dynamics of the bubble component. Hence these restrictions can help us to identify
the non-fundamental component in the data. Second, we use a less restrictive fundamen-
tals model, indeed our econometric procedure allows us to analyse a more complex model
with time-varying discount rates and regime-switching in fundamentals and the bubble.
Doing so, we allow the fundamentals part to fit better the data, leaving less room for a
bubble.

In sum, our setup allows to model jointly expected dividend growth rates, expected returns
and the bubble component of stock prices. As such it may improve conventional methods
for the detection of real-time stock-price bubbles allowing an early detection of future
bubbles. Moreover, this methodology allows for hypothesis testing of some features of
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expected dividend growth rates and expected returns such as their persistence.
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A Datastream Data

Datastream country indices include a representative list of stocks for each country. The
sample covers a minimum of 75 - 80% of total market capitalisation. Suitability for
inclusion is determined by market value and availability of data. The aggregate price
index (PI), dividend yield (DY), and market value (MV) for each country index are
calculated as follows:

PIt =PIt−1 ∗
∑M

i=1 Pi,tNi,t∑M
i=1 Pi,t−1Ni,tf

, PI0 = 100,

DYt =

∑M
i=1 Di,tNi,t∑M
i=1 Pi,tNi,t

∗ 100,

MVt =
M∑
i=1

Pi,tNi,t,

(36)

where Pi,t is the unadjusted price of asset i in month t, Nt is the number of shares in issue
on month t, f adjustment factor for capital actions, Di,t is dividend per share of asset i
in month t, and M is the number of constituents in index. We use the above variables to
compute the log price-dividend ratio (pdt), dividend growth rate (∆dt) and returns (rt).

Table 11: Datastream Country Indices
Country Time span

United States February 1973 - October 2017
United Kingdom January 1965 - October 2017
Malaysia February 1986 - October 2017
Japan January 1973 - October 2017
Brazil August 1994 - October 2017

This Table reports the time span of the country indices available on Datastream.
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B Efficiency of the Metropolis-within-Gibbs Sampler

Since the Metropolis-within-Gibbs sampler used to simulate from the joint posterior dis-
tribution may produce parameter draws that are highly autocorrelated, in Table 12 we
report the average autocorrelation of the ith parameter draw with the (i + 1)th draw,
(i + 10)th draw, and (i + 100)th draw. To further assess the efficiency of the sampler,
in the last two columns we report the average inefficiency factors of the posterior draws
which are defined as follow

1 + 2
L∑
l=1

Corr(θi, θi+l), (37)

where Corr(θi, θi+l) is the sample autocorrelation of parameter θ at lag length l, L is
the maximum lag and it is chosen to be large enough so that the autocorrelation tapers
off. The inefficiency factor measures the number of extra draws needed to obtain results
equivalent to the ideal case of independent draws. Consider for example an inefficiency
factor of 50, this means that around 5000 posterior draws are needed to have the same
information of 100 independent draws. The inefficiency factor of independent draws is
one.

From Table 12 we can observe that some of the parameters show high autocorrelations,
with large inefficiency factors as well. The maximum inefficiency factor is reported for
the parameter δ1 in regime 2 and it is equal to 1160.8113.

Table 12: Autocorrelation of Posterior Draws - No Thinning
i+ 1 i+ 10 i+ 100 Inefficiency Factors

Regimes 1 2 1 2 1 2 1 2

γ0 0.3319 0.2981 0.1597 0.1507 0.0969 0.0882 339.8204 281.9305
δ0 0.3341 0.3010 0.1634 0.1532 0.0983 0.0889 373.7996 300.7588
ρ 0.9331 0.9451 0.5648 0.6362 0.0992 0.1366 329.7122 649.0314
γ1 0.7376 0.7431 0.0875 0.1381 0.0208 0.0301 20.0032 19.4034
δ1 0.8884 0.9740 0.4278 0.8062 0.1347 0.3214 357.6982 1160.8113
σ2
g 0.0782 0.0398 0.0034 0.0087 0.0005 0.0021 1.1804 1.0529
σ2
µ 0.5578 0.0975 0.2621 0.0194 0.0160 0.0027 18.5462 1.4797
σ2
d 0.5842 0.1167 0.2849 0.0500 0.1949 0.0293 832.6511 32.4101
σ2
b 0.8850 0.7013 0.3447 0.2434 0.0037 0.0191 19.5314 18.1775
σgµ 0.0570 0.0297 0.0006 0.0008 -0.0002 0.0005 1.0668 1.0275
σgd 0.0784 0.0375 0.0008 0.0017 0.0004 -0.0005 1.1569 1.0532
σµd 0.2826 0.0592 0.0263 0.0079 0.0024 0.0021 2.6347 1.1085
σ2
e 0.9284 0.8122 0.5055 0.3544 0.0344 0.0388 38.8663 37.3296

We present the average autocorrelation of the posterior draws of the model in equations (16) to (18) for the artificial
datasets. The model is estimated according to the procedure described in Section 4. The last two columns report the
inefficiency factors.

To improve the efficiency of the sampler we perform thinning of the posterior draws and
keep only every 100th draws. Table 13 reports the average autocorrelation of the posterior
draws and the inefficiency factors after performing thinning of the draws. We can see that
thinning significantly reduce the inefficiency factors.
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Table 13: Autocorrelation of Posterior Draws - Thinning every 100 draws
i+ 1 i+ 10 i+ 100 Inefficiency Factors

Regimes 1 2 1 2 1 2 1 2

γ0 0.0930 0.0946 0.0433 0.0385 0.0010 -0.0065 4.4284 3.7236
δ0 0.0945 0.1010 0.0488 0.0364 0.0102 0.0025 4.6193 3.7973
ρ 0.1024 0.1385 0.0412 0.0374 0.0020 0.0204 4.1054 6.6608
γ1 0.0219 0.0226 0.0063 0.0097 0.0024 -0.0140 1.1690 1.1190
δ1 0.1327 0.3178 0.0416 0.0577 0.0085 0.0282 4.3552 11.8271
σ2
g 0.0009 0.0012 -0.0068 0.0162 -0.0017 -0.0043 1.0000 1.0000
σ2
µ 0.0188 -0.0005 0.0023 0.0000 -0.0086 0.0003 1.0228 1.0000
σ2
d 0.1876 0.0396 0.0709 0.0157 0.0135 0.0001 9.2677 1.4590
σ2
b 0.0034 0.0202 0.0011 0.0097 0.0006 -0.0073 1.0000 1.0245
σgµ 0.0082 0.0009 0.0027 0.0045 0.0076 -0.0017 1.0000 1.0000
σgd 0.0120 0.0051 0.0027 -0.0071 0.0040 -0.0009 1.0000 1.0000
σµd 0.0012 0.0055 0.0055 -0.0062 -0.0047 -0.0028 1.0000 1.0000
σ2
e 0.0268 0.0364 -0.0117 0.0071 0.0094 0.0102 1.0794 1.1165

We present the average autocorrelation of the posterior draws with thinning every 100 draws of the model in equations
(16) to (18) for the artificial datasets. The model is estimated according to the procedure described in Section 4. The last
two columns report the inefficiency factors.
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