
A Solutions to the Theoretical Models

A.1 A present-value model for dividends and stock prices

The agent’s signal-extraction problem can be characterized as follows. First, define

 ≡ [, ]0,  ≡ [ ,  , 
 ]0,  ≡ [

   

 ]0,  ≡ [0, ]0, and

 ≡
⎡⎣ 1 0 1

0  0

0 0 0

⎤⎦  ≡
∙
1 1 0

0 0 1

¸0

 ≡
⎡⎣ 2 0 0

0 2 0

0 0 2

⎤⎦  ≡
∙
0 0

0 2

¸

equations (2)-(5) can be cast in state-space form as:

 =  0 +  (A.1)

 = −1 +  (A.2)

The estimate of the state vector conditional on information at time , |, together
with its estimated covariance matrix, | ≡ [( − |)(− |)

0|] can be obtained
via the following Kalman filtering recursions (see Hamilton (1994)):

| = −1|−1 +[ − 0−1|−1] (A.3)

| = −1|−1
0 +−

0(−1|−1
0 +) (A.4)

where  ≡ (−1|−1 0 +)[ 0(−1|−1 0 +) + ]−1 is the Kalman gain.
The steady-state value of the precision matrix | is obtained by iterating on (A.4)
starting from 0|0 = , thus also obtaining the steady-state value of the Kalman

gain, which, being time-invariant, in what follows will simply be referred to as .

Based on the steady-state Kalman gain, and defining ̃ ≡ (3 − 0) , where 3 is
the 3×3 identity matrix, the solution to the the signal-extraction problem is therefore
given by⎡⎣ |

|

|

⎤⎦
| {z }

≡|

=

⎡⎣ ̃11 ̃12 ̃13

̃21 ̃22 ̃23

0 0 0

⎤⎦
| {z }

≡̃

⎡⎣ −1|−1
−1|−1

−1|−1

⎤⎦
| {z }

≡−1|−1

+

⎡⎣ 11 0

21 0

0 32

⎤⎦
| {z }

≡

∙
 + 

 + 

¸
| {z }

≡

(A.5)
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A.2 A New Keynesian model

Consider the following standard forward-looking New Keynesian model:

 = +1| (A.6)

 = +1| +  (A.7)

 = +1| − −1[ − +1| −  ] (A.8)

where , , and  are the nominal interest rate, inflation, and the output gap,

respectively.  is the natural rate of interest which is postulated to evolve according

to a stationary stochastic process as follows:

 = ̃ +  (A.9)

̃ =  ̃

−1 + 

 + 
−1 (A.10)

where  ∼(0 2); ̃

 is the persistent component of the natural rate of interest,

with 0    1; and 
  

 , and  have the same interpretation, and the same

properties, as in sub-section 2.1.

Although at time  agents learn about  , its two individual components, ̃

 and

, are not observed. In each period, however, agents receive a signal, which is equal

to the sum of the news shock and of a noise component as in (5).

The agents’ signal-extraction problem can be characterized as follows. By defining

 ≡ [ , ]0,  ≡ [̃ , 
 ]0,  ≡ [

 , 
 ]0,  ≡ [, ]0, and

 ≡
∙
 1

0 0

¸
 ≡

∙
1 0

0 1

¸
 ≡

∙
2 0

0 2

¸
 ≡

∙
2 0

0 2

¸
equations (A.9), (A.10), and (5) can be cast in the state-space form (A.1)-(A.2). As

before, the solution to the signal-extraction problem can be obtained by applying

the Kalman filter recursions (A.3)-(A.4) to the state-space form (A.1)-(A.2), thus

obtaining the solution∙
̃|

|

¸
| {z }
≡|

=

∙
̃11 ̃12

0 0

¸
| {z }

≡̃

∙
̃−1|−1

−1|−1

¸
| {z }
≡−1|−1

+

∙
11 0

0 22

¸
| {z }

≡

∙
̃ + 

 + 

¸
| {z }

≡

 (A.11)

where  is still the steady-state Kalman gain at time , and ̃ ≡ (2 −) , where

2 is the 2×2 identity matrix.
To obtain the model’s solution, we first substitute (A.6) into (A.8) to obtain

 = +1| − −1[( − 1)+1| −  ] = (A.12)

= −−1[( − 1)+1| −  ] + +2| − −1[( − 1)+2| − +1|]

28



From (A.9)-(A.10) we have that +1| =  ̃

| + 

| , so that the previous equation
becomes

 = −−1[( − 1)+1|−  ] + +2| − −1[( − 1)+2| − ( ̃| + 
| )] (A.13)

From (A.7) we get  = −1[ − +1|], and substituting this into the previous
expression, we get the following expectational difference equation for inflation:

 − +1|[ − −1( − 1)]− +2|[1− −1( − 1)] + +3| =

= −1[ +  ̃

| + 

| ] (A.14)

Assuming that the condition for determinacy is satisfied (which, as it can easily be

checked, boils down to  being greater than 1), the solution can be found via the

method of undetermined coefficients. Postulating that inflation is a linear function

of the three states– , ̃

|, and 

| –that is,

 = 1

 + 1̃


| + 1


| (A.15)

the solution turns out to be equal to

 = −1 + −1
1 + Γ

1− Γ
̃| + −1

1 + Γ

1− Γ

| (A.16)

with the analogous solutions for  and  being

 = 
−1
µ
1 + 

1 + Γ

1− Γ

¶
̃| + 

−1
µ
1 + 

1 + Γ

1− Γ

¶

| (A.17)

 = −1 + 
−1
∙
(1+Γ)(1-)

1− Γ
-

¸
̃| + −1

∙
(1+Γ)(1-)

1− Γ
-

¸

| (A.18)

where

Γ ≡  − −1( − 1) +  [1− −1( − 1)]− 2 

This implies that ∙





¸
=0

=

∙




¸
=0

= −1
1 + Γ

1− Γ
22∙






¸
=0

=

∙




¸
=0

= 
−1
µ
1 + 

1 + Γ

1− Γ

¶
22∙






¸
=0

=

∙




¸
=0

= −1
∙
(1 + Γ) (1− )

1− Γ
− 

¸
22

Just as with the previous model, 
 and  produce, on impact, the same IRFs for

all of the model’s endogenous variables, whereas, by assumption, they do not impact

upon  (only the news shock impacts upon  with a one-period delay).
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Figure [??] in the online appendix shows IRFs to news and noise shocks for the

interest rate, inflation, and the output gap, conditional on a standard calibration

of the model’s structural parameters.21 Consistent with the previous discussion, for

each variable the impact at =0 of news and noise shocks is identical. Further, the

IRFs to news shocks lie above the corresponding IRFs to noise shocks, reflecting the

fact that, just as in the model with dividends and stock prices, agents progressively

learn whether a shock was news or noise. In the long run, the IRFs to news shocks

progressively converge to their perfect-information counterpart. This can be seen by

comparing the black lines and the blue lines in Figure [??], with the former showing

the IRFs to news shocks, and the latter representing instead the same IRFs for the

case of no noise shocks (i.e. based on the model calibrated as above, but with 2 = 0).

An implication of this is that separation between the two sets of IRFs will be faster

the smaller is the noise, whereas if the noise is substantial (i.e., 2 is comparatively

large), it will take more time for the agents to learn the truth.

B Econometric Methods

B.1 General Framework

The econometric methodology employed in this paper extends the approach of Barsky

and Sims (2011) to VARMA processes. A general approach to estimating structural

models in the VAR literature can be characterized as estimating a reduced-form VAR

and then recovering structural shocks from VAR residuals by applying constant or-

thogonal rotations to each time  realization of the VAR residuals. In the context

of VARMAs, this idea can be generalized to an approach that recovers structural

VARMA shocks from reduced-form VARMA residuals by applying dynamic orthogo-

nal rotations to combinations of past, present, and future realizations of the VARMA

residuals.

In particular, consider the -dimensional VARMA( ) process given by22

B()y = Θ̃()²̃ ²̃ ∼ N (0Σ) (B.1)

where B() = I−B1− · · ·−B
 and Θ̃() = I+ Θ̃1+ · · ·+ Θ̃

 are matrix

polynomials in the lag operator  that satisfy

detB() 6= 0 for all ||  1 det Θ̃() 6= 0 for all || ≤ 1

along with the restriction 1 ≤ rankΘ̃ ≤  − 1. Observe that the VARMA process
in (B.1) is fundamental, and as shown next, the structural VARMA( ) of interest

21Specifically, we set =0.99, =0.05, =1, =1.5, and =0.95.
22For clarity of exposition, we suppress all deterministic terms as they do not affect any of the

computations in this section. In practice, we include an intercept in all estimated models.
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can be derived as a basic non-fundamental representation of this process (see Lippi

and Reichlin (1994) for a precise definition and further discussion).

To see how the structural representation is obtained from (B.1), consider the

matrix polynomial:

C() =

⎛⎜⎜⎝
1 0 0 0

0 ̃√
1+̃2

 − 1√
1+̃2

 0

0 1√
1+̃2

̃√
1+̃2

0

0 0 0 I−3

⎞⎟⎟⎠ 

C(−1)0 =

⎛⎜⎜⎝
1 0 0 0

0 ̃√
1+̃2

−1 1√
1+̃2

0

0 − 1√
1+̃2

−1 ̃√
1+̃2

0

0 0 0 I−3

⎞⎟⎟⎠ 

where −1 is the forward operator, forms the inverse of C() in the sense that
C()C(−1)0 = I. Hence, C() is a Blaschke matrix with the well known property
that for any -dimensional orthogonal white noise u (i.e. with Var(u) = I), the

operation ũ = C(
−1)0u also yields an orthogonal white noise process ũ. It is con-

venient to view Blaschke matrices as dynamic generalizations of orthogonal matrices.

Consequently, let Θ0Θ
0
0 = Σ and define

A() = Θ̃()Θ0C()Γ

² = Γ0C(−1)0Θ−1
0 ²̃

for some orthogonal matrix matrix Γ satisfying ΓΓ0 = I. It can be seen that ² ∼
N (0 I) and the VARMA( )

B()y = A()² ² ∼ N (0 I) (B.2)

is observationally equivalent to (B.1).

To ensure that we recover the structural shocks of interest in ², it is necessary

to employ a suitable choice of Θ0 and Γ. To this end, suppose Θ0 is chosen such

that the second column of Θ = Θ̃Θ0 is zero, where such a Θ0 exists if and only if

rankΘ̃ ≤ − 1. Then multiplying

Θ̃()Θ0C() = Θ()C()

= (Θ0 +Θ1+ · · ·+Θ
)(C0 +C1)

= Θ0C0 + (Θ0C1 +Θ1C0)+ · · ·+ (Θ−1C1 +ΘC0)
 +ΘC1

+1

Note that since rankC0 = −1 and it has the third column proportional to the second
column (by a factor ̃), whileC1 only has non-zero entries in the second row, we obtain

ΘC1 = 0 and rank(Θ0C0) = − 1 with the third column of Θ0C0 proportional to

the second column (by a factor ̃). Moreover, rank(Θ−1C1 +ΘC0) = rankΘ + 1,
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except in the special case where the second column of Θ−1 is either zero or lies in
the column space of Θ (then, rank(Θ−1C1 +ΘC0) = rankΘ).

Consequently, the resulting VMA representation Ã() = Θ()C() is of the same

order  as Θ̃(), but is not fundamental since it contains exactly one root inside the

unit circle.23 However, it is related to the structural VMA representation of interest

by (constant) orthogonal rotations Γ, which are chosen to satisfy the identifying

restrictions in Section 3 in similar fashion to the VAR case.

Based on this, our approach to estimating the structural VARMA involves the

following steps:

1. Estimate the reduced-form, fundamental VARMA( ) in (B.1) subject to the

restriction 1 ≤ rankΘ̃ ≤  − 1. We note that a wide range of methods

exist to estimate fundamental VARMA systems, and in principle, any such

method can be employed here. We use Bayesian methods (described in detail

below) because they are particularly well suited for working with large systems

of the type we focus on in our applications (i.e. with  ≥ 8). Moreover,

Bayesian methods provide a convenient framework for imposing non-linear over-

identifying restrictions, such as the “dampening” restrictions that we analyze

in our empirical work.

It is worth emphasizing, however, that while in theory the VARMA specified in

(B.1) admits a VAR(∞) representation, it is not possible to estimate a truncated
VAR to implement this step because any truncation of the VAR would make

it incompatible with the rank restriction on Θ̃. In other words, a finite-order

VAR cannot be inverted to recover a VARMAwith 1 ≤ rankΘ̃ ≤ −1, which is
necessary to obtain the structural VARMA representation, as described above.

2. Decompose Θ0Θ
0
0 = Σ and set Θ = Θ̃Θ0 for  = 1      such that the 2nd

column of Θ = 0. One practical way to do this is to first set Θ̃0 to be the

Cholesky factor of Σ and then construct the orthogonal matrix Γ0 with:

• the second column Γ02 set to an × 1 vector in the null space of Θ̃Θ̃0,

normalized such that kΓ02k = 1, and
• and the remaining columns Γ01Γ03    Γ0 set to the  − 1 vectors
orthogonal to Γ02 and normalized such that kΓ0k = 1.

Consequently, setting Θ0 = Θ̃0Γ0 preserves the property Θ0Θ
0
0 = Σ while

ensuring that the second column of Θ = Θ̃Θ0 = Θ̃Θ̃0Γ0 is zero.

23As discussed in Section 4.3, we analyze all possible non-fundamental representations obtained

by “flipping” the roots of the determinant of the fundamental Θ̃() (Lippi and Reichlin (1994)).
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3. Arbitrarily set ̃ = 1 and compute some Ã0     Ã satisfying rankÃ0 = − 1
through linear transformations of Θ0    Θ, namely

Ã0 = Θ0C0

Ã = Θ−1C1 +ΘC0  = 1     

4. Obtain the structural A0    A that satisfy the identifying restrictions by

applying a series of (constant) orthogonal rotations to Ã0     Ã as in typical

VAR settings. For example, in our ‘Identification scheme I’ (outlined in Section

3 of the text and reproduced here for convenience), we assume  ≥ 4, 1 is
non-news, 2 is news, 3 is noise, and we follow Barsky and Sims (2011) in

imposing the restrictions:

(a) the non-news shock is identified as the reduced-form innovation to TFP,

such that it is the only shock affecting TFP on impact, i.e. the first row

in A0 has zero entries everywhere except the first element (011 6= 0 and
01 = 0 for all  = 2     );

(b) the news shock is the one which, among all of the remaining shocks, ex-

plains the maximum fraction of the FEV of TFP at a long horizon (which

we will take to be 20 years ahead).

However, we also add the restriction that allows us to disentangle news from

noise shocks:

(c) news and noise have no immediate impact on TFP and, for the other

variables, the IRFs generated by news and noise shocks on impact are

proportional to each other, i.e. the third column in A0 is proportional to

the second column (A03 = A02).

Implementing these restrictions involves applying three types of orthogonal ro-

tations, Γ1, Γ2, and Γ3, such that their product Γ = Γ1Γ2Γ3 yields the com-

prehensive set of orthogonal rotations that transform Ã() into the structural

representation of interest A(), where the two VMA polynomials are related

by A = ÃΓ for  = 0     .

Specifically, Γ1 is determined by setting the first column Γ01 = Ã
0
0(1)kÃ0(1)k2,

where Ã0(1) denotes the first row of Ã0, and the remaining columns Γ0 for

 = 2      equal to the −1 vectors that are orthogonal to A0
0(1) (normalized

such that kΓ0k = 1).
Next, let K̃() = B()−1Ã()Γ1 be the impulse responses obtained after ap-
plying the first set of orthogonal rotations Γ1, and define K̃12: for  ≥ 0

as the 1 ×  − 1 row vector constructed from the first row and columns 2 to
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 of K̃. Compute the eigenvalue decomposition of
P20

=1 K̃
0
12:K̃12:, with

eigenvalues sorted in descending order, and store the eigenvectors in ∆2. The

orthogonal matrix that identified news shocks according to restriction 4b above

is then given by

Γ2 =

µ
1 0

0 ∆2

¶


We normalize the sign of the news shock by requiring that the maximum impulse

response (over the horizon 0 : 20) of TPF to news is positive.

Let Ǎ() = Ã()Γ1Γ2 be the VMA representation obtained after applying

the first two sets of orthogonal rotations. At this stage, non-news and news

shocks are identified according to restrictions 4a and 4b, but the noise shock

is not identified in the sense that following multiplication by Γ1Γ2, the third

column of Ǎ0 will generally not be proportional to the second. To enforce the

proportionality restriction, we construct a third orthogonal matrix

Γ3 =

µ
I2 0

0 ∆3

¶


where the first column ∆31 of the  − 2 ×  − 2 orthogonal matrix ∆3 must

satisfy (Ǎ03     Ǎ0)∆31 = Ǎ02.

By construction24, the  ×  − 1 matrix (Ǎ02     Ǎ0) has rank  − 2 and,
therefore, there exists a − 1× 1 vector z = (1 z02)0, kzk = 1 such that

(Ǎ02     Ǎ0)z = 0

(i.e. z is the orthonormal basis for the null space of (Ǎ02     Ǎ0)). Accord-

ingly, set

 =
|1|
1− 21

∆31 = −(1) z2

1− 21


and the remaining columns ∆32    ∆3−2 of ∆3 to be the − 3 vectors or-
thogonal to ∆31 (normalized such that k∆3k = 1). Subsequently, multiplying
A = ǍΓ3 for all  = 0      yields the desired representation A() where

A03 = A02 while preserving the restrictions 4a and 4b.

In ’Identification Scheme II’, we modify assumption 4a to be:

(a) at  = 0, TFP is impacted upon by two disturbances, the non-news shock,

and a transitory TFP shock which is disentangled from the non-news shock

because it explains the minimum fraction of the FEV of TFP at a specific

long horizon (again, 20 years ahead).

24Recall that Ã0 has proportional second and third columns, transformation by Γ1 preserves the

linear independence of the first column and transformation by Γ2 only alters columns 2 to .
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Therefore, Scheme II only differs from Scheme I in that it requires  ≥ 5 and
allows one other shock (besides non-news) to impact TFP at  = 0. Assume

for notational convenience that this transitory TFP shock is ordered last (i.e.

), and let the constant orthogonal rotations that need to be applied to Ã()

under Scheme II be given by Υ = Υ1Υ2.

We first construct Υ1 to identify the transitory TFP shock. Hence, let K̃() =

B()−1Ã() be the impulse responses obtained based on Ã(), and define
K̃(1) for  ≥ 0 as the first row of K̃. Compute the eigenvalue decomposition

of
P20

=1 K̃
0
(1)K̃(1), with eigenvalues sorted in descending order, and store the

eigenvectors in Υ1.

Finally, let

Υ2 =

µ
Γ

1

¶


where Γ is now  − 1 ×  − 1. To construct Γ, we proceed in nearly identi-
cal fashion to the procedure described above for Scheme I, except taking into

account only the first − 1 shocks 1     −1 in all computations.

B.2 Bayesian Algorithms

The ultimate goal of a Bayesian approach to estimating noise shocks is to obtain

draws from the posterior distribution of the Wold representation

y = K()² ² ∼ N (0 I) (B.3)

where K() = B()−1A(). Indeed, the Bayesian framework offers a great deal of
flexibility in designing sampling algorithms for this purpose. For example, Plagborg-

Møller (2016) develops an MCMC algorithm that samples directly from a truncated

approximation to (B.3). Such an approach is suitable when working with station-

ary data and has the advantage of allowing restrictions on impulse responses to be

imposed directly in the sampling.

Since in our applications we wish to use data on the log-levels of our variables

and allow for possible co-integration, a truncated approximation to the Wold repre-

sentation is not appropriate, and it is necessary to work with a finite order VARMA

representation, such as the VARMA( ) specified in (B.1). A well known feature of

VARMAs, however, is that the parameters of B() and Θ̃() will generally not be

identified without further restrictions. The same is true for the structural representa-

tion (B.2). The reason for that is that, even though K() = B()−1A() is uniquely
determined by identifying restrictions such as 4a-4 above, such restrictions do not

guarantee uniqueness of B() and A() since there may exist some D() such that

B()† = D()B() is of order , A()† = D()A() is of order , and both lead to
the same Wold representation K() = (B()†)−1A()†.
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Identification issues in VARMAs are further complicated by the fact that rep-

resentations such as (B.1) and (B.2) are observationally equivalent. Consequently,

when a unique VARMA representation is required for estimation purposes, it is typ-

ically specified as a fundamental process in the canonical echelon form. This unique

specification is derived by starting with:

B̃0y = B̃1y−1+ · · ·+B̃∗y−∗+B̃0u+M1u−1+ · · ·+M∗u−∗ u ∼ N (0Σ)
(B.4)

where B̃0 is lower triangular with ones on the diagonal, which we refer to as the

semi-structural VARMA form. Then, two types of restrictions are imposed on this

representation to ensure uniqueness:

1. exclusion restrictions on B̃0     B̃∗,M1    M∗ according to the row degrees

1      that define the lag structure of each equation in the system (with

∗ = max(1     ));

2. non-linear restrictions on M1    M∗ to ensure all roots of M() lie outside

the unit circle.

When these restrictions hold, the semi-structural VARMA is said to be in echelon

form.

Note that the coefficients in (B.1) are related to the semi-structural VARMA by:

B = B̃
−1
0 B̃ Θ̃ = B̃

−1
0 M

However, estimating a VARMA in the echelon canonical form is challenging. First,

imposing type 2 restrictions on the roots ofM() becomes exceedingly difficult as the

size of the system increases. Moreover, imposing type 1 exclusion restrictions requires

knowledge of the row degrees 1     , which themselves need to be estimated in

practice.25

Fortunately, point identification is not necessary in the Bayesian framework. That

is, the posterior distribution will be well-defined even when the likelihood does not

uniquely identify the parameters in the model, as long as proper prior distributions

are specified for the parameters. In the VARMA case, this means that as long as

proper priors are specified for B1    B, Θ̃1     Θ̃, and Σ, we can readily obtain

draws from

(B1    B Θ̃1     Θ̃Σ |y)
even though this posterior may not be characterized by a unique mode, or may simply

resemble the joint prior distribution (in the extreme case where the likelihood provides

no information on the model parameters).

25Note that we only provide a brief summary of the identification issues and classical methods

designed to deal with them in estimating VARMA systems. An in-depth discussion is beyond the

scope of this paper, and we refer the interested reader to Luetkepohl (2005) for a textbook treatment,

including further details and explicit formulae.
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The key insight in a Bayesian approach to analyzing VARMA models is that

parameters B1    B, Θ̃1     Θ̃, and Σ themselves are not of primary interest,

but rather quantities such as forecasts and impulses responses, which are uniquely

identified even when the AR and MA coefficients are not. Therefore, it is possible to

obtain draws from the posterior of unidentified parameters, then transform them to

draws from the posterior of quantities which are, in fact, identified.

In general, Bayesians routinely build sampling algorithms on unidentified para-

meter spaces to obtain computational efficiency (examples include Gustafson (2005);

Imai and van Dyk (2005); Ghosh and Dunson (2009); Koop, León-González, and

Strachan (2010); Koop, León-González, and Strachan (2012), among many others).

Indeed, early work such as Meng and van Dyk (1999) and Liu and Wu (1999) sug-

gest that artificially expanding the parameter space may reduce auto-correlation in

Markov Chain Monte Carlo (MCMC) sampling algorithms, in terms of the identified

quantities of interest, thus further improving computation. Nevertheless, identifica-

tion is an important concept in the Bayesian framework to the extent that it provides

parsimony in over-parameterized systems. From a practical viewpoint, both par-

simony and identification are features of the model that are implemented entirely

through the appropriate specification of prior distributions.

Building on these ideas, Chan and Eisenstat (2015) and Chan, Eisenstat, and

Koop (2016) develop MCMC algorithms on the expanded VARMA representation:

B̃0y = B̃1y−1 + · · ·+ B̃∗y−∗ +Φ0f +Φ1f−1 + · · ·+Φ∗f−∗ + η (B.5)

where f ∼ N (0Ω), η ∼ N (0Λ), Ω and Λ are diagonal, and Φ0 is lower triangular

with ones on the diagonal. Expanded form parameters are related to the VARMA

parameters in (B.4) by the mapping:

∗X
=

Θ̃ΣΘ̃
0
− =

∗X
=

ΦΩΦ
0
− + 1l( = 0)Λ for all  = 0     ∗ (B.6)

whereas B̃ in the expanded form is identical to the corresponding B̃ in the semi-

structural form for  = 0     ∗. Consequently, draws from (B.4) can be obtained by
sampling directly from the expanded form (B.5) and then computing M1    M∗,

Σ from each draw of Φ0    Φ∗, Ω, and Λ using the mapping in (B.6). The exact

procedure based on generalized eigenvalues is provided in Section 2 of Chan and

Eisenstat (2015) and Appendix D of Chan, Eisenstat, and Koop (2016). To economize

on space, we do not reproduce it here, but only emphasize that it is a computationally

simple procedure, even for large VARMA systems.

The advantage of the expanded form is that it can be regarded as a linear state

space model, and therefore, admits straightforward and efficient MCMC sampling

algorithms. Moreover, there is no need to impose non-linear restrictions directly in

the MCMC since restrictions on the roots ofM() can be easily implemented in the
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post-processing of draws (i.e. when constructing M1    M∗Σ from Φ0    Φ∗,

Ω, and Λ).

At the same time, it provides an extremely flexible approach to estimating VAR-

MAs. For example, Chan, Eisenstat, and Koop (2016) demonstrate how to construct

a prior on the expanded form parameters–using stochastic search variable selection

(SSVS) methods (see Kuo and Mallick (1997); George, Sun, and Ni (2008))–such

that the implied draws from the semi-structural from (B.4) satisfy the echelon form

restrictions at every iteration. Hence, the expanded form can be used to estimate

unique VARMA systems, although this may still lead to computationally intensive

algorithms in larger VARMAs. On the other hand, it is also possible to obtain more

computational efficiency by employing priors that approximate the echelon form in

the sense that they lead to exact identifying restrictions holding with some probabil-

ity (less than one) in the posterior. The Bayesian approach based on the expanded

form, therefore, affords a great deal of flexibility in designing algorithms that target

an optimal balance between computational efficiency and parsimony.

In this paper, we employ such an approximate identification approach. In partic-

ular, starting from the expanded form (B.5) and assuming  = ∗,   , we impose

parsimony by first setting (with probability one) Φ = 0 for all  =  + 1     ∗ and

Φ3 = · · · = Φ = 0 for all  = 1     

where Φ denotes the th column of Φ. This leads to the restrictions Θ̃ = 0 for

all  = +1     ∗ and rankΘ̃ = 2. Next, we specify SSVS priors on the individual

free elements of B̃0     B̃ and Φ0    Φ of the form:

( | ) ∼ N (0 1) + (1− )N (0 001)
(Φ | Φ) ∼ ΦN (0 1) + (1− Φ)N (0 001)
Pr( = 1) = Pr(

Φ
 = 1) = 05

Through extensive experimentation with the resulting algorithm, we find these set-

tings to produce satisfactory results in both the Monte Carlo exercises and real data

applications. Moreover, moderate changes to these priors (including alternative SSVS

settings and rank restrictions) do not materially impact the inference on impulse re-

sponses.

To complete the prior specification, we set

Ω ∼ IG(5 1)
Λ ∼ IG(0 01)

where IG( ) denotes the inverse gamma distribution with shape parameter  and
rate parameter . Note that these settings imply weakly informative priors on Ω and

improper priors on Λ. In the paper, we report results holding fixed all of the above

prior settings, but varying the dimension of the system  as well as the lag-lengths 

and .
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To facilitate the use of generic priors such as these, we standardize the scale of all

series in y before commencing MCMC. Specifically, for each original series , we

transform to

̃ =
q

1


P

=2∆2



After obtaining MCMC draws, we adjust them such as to remove the effect of the

standardization. Hence, all impulse responses are reported on the original, unscaled

variables. The approach is equivalent to working directly with y, but adjusting the

priors by the sample standard deviations, as is often done in Bayesian time-series

applications (e.g. VARs with Minnesota priors).

Simulation from the posterior of the expanded form VARMA is implemented with

Gibbs sampling by cycling through the following four broad steps:

1. Sample
¡
γB()Φ() | f Λy

¢
for each  = 1     , where B() denotes the

-th row of B = (I −B0B1    B), Φ() the -th row of Φ = (Φ0    Φ),

and γ is the set of all SSVS indicators pertaining to B()Φ().

2. Sample
¡
Λ |B()Φ()γ f y

¢
for each  = 1     .

3. Sample (Ω | f) for each  = 1     .

4. Sample (f |BΦΩΛγy).

Details and extensive discussion of each sampling step above are provided in Ap-

pendix B of Chan, Eisenstat, and Koop (2016).

In summary, we obtain posterior draws from the impulses responses K() identi-

fied by the structural model as follows:

1. Obtain draws of B̃0     B̃, Φ0    Φ, Ω, Λ using the Gibbs sampling algo-

rithm outlined above.

2. For each draw of the expanded form parameters, transform to draws ofB1    B,

Θ̃1     Θ̃ and Σ.

3. For each draw of Θ̃1     Θ̃ and Σ, transform to draws of Ã0     Ã by ap-

plying the Blaschke matrix transformation.

4. For each draw of Ã0     Ã, transform to draws of A0    A by applying

appropriate orthogonal rotations.

5. Fore each draw of B1    B, A0    A compute K() = B()−1A() to
obtain draws from the posterior distribution of the impulse responses (and with

a further trivial transformation, from the forecast error variance decompositions

as well).
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C Barsky and Sims’ (2011) RBCmodel augmented

with noise shocks about future TFP

C.1 The first-order conditions

The first-order conditions with respect to , , , and +1 are given by

Σ
 

+1
 = (1− )

 (C.1)

 = ( − −1)
−1 −  (+1 − )

−1
(C.2)

 = 

£
(1− )+1| + +1+1

1−
 −1



¤
(C.3)

 = 

("
1− 

2

µ


−1
− ̃

¶2#
− 



−1

µ


−1
− ̃

¶)
+

+

∙
+1

2
2−1

µ


−1
− ̃

¶¸
(C.4)

where  and  are two Lagrange multipliers.

C.2 The process for TFP

The process for  = ln() is given by

 = ̃ +  (C.5)

where ̃ is the unobserved permanent component of productivity and  is a white

noise disturbance,  ∼(0 2). The permanent component of  evolves accord-

ing to

̃ = ̃−1 + 
 + 

−1 (C.6)

where, once again, 
 and 

 are a non-news and a news shock, respectively.

We consider a 1-period anticipation horizon for the news shock. Although at time 

agents observe , its two individual components, ̃ and , are never observed. In

each period, however, agents receive a signal, which is equal to the sum of the news

shock and of a noise component as in (5)–that is:  = 
 +–with  being once

again (0 2).

C.3 The agents’ signal-extraction problem about TFP

By defining  = [∆̃ 

   −1]0 and  = [∆ ]

0, the model (5), (C.5), and
(C.6) can be put into state-space form, with state equation⎡⎢⎢⎣

∆̃




−1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

⎤⎥⎥⎦
| {z }



⎡⎢⎢⎣
∆̃−1

−1
−1
−2

⎤⎥⎥⎦+
⎡⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎤⎥⎥⎦
| {z }



⎡⎢⎢⎣









⎤⎥⎥⎦ (C.7)
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and observation equation

∙
∆


¸
=

∙
1 0 1 −1
0 1 0 0

¸
| {z }



⎡⎢⎢⎣
∆̃




−1

⎤⎥⎥⎦+ ∙ 0 0 0 0

0 0 0 1

¸
| {z }



⎡⎢⎢⎣









⎤⎥⎥⎦ (C.8)

The solution to the agents’ signal-extraction problem is still given by expressions

(A.3)-(A.4).

C.4 Stationarizing the model’s variables

We stationarize all variables except hours as in Barsky and Sims (2011).26 Specifically,

defining Γ ≡ 
1

1−
 , we stationarize output, consumption, investment, and the capital

stock as ∗
 ≡ Γ, with  =  , , , and ∗

 ≡ Γ−1;27 and we stationarize
the two Lagrange multipliers,  and , as 

∗
 ≡  · Γ and ∗ ≡  · Γ. Then,

̂
∗
 is the log-deviation from the steady-state of ∗ , ̂

∗
 is the log-deviation from the

steady-state of  ∗ , and so on.

C.5 The log-linearized equations for the stationarized vari-

ables

Log-linearizing the model’s transformed equations for the stationarized variables we

obtain the following expressions:

̂∗ + ̂∗ [∆ + (1− )(1−∆)] + (1− )∆̂
∗
+1|+

+(1−∆)̂
∗
−1 + 

1−∆

1− 
∆ − (1− )∆

1− 
∆+1| −  = 0 (C.9)

−̂∗ +
µ
 +

1



¶
̂ +



1− 
∆ − ̂∗ −  = 0 (C.10)

−̂∗+̂∗+1|+∗ ̂∗+1|− ̂∗+1|+(1−)̂
∗
+1|−

(1− )

1− 

 = 0 (C.11)

̂∗ −
 ̂

∗
 +  ̂

∗
 + (1−  − )




 + 

= 0 (C.12)

̂∗+1 +
 + (1− )

1− 
∆ + (1− )( − 1)̂∗ −  ̂

∗
 − (1−  )̂

∗
−1 = 0 (C.13)

26We wish to thank Eric Sims for providing extensive details about the solution to their original

model.
27The capital stock is divided by Γ−1, rather than by Γ, in order to make sure that the station-

arized capital stock, ∗ , is still predetermined at time .
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̂∗ +


1− 
∆ − (1− )̂ − ̂∗ = 0 (C.14)

̂∗ − ̂
∗
 + ̂∗ +



1− 
∆ − ̂∗−1 −  = 0 (C.15)

with ̂
∗
 and ̂∗ being the log-deviations from the steady-state of the two stationar-

ized Lagrange multipliers; ̂ being the log-deviation from the steady-state of hours

worked (which are already stationary); ̂∗ , with  = , , , , being the log-deviation

from the steady-state of the stationarized output, consumption, investment, and the

capital stock, respectively; and  and  being white noise shocks with variances 
2


and 2 , respectively. We add the latter to Barsky and Sims’ original model in order to

eliminate stochastic singularity. Finally, the following objects are convolutions of the

model’s structural parameters, and are defined as follows: =(1-̃
−1(1−)
 )−1/[(1-

̃
−1(1−)
 )−1-(̃1(1−) -)−1]; ∆=̃

1(1−)
 /(̃

1(1−)
 -); =̄

∗
 /[̄

∗
 +(1-

)̄
∗
̃

−1(1−)
 ]; =̄̄ ; =̄̄ ; =(1-)/[(1-)+̃

1(1−)
 ]; ̄∗=[(1-̃

−1(1−)
 )−1-

(̃
1(1−)
 -)−1]/̄; ̄

∗
=̄

∗
 /[1-(1-)̃

−1(1−)
 ], where ̄, ̄, ̄ , and ̄ are the

values taken by consumption, investment, GDP, and the capital stock in the steady-

state, and  =̄ /̄ is the value taken by ratio between GDP and the capital stock

in the steady-state, and ̄
∗
 and ̄

∗
 are the values taken by the stationarized Lagrange

multipliers in the steady-state.

In the benchmark calibration, we set most of the model’s parameters as in Barsky

and Sims (2011). Specifically, we set =0.99, =0.05, =1/3, =0.05, ̄=0.2, ̃=1.02
14,

̄=2/3, =2/3, =0.2. We then set =0 (so that in the benchmark calibration the

model features no habit formation in consumption), and (1/)=0 (so that the utility

function is linear in hours worked). As for the standard deviations of the structural

shocks, we set them to =0.3, =0.3, =0.25, =0.25, =0.25, =0.25,

=0.25, =0.25. As for  , we calibrate it based on the estimate of the steady-

state capital-output ratio for the United States, which Dadda and Scorcu (2003)

based on long-run data, estimate at 1.7, so that we have  =1/1.7=0.5882. Finally,

we set ̃=̃
1(1−)
 : the rationale for doing this is simply that, in the steady-state,

/−1=̃ , and since the steady-state gross rate of growth of investment is equal to
̃
1(1−)
 , it ought to be the case that ̃=̃

1(1−)
 .

C.6 Model solution

Following Blanchard et al.’s (2013) Appendix, we compute the solution via the method

of undetermined coefficients as follows. We start by putting the RBC model in the

form

+1| + +−1 + ++1| +  = 0 (C.16)

where  , , ,  ,  , and  are matrices of coefficients;  is a vector containing

the stationarized endogenous variables for the log-linearized model, that is,  =
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[̂
∗
  ̂

∗
  ̂

∗
  ̂

∗
  ̂

∗
  ̂ ̂

∗
  ̂

∗
+1]

0; and  contains all shocks except those pertaining to the
signal-extraction problem (

  
−   ), that is,  = [


  


  


  


]
0.

Given the model in the form (C.16), we conjecture that the solution for  takes

the form

 = −1 + +| +   (C.17)

where  solves the quadratic equation28

 2 + + = 0 (C.18)

 and  are given by

 = −(+  )−1 (C.19)

 = −(+  )−1 (C.20)

and, given  and ,  is obtained by solving iteratively the expression

(+  )+ [ +  ( +)] = 0 (C.21)

Finally, | is the agents’ estimate of the vector  based on information at time ,
which is generated by the Kalman filter within the context of the signal-extraction

problem. Equations (C.18), (C.19), and (C.21) are the same as in Blanchard et

al.’s (2013) Appendix, whereas the additional expression we have, equation (C.20),

originates from the fact that we here have additional shocks, over and above those

pertaining the signal-extraction problem.

D Computing Truncated Theoretical SVARMARep-

resentations of the RBC Model via Linear Pro-

jections

In Section 4.1.2, we compare the theoretical IRFs to non-news, news, and noise shocks

produced by Barsky and Sims’ (2011) RBC model augmented with noise shocks, and

the IRFs produced by several of the model’s truncated theoretical SVARMA repre-

sentations. In this appendix we discuss how we compute such truncated theoretical

SVARMA representations based on linear projections arguments (for a discussion of

linear projections, see e.g. Sargent (1987)).

Let

 = ̃0 + ̃1−1 + ̃2−2 + ̃3−3 + ̃4−4 + ̃5−5 +  (D.1)

be the infinite structural MA representation of the RBC model, which can be recov-

ered from the model’s IRFs to unit-variance structural shocks, and let Ω = [
0
]

be the covariance matrix of the structural innovations. For chosen VAR and MA lag

28See Uhlig (1999) for the solution to the quadratic equation.
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orders  and , we compute the model’s truncated (in general) theoretical SVARMA

representation

 = 1−1 +2−2 + +− +0 +1−1 + +− (D.2)

as follows.

The theoretical value of the VAR matrix 1 in (D.2) is the linear projection of 
onto −1. By lagging (D.1) by one period we have

−1 = ̃0−1 + ̃1−2 + ̃2−3 + ̃3−4 + ̃4−5 + ̃5−6 +  (D.3)

and 1 is therefore given by

1 = [Var(−1)]
−1Cov( −1) (D.4)

where

Var(−1) = Var() =
∞X
=0

̃Ω̃
0
 and Cov( −1) =

∞X
=0

̃+1Ω̃
0
 (D.5)

Similarly, the theoretical value of the generic VAR matrix ,  = 1, 2, ..., , is given

by

 = [Var(−)]
−1Cov( −) (D.6)

where Var(−) = Var(), and

Cov( −) =
∞X
=0

̃+Ω̃
0
 (D.7)

Having computed the theoretical values of the VAR matrices 1, 2, ..., , the next

step is then computing the theoretical values of the MA matrices 0, 1, ..., ,

which we do as follows. From (D.1) we have

 =

∞X
=0

̃− =

=

∞X
=0

̃− + (1−1 −1−1) + (2−2 −2−2) + + (− −−) =

= 1−1 +2−2 + +− +
∞X
=0

̃−−

−1[̃0−1 + ̃1−2 + ̃2−3 + ̃3−4 + ̃4−5 + ̃5−6 + ]

−2[̃0−2 + ̃1−3 + ̃2−4 + ̃3−5 + ̃4−6 + ̃5−7 + ]
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−−
−[̃0− + ̃1−(+1) + ̃2−(+2) + ̃3−(+3) + ̃4−(+4) + ̃5−(+5) + ] =

= 1−1 +2−2 + +− + ̃0+

+[̃1 −1̃0]−1+

+[̃2 −1̃1 −2̃0]−2+

++

+[̃ −1̃−1 −2̃−2 − −̃0]− +
∞X

=+1

̃− (D.8)

so that by setting 0 = ̃0, 1 = [̃1 − 1̃0], 2 = [̃2 − 1̃1 − 2̃0], ...,

 = [̃−1̃−1−2̃−2−−̃0], we have the truncated theoretical SVARMA

representation (D.2), which differs from (D.1) by the term

∞X
=+1

̃− (D.9)

To the extent that, for all   , the elements of the matrices ̃’s are sufficiently

‘small’, the truncated representation (D.2) provides a good approximation to (D.1),

which is what Figure 5 is intended to illustrate. Although this property holds in pop-

ulation, still this naturally suggests that, even in finite samples, it should be possible

to meaningfully capture the stochastic properties of the DGP via a SVARMA(, )

with  and  small.

E Monte Carlo Evidence on the Performance of

the Proposed Econometric Methodology

In this appendix we present Monte Carlo evidence on the performance of the proposed

econometric methodology, taking Barsky and Sims’ (2011) RBC model, augmented

with noise shocks about future TFP as the DGP. We focus on two main questions:

() Can the proposed identification scheme and estimation approach correctly recover

the response of the economy to non-news, news, and noise shocks? () Can they

correctly capture how important the three shocks are at driving the dynamics of

individual variables?

We start by briefly describing the Monte Carlo experiment’s setup.
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E.1 Details of the Monte Carlo experiment

Based on the DGP described in Section 3 and Appendix C, we generate 1,000 artificial

samples of length equal to the actual sample length in the application of Section 5,

that is,  = 216. Based on each sample we then estimate a VARMA(2,1) based

on the econometric methodology described in Section 4, imposing exactly the same

restrictions we impose when we work with the actual data with a single difference,

which we now discuss.

As discussed in Section 3 and Appendix C, for noise shocks to play a role in the

model, it ought to be the case that the permanent component of TFP is not observed,

which requires a transitory TFP shock (i.e.,  in equation (C.5) in Appendix C). A

key point to stress is that if  were not there, the entire signal-extraction problem

would disappear, and noise shocks would play no role whatsoever. This, however,

implies that in the DGP we are using for the Monte Carlo exercise, the non-news

shock is not the only shock impacting TFP contemporaneously, so that imposing

the restriction that it is would end up distorting the estimates. In the Monte Carlo

exercise we therefore allow for two shocks to impact upon TFP at =0, and we

disentangle them by rotating them in such a way that the transitory one explains the

minimum fraction of TFP at the relevant long horizon.

Finally, we impose the restriction that the largest eigenvalue of the VARMA is

() greater than or equal to 0.99, and () strictly smaller than 1. Restriction () is

not crucial, and it is imposed simply in order to rule out explosive IRFs and paths.

Restriction (), on the other hand, is crucial only for theMonte Carlo exercise, whereas

it is completely irrelevant for the applications based on actual data of Sections 5 and

6. In the Monte Carlo exercise, not imposing this restriction produces IRFs which

tend to mean-revert to zero too fast, which prevents them from effectively capturing

the permanent nature of TFP shocks on TFP, GDP, consumption, and investment.

E.2 Evidence

Figure E.1 reports, for either non-news, news, or noise shocks, the means, across

all of the 1,000 Monte Carlo simulations, of the 50th, 16th, and 84th percentiles of

the posterior distributions of the IRFs, whereas Figure E.2 reports the means of the

50th, 16th, and 84th percentiles of the posterior distributions of the fractions of FEV

explained by either of the three shocks.

The evidence in Figure E.1 is qualitatively similar to that reported in Barsky and

Sims’ Figure 1 for news shocks, with the model’s true IRFs to either of the three

shocks lying almost uniformly inside the 16-84 bands. Results are especially good

for the main shock of interest in this paper–the noise shock–with the means of the

50th percentiles of the posterior distributions of the IRFs being typically close to the

true IRFs. As for non-news shocks, results are likewise excellent for investment and

hours, whereas for TFP, GDP, and consumption the true IRFs are still fully inside

the 16-84 bands, but the means of the 50th percentiles of the posterior distributions
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Figure E.1  Results from the Monte Carlo exercise: Means, across all of the Monte Carlo 
                simulations, of the 50th, 16th, and 84th percentiles of the posterior distributions 
                of the impulse-response functions 
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Figure E.2  Results from the Monte Carlo exercise: Means, across all of the Monte Carlo 
                simulations, of the 50th, 16th, and 84th percentiles of the posterior distributions 
                of the fractions of forecast error variance 



are not close to them. As for news shocks, the 16-84 bands still capture the true

IRFs almost uniformly, but this is not the case for the impacts at =0 for GDP,

consumption, investment, and hours, whose magnitude is uniformly under-estimated.

Further, estimated IRFs tend to rise more slowly than the true IRFs towards the

new long-run equilibrium, with the result that for both TFP and GDP the true IRFs

remain outside the 16-84 tunnels for about a year-year and a half after the impact.

Turning to the evidence reported in Figure E.2 (it is to be noticed that Barsky

and Sims (2011) did not report Monte Carlo evidence for the fractions of FEV),

results are once again excellent for the noise shock, with the true fractions of FEV

lying uniformly inside the 16-84 band, and the means of the 50th percentiles of the

posterior distributions being very close to the true fractions. Results are likewise

uniformly good for non-news shocks, whereas for news shocks the performance is

qualitatively the same as that for the IRFs, with the 16-84 bands systematically

capturing the true fractions of FEV at medium-to-long horizons, but failing to do so

at the short horizons.

Overall, our own assessment is that the performance of the proposed estimation

and identification methodology against this specific DGP although by no means per-

fect, is nonetheless good. This is especially the case for the noise shock, which is the

main object of interest in the present paper.

F The Data

We use John Fernald’s purified TFP series available from the San Francisco Fed’s

website. A seasonally adjusted series for real GDP (GDPC96) is from the U.S. De-

partment of Commerce: Bureau of Economic Analysis. Inflation has been computed

as the log-difference of the GDP deflator (GDPCTPI) taken from the St. Louis Fed’s

website. Hours worked by all persons in the nonfarm business sector (HOANBS)

is from the U.S. Department of Labor, Bureau of Labor Statistics. The seasonally

adjusted series for real chain-weighted investment, consumption of non-durables and

services, and their deflators (which we use in order to compute the chain-weighted

relative price of investment) have been computed based on the data found in Ta-

bles 1.1.6, 1.1.6B, 1.1.6C, and 1.1.6D of the National Income and Product Accounts.

Whereas real consumption and its deflator pertain to non-durables and services, real

investment and its deflator have been computed by chain-weighting the relevant series

pertaining to durable goods; private investment in structures, equipment, and resi-

dential investment; Federal national defense and non-defense gross investment; and

State and local gross investment. All these variables are available at the quarterly

frequency.

The remaining variables are available at a monthly frequency and have been con-

verted to the quarterly frequency by taking averages within the quarter. The Federal

funds rate (FEDFUNDS) and the 5-year government bond yield (GS5) are taken

from the St. Louis Fed’s website. They are quoted at a non-annualized rate in
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order to make their scale exactly comparable to that of inflation.29 Seasonally unad-

justed nominal dividends and stock prices (the S&P 500 index) are both from Robert

Shiller’s website. They have then been deflated by the GDP deflator. Civilian non-

institutional population (CNP16OV) is from the U.S. Department of Labor, Bureau

of Labor Statistics.

G Model Comparison Exercise

G.1 Deviance Information Criterion

The Deviance Information Criterion (DIC) was introduced in Spiegelhalter, Best,

Carlin, and vanderLinde (2002). For latent variable models there are a few distinct

variants depending on the exact notion of the likelihood (Celeux, Forbes, Robert, and

Titterington (2006)). Given a likelihood function (y | ), the DIC is defined as:

DIC = () + 

where

() = −2[ln (y | ) | y]
is the posterior mean deviance and  is the effective number of parameters. That

is, the DIC is the sum of the posterior mean deviance, which can be used as a

Bayesian measure of model fit or adequacy, and the effective number of parameters

that measures model complexity. The effective number of parameters is in turn

defined as

 = ()−(̃)

where ()=-2ln (y | ), and ̃ is an estimate of , which is typically taken as the

posterior mean.

Following Chan, Eisenstat, and Koop (2016), we use the likelihood implied by the

system

y =

X
=1

Ay− +
X

=1

Θ²− + ² ² ∼ N (0Σ) (G.1)

where all the parameters are identified and can be recovered from the main sampling

algorithm.

To derive this density, we stack (G.1) over t and obtain:

y = a+Θ² (G.2)

where ² = [²01, ..., ²
0
T]
0 ∼ N (0  ⊗Σ),  = [(

P

=1Ay1−)0, ..., (
P

=1Ay−)0]
0
,

and Θ is a × lower triangular matrix with the identity matrix I on the main

29To be clear, if we define an interest rate series as –with its scale such that, e.g., a ten per

cent rate is represented as 10.0–the rescaled series is computed as =(1+/100)
14-1.
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diagonal block, Θ1 on the first lower diagonal block, Θ2 on the second lower diagonal

block, and so forth. Hence, we have

(y | A1 AΘ1 ΘΣ) ∼ N (Θ(I ⊗Σ)Θ0)

Since the covariance matrix Θ(I ⊗Σ)Θ0 is a band matrix, this Normal density can
be evaluated quickly using the band matrix algorithms discussed in Chan and Grant

(2016).

G.2 Estimated DIC values for alternative models

We work with a set of −variate VARMA(,1) models and consider various choices
of  and . All the DICs are computed using the marginal distribution of the six

variables in the  = 6 case as the likelihood. A model with a smaller DIC value

is preferred. They are reported in Table G1. Models with  = 4 clearly dominate

for all choices of  and all results presented in this paper use this lag length. With

regard to , the choice =8dominates choices of a similar dimension. Since medium-

size VARs of approximately this dimension are typically used in this literature, the

results presented in the body of the paper use =8. However, the lowest value of DIC

is obtained for the larger VARMA with  = 15. In the next appendix, we present

IRFs and FEVs for this case and find them to be quite similar, but slightly less

precisely estimated than those with =8.

Table G1: Estimated DIC values and associated

numerical standard errors (in parentheses)

 = 6  = 8  = 9  = 10  = 15

 = 2 3064.7 3016.5 3044.4 3003.5 2908.6

(0.10) (0.05) (0.16) (0.27) (0.16)

 = 4 3022.4 3000.7 3008.4 2981.7 2883.0

(0.13) (0.13) (0.37) (0.27) (0.20)
 The DICs are computed using the marginal distribution of

the six variables in the  = 6 case as the likelihood.

G.3 Evidence based on the model selected by the DIC cri-

terion

Figures G.1-G.6 report evidence for the model with  = 15, which, based on the

results reported in Table G1, is the one preferred by the DIC criterion. Since, as

discussed in the paper, the results produced by models in which we do, or we do not

impose restrictions on the absolute values of the IRFs to news and noise shocks are

very close, the evidence reported in Figures G.1-G.6 comes from a model in which

we have not imposed such restrictions (the only reason for doing so is that, with
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 =15, imposing such restrictions is very computationally intensive). The evidence

reported in Figure G.3 confirms the main finding in Section 5: Noise shocks explain

uniformly negligible fractions of the FEV of all variables at all horizons. Further, the

fractions of FEV are typically estimated quite precisely: This is especially the case

for noise and non-news shocks, whereas it is less so for news shocks. As for the IRFs,

the broad pattern for non-news and news shocks is the same as in Figure 8, with

the main difference being the smaller extent of precision. As for noise shocks, on the

other hand, the IRFs in Figure G.6 are so imprecisely estimated that it is essentially

impossible to say anything about the response of the economy to these disturbances.

H Additional Empirical Results

As mentioned in the text, online Appendices I and II contain the entire sets of results

based on identification schemes I and II, respectively. Specifically, for the application

with TFP, we present () results for = 6 based on VARMA(, )’s with = 2, 4 and 

= 1, 2, 3 without imposing restrictions on the absolute values of the IRFs to news and

noise shocks; and () results for  = 8 based on VARMA(4, 1)’s either imposing or

not imposing restrictions on the absolute values of the IRFs to news and noise shocks.

The main point to stress here is that our key finding–noise shocks play a uniformly

negligible role–is remarkably robust across all specifications. Further, both the IRFs

and the fractions of FEVs are, likewise, very similar across specifications.

I On the Identifiability of News and Noise Shocks

Chahrour and Jurado (2017) have recently argued that news and noise shocks are

observationally equivalent, so that they cannot be separately identified. Their argu-

ment can be illustrated as follows, based on the example in Section 3.2, pages 13-14.

Let

 = −1 +  (I.1)

 =  +  (I.2)

where  is the observed process,  is the signal, and , , and  have the interpre-

tation of non-news, news, and noise shocks, with  ∼ (0 2),  ∼ (0 2),

and  ∼(0 2). Expression (I.2) implies that

| =
2

2 + 2| {z }


[ + ] =  (I.3)

The representation for  and |−1 is given by

 = |−1 +  (I.4)
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|−1 = −1|−1 = [−1 + −1] (I.5)

The process for  is uniquely characterized by two moments, Var[] and Cov[,

|−1], with
Var[] = 2 + 2 (I.6)

Cov[, |−1] =
4

2 + 2
(I.7)

Since (I.6)-(I.7) is a system of two equations in three unknowns, the three variances

cannot be separately identified.

Suppose, however, that the econometrician can observe another series, , which

contains information about the signal . The simplest example would be, e.g.,

 =  +  (I.1)

where  ∼ (0 2). For example, in Barsky and Sims’ (2011) RBC model, all

variables except neutral technology react to , reflecting agents’ signal-extraction

process about ̃. Under these circumstances, the observed vector becomes  = [
]

0, with two additional moments, Var[] and Cov[, −1]. The system of moment

conditions now features four equations in four unknowns, and it therefore has a unique

solution. In general, any model–e.g., Barsky and Sims’ (2011) RBC model–features

several additional observed variables beyond , and, in general, all of them may

depend on , as well as on lags of all shocks. This, however, does not change the

previous conclusion, as the additional parameters are all identified by the additional

moment conditions.
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 Figure H.1  Fractions of forecast error variance explained by non-news shocks (median, and 16-84 

                percentiles of the posterior distribution), based on a VARMA(4,1) with 15 series, with- 
                out imposing restrictions on the absolute magnitude of the IRFs to TFP noise shocks 
                2 quarters after impact 
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Figure H.2  Fractions of forecast error variance explained by news shocks (median, and 16-84 
                percentiles of the posterior distribution), based on a VARMA(4,1) with 15 series, 
                without imposing restrictions on the absolute magnitude of the IRFs to TFP noise 
                shocks 2 quarters after impact  
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Figure H.3  Fractions of forecast error variance explained by noise shocks (median, and 16-84 
                percentiles of the posterior distribution), based on a VARMA(4,1) with 15 series, 
                without imposing restrictions on the absolute magnitude of the IRFs to TFP noise 
                shocks 2 quarters after impact 
 



 33

 
 
 
 
 

            
 
 

Figure H.4  Impulse-response functions non-news shocks (median, and 16-84 percentiles of the posterior 
                distribution), based on a VARMA(4,1) with 15 series, without imposing restrictions on the 
                absolute magnitude of the IRFs to TFP noise shocks 2 quarters after impact  
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Figure H.5  Impulse-response functions news shocks (median, and 16-84 percentiles of the posterior 
                distribution), based on a VARMA(4,1) with 15 series, without imposing restrictions on 
                the absolute magnitude of the IRFs to TFP noise shocks 2 quarters after impact  
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Figure H.6  Impulse-response functions noise shocks (median, and 16-84 percentiles of the posterior 
                distribution), based on a VARMA(4,1) with 15 series, without imposing restrictions on 
                the absolute magnitude of the IRFs to TFP noise shocks 2 quarters after impact  
 
 

 


