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A Solutions to the Theoretical Models

A.1 A present-value model for dividends and stock prices

The agent’s signal-extraction problem can be characterized as follows. First, define Yt ≡ [dt, st]
′,

ξt ≡ [dPt , dNt , εNEt ]′, wt ≡ [εNNt , vt, ε
NE
t ]′, ηt ≡ [0, ut]

′, and

F ≡

 1 0 1
0 ρT 0
0 0 0

 H ≡
[

1 1 0
0 0 1

]′

Q ≡

 σ2
NN 0 0
0 σ2

v 0
0 0 σ2

NE

 R ≡
[

0 0
0 σ2

u

]

equations (2)-(5) in Section 2.1 of the paper can be cast in state-space form as:

Yt = H ′ξt + ηt (A.1)

ξt = Fξt−1 + wt (A.2)

The estimate of the state vector conditional on information at time t, ξt|t, together with its estimated
covariance matrix, Pt|t ≡ E[(ξt − ξt|t)(ξt − ξt|t)′|t] can be obtained via the following Kalman filtering
recursions (see Hamilton (1994)):

ξt|t = Fξt−1|t−1 +Kt[Yt −H ′Fξt−1|t−1] (A.3)

Pt|t = FPt−1|t−1F
′ +Q−KtH

′(FPt−1|t−1F
′ +Q) (A.4)

where Kt ≡ (FPt−1|t−1F
′+Q)H[H ′(FPt−1|t−1F

′+Q)H +R]−1 is the Kalman gain. The steady-state
value of the precision matrix Pt|t is obtained by iterating on (A.4) starting from P0|0 = Q, thus also
obtaining the steady-state value of the Kalman gain, which, being time-invariant, in what follows will
simply be referred to as K. Based on the steady-state Kalman gain, and defining K̃ ≡ (I3 −KH ′)F ,
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where I3 is the 3×3 identity matrix, the solution to the the signal-extraction problem is therefore given
by  dPt|t

dTt|t
εNEt|t


︸ ︷︷ ︸
≡ξt|t

=

 K̃11 K̃12 K̃13

K̃21 K̃22 K̃23

0 0 0


︸ ︷︷ ︸

≡K̃

 dPt−1|t−1
dTt−1|t−1
εNEt−1|t−1


︸ ︷︷ ︸
≡ξt−1|t−1

+

 K11 0
K21 0

0 K32


︸ ︷︷ ︸

≡K

[
dPt + dTt
εNEt + ut

]
.︸ ︷︷ ︸

≡Yt

(A.5)

A.2 A New Keynesian model

Consider the following standard forward-looking New Keynesian model:

Rt = φππt+1|t (A.6)

πt = βπt+1|t + κyt (A.7)

yt = yt+1|t − σ−1[Rt − πt+1|t − rNt ] (A.8)

where Rt, πt, and yt are the nominal interest rate, inflation, and the output gap, respectively. rNt is
the natural rate of interest which is postulated to evolve according to a stationary stochastic process
as follows:

rNt = r̃Nt + vt (A.9)

r̃Nt = ρN r̃
N
t−1 + εNNt + εNEt−1 (A.10)

where vt ∼WN(0, σ2
v); r̃Nt is the persistent component of the natural rate of interest, with 0 < ρN < 1;

and εNNt , εNEt , and vt have the same interpretation, and the same properties, as in sub-section 2.1.
Although at time t agents learn about rNt , its two individual components, r̃Nt and vt, are not

observed. In each period, however, agents receive a signal, which is equal to the sum of the news shock
and of a noise component as in equation (5) in Section 2.1 of the paper.

The agents’ signal-extraction problem can be characterized as follows. By defining Yt ≡ [rNt , st]
′,

ξt ≡ [r̃Nt , εNEt ]′, wt ≡ [εNNt , εNEt ]′, ηt ≡ [vt, ut]
′, and

F ≡
[
ρN 1
0 0

]
H ≡

[
1 0
0 1

]
Q ≡

[
σ2
NN 0
0 σ2

NE

]
R ≡

[
σ2
v 0

0 σ2
u

]
equations (A.9), (A.10), and equation (5) in Section 2.1 of the paper can be cast in the state-space form
(A.1)-(A.2). As before, the solution to the signal-extraction problem can be obtained by applying the
Kalman filter recursions (A.3)-(A.4) to the state-space form (A.1)-(A.2), thus obtaining the solution[

r̃Nt|t
εNEt|t

]
︸ ︷︷ ︸
≡ξt|t

=

[
K̃11 K̃12

0 0

]
︸ ︷︷ ︸

≡K̃

[
r̃Nt−1|t−1
εNEt−1|t−1

]
︸ ︷︷ ︸
≡ξt−1|t−1

+

[
K11 0

0 K22

]
︸ ︷︷ ︸

≡K

[
r̃Nt + vt
εNEt + ut

]
︸ ︷︷ ︸

≡Yt

. (A.11)

where K is still the steady-state Kalman gain at time t, and K̃ ≡ (I2 − K)F , where I2 is the 2×2
identity matrix.

To obtain the model’s solution, we first substitute (A.6) into (A.8) to obtain

yt = yt+1|t − σ−1[(φπ − 1)πt+1|t − rNt ] = (A.12)

= −σ−1[(φπ − 1)πt+1|t − rNt ] + yt+2|t − σ−1[(φπ − 1)πt+2|t − rNt+1|t]

From (A.9)-(A.10) we have that rNt+1|t = ρN r̃
N
t|t + εNEt|t , so that the previous equation becomes

yt = −σ−1[(φπ − 1)πt+1|t − rNt ] + yt+2|t − σ−1[(φπ − 1)πt+2|t − (ρN r̃
N
t|t + εNEt|t )] (A.13)
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From (A.7) we get yt = κ−1[πt−βπt+1|t], and substituting this into the previous expression, we get the
following expectational difference equation for inflation:

πt − πt+1|t[β − κσ−1(φπ − 1)]− πt+2|t[1− κσ−1(φπ − 1)] + βπt+3|t =

= κσ−1[rNt + ρN r̃
N
t|t + εNEt|t ] (A.14)

Assuming that the condition for determinacy is satisfied (which, as it can easily be checked, boils down
to φπ being greater than 1), the solution can be found via the method of undetermined coefficients.
Postulating that inflation is a linear function of the three states—rNt , r̃Nt|t, and εNEt|t —that is,

πt = α1r
N
t + α1r̃

N
t|t + α1ε

NE
t|t (A.15)

the solution turns out to be equal to

πt = κσ−1rNt + κσ−1ρN
1 + Γ

1− ρNΓ
r̃Nt|t + κσ−1

1 + Γ

1− ρNΓ
εNEt|t (A.16)

with the analogous solutions for Rt and yt being

Rt = φπρNκσ
−1
(

1 + ρN
1 + Γ

1− ρNΓ

)
r̃Nt|t + φπκσ

−1
(

1 + ρN
1 + Γ

1− ρNΓ

)
εNEt|t (A.17)

yt = σ−1rNt + ρNσ
−1
[

(1+Γ)(1-βρN )

1− ρNΓ
-β

]
r̃Nt|t + σ−1

[
(1+Γ)(1-βρN )

1− ρNΓ
-β

]
εNEt|t (A.18)

where
Γ ≡ β − κσ−1(φπ − 1) + ρN [1− κσ−1(φπ − 1)]− βρ2N .

This implies that [
∂πt
∂εNEt

]
t=0

=

[
∂πt
∂ut

]
t=0

= κσ−1
1 + Γ

1− ρNΓ
K22[

∂Rt
∂εNEt

]
t=0

=

[
∂Rt
∂ut

]
t=0

= φπκσ
−1
(

1 + ρN
1 + Γ

1− ρNΓ

)
K22[

∂yt
∂εNEt

]
t=0

=

[
∂yt
∂ut

]
t=0

= σ−1
[

(1 + Γ) (1− βρN )

1− ρNΓ
− β

]
K22,

Just as with the previous model, εNEt and ut produce, on impact, the same IRFs for all of the model’s
endogenous variables, whereas, by assumption, they do not impact upon rNt (only the news shock
impacts upon rNt with a one-period delay).

Figure I.1 in the online appendix shows IRFs to news and noise shocks for the interest rate, inflation,
and the output gap, conditional on a standard calibration of the model’s structural parameters.1

Consistent with the previous discussion, for each variable the impact at t=0 of news and noise shocks is
identical. Further, the IRFs to news shocks lie above the corresponding IRFs to noise shocks, reflecting
the fact that, just as in the model with dividends and stock prices, agents progressively learn whether
a shock was news or noise. In the long run, the IRFs to news shocks progressively converge to their
perfect-information counterpart. This can be seen by comparing the black lines and the blue lines in
Figure I.1, with the former showing the IRFs to news shocks, and the latter representing instead the
same IRFs for the case of no noise shocks (i.e. based on the model calibrated as above, but with σ2

u = 0).
An implication of this is that separation between the two sets of IRFs will be faster the smaller is the
noise, whereas if the noise is substantial (i.e., σ2

u is comparatively large), it will take more time for the
agents to learn the truth.

1Specifically, we set β=0.99, κ=0.05, σ=1, φπ=1.5, and ρN=0.95.
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B Econometric Methods

The econometric methodology employed in this paper is outlined in sub-section 5.2 of the main text.
A key feature of this methodology is transforming an estimated fundamental reduced-form VARMA to
the non-fundamental structural representation, which is used to compute impulse response functions
and forecast error variance decompositions. These are summarized by Steps 3 and 4 in the procedure
outlined at the end of sub-section 5.2. The details of these two steps are as follows.

B.1 Transforming to a Non-fundamental Representation

Here, we provide details of Step 3, which transforms the fundamental representation that is estimated
directly, with one characteristic root at infinity by construction, to a non-fundamental representation,
with one root at zero. Accordingly, the approach in Step 3 involves traversing the following sub-steps:

3.1. Compute an arbitrary decomposition (e.g. Cholesky) Θ0Θ′0 = Σ.

3.2. Let δ be the n × 1 vector such that ΘqΘ0δ = 0 and δ′δ = 1. Note that δ is unique (up to sign).
Set Γ0 = (δ,∆⊥), such that δ′∆⊥ = 0 and Γ′0Γ0 = ΓΓ′0 = In (i.e. a constant orthogonal matrix).

3.3. Compute Θ̃q = ΘqΓ0, which results in the first column of Θ̃q being zero. Hence, we now apply

the simple Blaschke transformation that shifts in time the first column of each Θ̃1, . . . , Θ̃q, i.e. for
all i = 1, . . . , n, set

Ã0,i1 = 0,

Ãj,i1 = Θ̃j−1,i1, j = 1, . . . , q.

Note that because δ in 3.2 is unique up to sign, the resulting polynomial matrix Ã(L) = Ã0 + Ã1L+
· · · + ÃqL

q is such that A(L) = Ã(L)Γ, where Γ is a constant orthogonal matrix. It therefore only
remains to construct the appropriate orthogonal rotations matrix based on the identifying restrictions
proposed in sub-section 3.3 of the main text.

B.2 Imposing Structural Identification Restrictions

In the final post-processing Step 4 of the procedure outlined in sub-section 5.2 of the main text, we
obtain the structural A0, . . . , Aq that satisfy the identifying restrictions by applying a series of (constant)

orthogonal rotations to Ã0, . . . , Ãq (obtained after executing 3.1-3.3 in the preceding sub-section) as in
typical VAR settings. To implement our identification scheme R1-R3 (outlined in sub-section 3.3 of the
main text), we assume n ≥ 4, ε1,t is non-news, ε2,t is news, ε3,t is noise, and ε4,t is the transitory TFP
shock. We then obtain the requisite orthogonal rotations matrices as follows.

Ideally, the orthonormal matrices should be constructed using the algorithm described in sub-
section 4.2, which involves numerical optimisation. While we use such an approach in executing
the population exercise of Section 4, we find the numerical optimisation to be computationally too
demanding to be practical in our Monte Carlo study and empirical applications involving substantially
more variables. Instead, we employ an approximate algorithm that involves five types of analytically
tractable orthogonal rotations, Γ1, Γ2, Γ3, Γ4, and Γ5, such that their product Γ = Γ1Γ2Γ3Γ4Γ5 yields
the comprehensive set of orthogonal rotations that transform Ã(L) into the structural representation
of interest A(L), where the two VMA polynomials are related by Aj = ÃjΓ for j = 0, . . . , q. This
approximate algorithm is computationally efficient and as detailed in Appendix E performs extremely
well in recovering true IRFs/FEVs; its step-by-step implementation proceeds as follows.

We start with Γ1, which is determined by setting the first column

Γ1,1 = Ã′0,(1)/‖Ã0,(1)‖2,
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where Ã0,(1) denotes the first row of Ã0, and the remaining columns Γ1,i for i = 2, . . . , n equal to the
n− 1 vectors that are orthogonal to A′0,(1) (normalized such that ‖Γ1,i‖ = 1).

Next, let K̃(L) = B(L)−1Ã(L)Γ1 be the impulse responses obtained after applying the first set of
orthogonal rotations Γ1, and define K̃j,1[2:n] for j ≥ 0 as the 1× (n−1) row vector constructed from the

first row and columns 2 to n of K̃j . Compute the eigenvalue decomposition of
∑20
j=1 K̃

′
j,1[2:n]K̃j,1[2:n],

with eigenvalues sorted in descending order, and store the eigenvectors in E2. Using this, construct the
orthogonal matrix

Γ2 =

(
1 0
0 E2

)
.

Observe that rotations Γ1 and Γ2 result in Ǎ(L) = Ã(L)Γ1Γ2 that is unique up to signs, and at the same
time, a news shock that satisfies restriction R2. We normalize the sign of the news shock by requiring
that the maximum impulse response (over the horizon 0 : 20) of TPF to news is positive.

We then proceed to identify the noise shock that satisfies restriction R3 by constructing an orthogonal
matrix Γ3 such that the third column of Ǎ0Γ3 is proportional to the second. Specifically, let

Γ3 =

(
I2 0
0 E3

)
,

where the first column E3,1 of the n−2×n−2 orthogonal matrix E3 must satisfy (Ǎ0,3, . . . , Ǎ0,n)E3,1 =
cǍ0,2.

By construction2, the n × n − 1 matrix (Ǎ0,2, . . . , Ǎ0,n) has rank n − 2 and, therefore, there exists
a (unique up to sign) n− 1× 1 vector ζA = (ζA,1, ζ

′
A,2)′, ‖ζA‖ = 1 such that

(Ǎ0,2, . . . , Ǎ0,n)ζA = 0

(i.e. ζA is the orthonormal basis for the null space of (Ǎ0,2, . . . , Ǎ0,n), with ζA,1 a scalar and ζA,2 a
(n− 2)× 1 vector). Accordingly, set

c =
|ζA,1|

1− ζ2A,1
(1)

E3,1 = −sign(ζA,1)
ζA,2

1− ζ2A,1
, (2)

and the remaining columns E3,2, . . . , E3,n−2 of E3 to be the n−3 vectors orthogonal to E3,1 (normalized
such that ‖E3,i‖ = 1).

Finally, construct Γ4 and Γ5 to identify the non-news and transitory TFP shocks that satisfies
restriction R1. To this end, let Ǩ(L) = B(L)−1Ǎ(L)Γ3 be the impulse responses obtained after applying
the three orthogonal rotations described above, and define Ǩj,1[1,4:n] for j ≥ 0 as the 1×(n−2) row vector

constructed from the first row and columns 1, 4, . . . , n of Ǩj . Compute the eigenvalue decomposition

of
∑20
j=1 Ǩ

′
j,1[1,4:n]Ǩj,1[1,4:n], with eigenvalues sorted in descending order, and store the eigenvectors in

the (n− 2)× (n− 2) matrix E4.
Now, set

Γ4 =

 E4,11 0 E4,1[4:n−2]
0 I2 0

E4,[4:n−2]1 0 E4,[4:n−2][4:n−2]

 ,

where E4,11 is the (1, 1) element of E4, E4,[4:n−2]1 is the (n − 4) × 1 vector constructed from the first
column and last n − 4 rows of E4, E4,1[4:n−2] is the 1 × (n − 4) vector constructed from the first row

2Recall that rank Ã0 = n − 1, transformation by Γ1 preserves the linear independence of the first column, and
transformation by Γ2 only alters columns 2 to n.
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and last n− 4 columns of E4, and E4,[4:n−2][4:n−2] is the (n− 4)× (n− 4) sub-matrix constructed from
the last n− 4 rows and n− 4 columns of E4.

The polynomial matrix Â(L) = Ã(L)Γ1Γ2Γ3Γ4 yields a representation in which non-news, news and
noise satisfy restrictions R1-R3. Thus, all that remains is to identify the transitory TFP shock as the
only other shock that impacts TFP at t = 0 besides non-news, if it is also of interest. To this end,
construct the (n−3)× (n−3) matrix E5 by setting the first column E5,1 = Â′0,1[4:n]/‖Â0,1[4:n]‖2, where

Â0,1[4:n] denotes the 1× (n− 3) row vector constructed from the first row and last n− 3 columns of Â0.
Set the remaining columns E5,i for i = 2, . . . , n − 3 equal to the n − 4 vectors that are orthogonal to
A′0,1[4:n] (normalized such that ‖E5,i‖ = 1). Defining

Γ5 =

(
I3 0
0 E5

)
,

we obtain the desired structural representation as A(L) = Â(L)Γ5. Once again, we normalize the signs
of the non-news shock and transitory TFP shocks by requiring that the maximum impulse response
(over the horizon 0 : 20) of TPF to both shocks is positive.

C Barsky and Sims’ (2011) RBC Model Augmented with Noise
Shocks about TFP

C.1 The first-order conditions

The first-order conditions with respect to Ct, It, Nt, and Kt+1 are given by

ΣNt N
θ+1/η
t = µtAt(1− θ)Kθ

t (C.1)

µt = (Ct − bCt−1)
−1 − bβ (Ct+1 − bCt)−1 (C.2)

λt = βEt
[
(1− δ)λt+1|t + θµt+1At+1N

1−θ
t Kθ−1

t

]
(C.3)

µt = λt

{[
1− γ

2

(
It
It−1

− g̃I
)2
]
− γ It

It−1

(
It
It−1

− g̃I
)}

+

+ βEt

[
γλt+1

I2t
I2t−1

(
It
It−1

− g̃I
)]

(C.4)

where λt and µt are two Lagrange multipliers.

C.2 The process for TFP

The process for at = ln(At) is given by
at = ãt + vt (C.5)

where ãt is the unobserved permanent component of productivity and vt is a white noise disturbance,
vt ∼WN(0, σ2

v). The permanent component of at evolves according to

ãt = ãt−1 + εNNt + εNEt−1 (C.6)

where, once again, εNNt and εNEt are a non-news and a news shock, respectively. We consider a 1-
period anticipation horizon for the news shock. Although at time t agents observe at, its two individual
components, ãt and vt, are never observed. In each period, however, agents receive a signal, which is
equal to the sum of the news shock and of a noise component as in equation (5) in Section 2.1 of the
paper—that is: st = εNEt + ut—with ut being once again WN(0, σ2

u).
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C.3 The agents’ signal-extraction problem about TFP

By defining ξt = [∆ãt, ε
NE
t , vt, vt−1]′ and St = [∆at, st]

′, the model described by equation (5) in Section
2.1 of the paper, (C.5), and (C.6) can be put into state-space form, with state equation

∆ãt
εNEt
vt
vt−1

 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0


︸ ︷︷ ︸

A


∆ãt−1
εNEt−1
vt−1
vt−2

+


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


︸ ︷︷ ︸

B


εNNt
εNEt
vt
ut

 (C.7)

and observation equation

[
∆at
st

]
=

[
1 0 1 −1
0 1 0 0

]
︸ ︷︷ ︸

C


∆ãt
εNEt
vt
vt−1

+

[
0 0 0 0
0 0 0 1

]
︸ ︷︷ ︸

D


εNNt
εNEt
vt
ut

 (C.8)

The solution to the agents’ signal-extraction problem is still given by expressions (A.3)-(A.4).

C.4 Stationarizing the model’s variables

We stationarize all variables except hours as in Barsky and Sims (2011).3 Specifically, defining Γt ≡
A

1
1−θ
t , we stationarize output, consumption, investment, and the capital stock as X∗t ≡ Xt/Γt, with

X = Y , C, I, and K∗t ≡ Kt/Γt−1;4 and we stationarize the two Lagrange multipliers, λt and µt, as

λ∗t ≡ λt · Γt and µ∗t ≡ µt · Γt. Then, λ̂∗t is the log-deviation from the steady-state of λ∗t , ŷ
∗
t is the

log-deviation from the steady-state of Y ∗t , and so on.

C.5 The log-linearized equations for the stationarized variables

Log-linearizing the model’s transformed equations for the stationarized variables we obtain the following
expressions:

µ̂∗t + ĉ∗t [SC∆G + (1− SC)(1−∆G)] + (1− SC)∆Gĉ
∗
t+1|t+

+ SC(1−∆G)ĉ∗t−1 + SC
1−∆G

1− θ
∆at −

(1− SC)∆G

1− θ
∆at+1|t − εct = 0 (C.9)

− µ̂∗t +

(
θ +

1

η

)
n̂t +

θ

1− θ
∆at − θk̂∗t − εnt = 0 (C.10)

− λ̂∗t + βSK µ̂
∗
t+1|t + βS∗K ŷ

∗
t+1|t − βSK k̂

∗
t+1|t + β(1− SK)λ̂∗t+1|t − β

(1− SK)

1− θ
εNEt = 0 (C.11)

ŷ∗t −
αC ĉ

∗
t + αI ı̂

∗
t + (1− αC − αI)εgt
αC + αI

= 0 (C.12)

k̂∗t+1 +
αK + γ(1− αK)

1− θ
∆at + (1− αK)(γ − 1)̂ı∗t − αK k̂∗t − γ(1− αK )̂ı∗t−1 = 0 (C.13)

ŷ∗t +
θ

1− θ
∆at − (1− θ)n̂t − θk̂∗t = 0 (C.14)

3We wish to thank Eric Sims for providing extensive details about the solution to their original model.
4The capital stock is divided by Γt−1, rather than by Γt, in order to make sure that the stationarized capital stock,

K∗t , is still predetermined at time t.
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µ̂∗t − λ̂∗t + γı̂∗t +
γ

1− θ
∆at − γı̂∗t−1 − εit = 0 (C.15)

with λ̂∗t and µ̂∗t being the log-deviations from the steady-state of the two stationarized Lagrange
multipliers; n̂t being the log-deviation from the steady-state of hours worked (which are already
stationary); x̂∗t , with x = y, c, i, k, being the log-deviation from the steady-state of the stationarized
output, consumption, investment, and the capital stock, respectively; and εct and εit being white noise
shocks with variances σ2

c and σ2
i , respectively. We add the latter to Barsky and Sims’ original

model in order to eliminate stochastic singularity. Finally, the following objects are convolutions of

the model’s structural parameters, and are defined as follows: SC=(1-bg̃
−1/(1−θ)
A )−1/[(1-bg̃

−1/(1−θ)
A )−1-

bβ(g̃
1/(1−θ)
A -b)−1]; ∆G=g̃

1/(1−θ)
A /(g̃

1/(1−θ)
A -b); SK=θµ̄∗ssρY K/[θµ̄∗ssρY K+(1-δ)λ̄∗ssg̃

−1/(1−θ)
A ]; αC=C̄/Ȳ ;

αI=Ī/Ȳ ; αK=(1-δ)/[(1-δ)+δg̃
1/(1−θ)
A ]; µ̄∗ss=[(1-bg̃

−1/(1−θ)
A )−1-bβ(g̃

1/(1−θ)
A -b)−1]/C̄; λ̄∗ss=βθµ̄

∗
ssρY K/[1-

β(1-δ)g̃
−1/(1−θ)
A ], where C̄, Ī, Ȳ , and K̄ are the values taken by consumption, investment, GDP, and

the capital stock in the steady-state, and ρY K=Ȳ /K̄ is the value taken by ratio between GDP and the
capital stock in the steady-state, and λ̄∗ss and µ̄∗ss are the values taken by the stationarized Lagrange
multipliers in the steady-state.

In the benchmark calibration, we set most of the model’s parameters as in Barsky and Sims (2011).
Specifically, we set β=0.99, δ=0.05, θ=1/3, γ=0.05, ḡ=0.2, g̃A=1.021/4, c̄=2/3, αC=2/3, αI=0.2.
We then set b=0 (so that in the benchmark calibration the model features no habit formation in
consumption), and (1/η)=0 (so that the utility function is linear in hours worked). As for the standard
deviations of the structural shocks, we set them to σNN=0.3, σNE=0.3, σu=0.25, σv=0.25, σc=0.25,
σn=0.25, σg=0.25, σi=0.25. As for ρY K , we calibrate it based on the estimate of the steady-state
capital-output ratio for the United States, which Dadda and Scorcu (2003) based on long-run data,

estimate at 1.7, so that we have ρY K=1/1.7=0.5882. Finally, we set g̃I=g̃
1/(1−θ)
A : the rationale for doing

this is simply that, in the steady-state, It/It−1=g̃I , and since the steady-state gross rate of growth of

investment is equal to g̃
1/(1−θ)
A , it ought to be the case that g̃I=g̃

1/(1−θ)
A .

C.6 Model solution

Following Blanchard et al.’s (2013) Appendix, we compute the solution via the method of undetermined
coefficients as follows. We start by putting the RBC model in the form

FYt+1|t +GYt +HYt−1 +MSt +NSt+1|t + Zεt = 0 (C.16)

where F , G, H, M , N , and Z are matrices of coefficients; Yt is a vector containing the stationarized
endogenous variables for the log-linearized model, that is, Yt = [λ̂∗t , µ̂

∗
t , ŷ
∗
t , ĉ
∗
t , ı̂
∗
t , n̂t, k̂

∗
t , k̂
∗
t+1]′; and εt

contains all shocks except those pertaining to the signal-extraction problem (εNNt , εNEt−τ , ut, vt), that is,
εt = [εnt , ε

g
t , ε

c
t , ε

i
t]
′.

Given the model in the form (C.16), we conjecture that the solution for Yt takes the form

Yt = PYt−1 +QSt +Rξt|t + V εt (C.17)

where P solves the quadratic equation5

FP 2 +GP +H = 0, (C.18)

Q and V are given by
Q = −(G+ FP )−1M (C.19)

V = −(G+ FP )−1Z (C.20)

5See Uhlig (1999) for the solution to the quadratic equation.
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and, given P and Q, R is obtained by solving iteratively the expression

(G+ FP )R+ [NC + F (QC +R)]A = 0. (C.21)

Finally, ξt|t is the agents’ estimate of the vector ξt based on information at time t, which is generated
by the Kalman filter within the context of the signal-extraction problem. Equations (C.18), (C.19),
and (C.21) are the same as in Blanchard et al.’s (2013) Appendix, whereas the additional expression
we have, equation (C.20), originates from the fact that we here have additional shocks, over and above
those pertaining the signal-extraction problem.

D Computing Truncated Theoretical SVARMA
Representations of the RBC Model

In this appendix we describe how we compute the truncated theoretical SVARMA representations of
Barsky and Sims’ (2011) RBC model augmented with noise shocks we discuss in Section 4.1.2.

Let
Yt = Ã0εt + Ã1εt−1 + Ã2εt−2 + Ã3εt−3 + Ã4εt−4 + Ã5εt−5 + ... (D.1)

be the infinite structural MA representation of the RBC model, which can be recovered from the model’s
IRFs to unit-variance structural shocks, and let Ω = E[εtε

′
t] be the covariance matrix of the structural

innovations. For chosen VAR and MA lag orders p and q, we compute the model’s truncated (in general)
theoretical SVARMA representation

Yt = B1Yt−1 +B2Yt−2 + ...+BpYt−p +A0εt +A1εt−1 + ...+Aqεt−q (D.2)

as follows.
By post-multiplying (D.2) by Y ′t−i, for i = 1, 2, 3, ..., p, we obtain a system of p equations,

YtY
′
t−i = B1Yt−1Y

′
t−i +B2Yt−2Y

′
t−i + ...+BpYt−pY

′
t−i+

+A0εtY
′
t−i +A1εt−1Y

′
t−i + ...+Aqεt−qY

′
t−i, i = 1, 2, 3, ..., p. (D.3)

By the same token, by post-multiplying (D.2) by ε′t−j , for j = 1, 2, 3, ..., q, we obtain a system of q
equations,

Ytε
′
t−j = B1Yt−1ε

′
t−j +B2Yt−2ε

′
t−j + ...+BpYt−pε

′
t−j+

+A0εtε
′
t−j +A1εt−1ε

′
t−j + ...+Aqεt−qε

′
t−j , j = 1, 2, 3, ..., q. (D.4)

By taking unconditional expectations of (D.3) and (D.4) we obtain the system of p+q equations

E[YtY
′
t−i] = B1E[Yt−1Y

′
t−i] +B2E[Yt−2Y

′
t−i] + ...+BpE[Yt−pY

′
t−i]+

+A0E[εtY
′
t−i] +A1E[εt−1Y

′
t−i] + ...+AqE[εt−qY

′
t−i], i = 1, 2, 3, ..., p. (D.5)

E[Ytε
′
t−j ] = B1E[Yt−1ε

′
t−j ] +B2E[Yt−2ε

′
t−j ] + ...+BpE[Yt−pε

′
t−j ]+

+A0E[εtε
′
t−j ] +A1E[εt−1ε

′
t−j ] + ...+AqE[εt−qε

′
t−j ], j = 1, 2, 3, ..., q. (D.6)

which ought to be jointly solved in order to recover the matrices B1, B2, ..., Bp, A1, A2, ..., Aq. As for

A0, on the other hand, we have that A0 = Ã0. Equations (D.5)-(D.6) can be put into the matrix form

h = Hβ (D.7)
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where

h =


E[Yt−1Y

′
t ]

...
E[Yt−pY

′
t ]

E[εt−1Y
′
t ]

...
E[εt−qY

′
t ]

 H =

[
H11 H12

H21 H22

]
β =


B′1
...
B′p
A′1
...
A′q


and

H11 =


E[Yt−1Y

′
t−1] E[Yt−1Y

′
t−2] ... E[Yt−1Y

′
t−p]

E[Yt−2Y
′
t−1] E[Yt−2Y

′
t−2] ... E[Yt−2Y

′
t−p]

... ... ... ...
E[Yt−pY

′
t−1] E[Yt−pY

′
t−2] ... E[Yt−pY

′
t−p]



H12 =


E[Yt−1ε

′
t−1] E[Yt−1ε

′
t−2] ... E[Yt−1ε

′
t−q]

0N×N E[Yt−2ε
′
t−2] ... E[Yt−2ε

′
t−q]

... ... ... ...
0N×N 0N×N ... E[Yt−pε

′
t−q]

 , H21 = H ′12

H22 =


Ω 0N×N ... 0N×N

0N×N Ω ... 0N×N
... ... ... ...

0N×N 0N×N ... Ω


The expectations terms in the expressions for h and H are equal to

E[YtY
′
t−i] =

∞∑
k=i

ÃkΩÃ′k−i and E[Yt−iY
′
t ] = [E(YtY

′
t−i)]

′, i = 0, 1, 2, ..., p (D.8)

E[Ytε
′
t−j ] = ÃjΩ and E[εt−jY

′
t ] = [E(Ytε

′
t−j)]

′, j = 0, 1, 2, ..., q (D.9)

Based on this, the solution to (D.7) can be immediately be computed as β = H−1h, from which we
can recover the matrices B1, B2, ..., Bp, A1, A2, ..., Aq. One practical issue in the computation of the
solution is the following. Since in Barsky and Sims’ RBC model Yt is I(1), all of the matrices E[YtY

′
t−i],

i = 0, 1, 2, ..., p, explode to infinity. (The elements of the matrices E[Ytε
′
t−j ] = ÃjΩ, on the other hand,

are always finite.) In order to solve equation (D.7), therefore, instead of computing E[YtY
′
t−i] based on

the infinite sum in (D.8), we compute it based on

E[YtY
′
t−i] =

K∑
k=i

ÃkΩÃ′k−i, i = 0, 1, 2, ..., p (D.8)

with K ‘large’. We compute the solution to equation (D.7) for different values of K. If K is sufficiently
large (i.e., greater than about 100), further increasing it produces results which are numerically
indistinguishable.

E Monte Carlo Evidence on the Performance of the Proposed
Econometric Methodology

In this appendix we present Monte Carlo evidence on the performance of the proposed econometric
methodology, taking Barsky and Sims’ (2011) RBC model, augmented with noise shocks about future
TFP as the DGP. We focus on two main questions: (i) Can the proposed identification scheme and
estimation approach correctly recover the response of the economy to non-news, news, and noise shocks?
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(ii) Can they correctly capture how important the three shocks are at driving the dynamics of individual
variables?

Based on the DGP described in Section 3 and Appendix C, we generate 1,000 artificial samples of
length T = 1,000, in order to focus on the ability of the proposed methodology to recover the DGP’s
main features asymptotically (in the present case, in ‘very large samples’). Based on each sample we
then estimate a VARMA(1,1) based on the methodology described in Section 4, imposing exactly the
same restrictions we impose when we work with the actual data.

Figures E.1 and E.2 show the means—across all of the 1,000 Monte Carlo simulations—of the 50th,
16th, 84th, 5th, and 95th percentiles of the posterior distributions of the IRFs and the fractions of
FEV, respectively, based on point identification. Figures E.3 and E.4 show the means—again, across all
of the 1,000 Monte Carlo simulations—of the medians of the posterior distributions of the upper and
lower envelopes of the IRFs and the fractions of FEV, respectively (the upper and lower envelopes have
been computed, for each draw, across the set of all possible representations obtained by ‘flipping the
roots’—see the discussion in Sections 4.2.2 and 5.1); the 84th percentile of the posterior distribution
of the upper envelope; and the 16th percentile of the posterior distribution of the lower envelope, all
based on set identification.

Results based on point identification require little discussion, as they are uniformly excellent. In
particular, the fractions of FEV in Figure E.2 are all captured with great precision. As for the IRFs,
although they are typically captured precisely, the following should be noted. First, in a few cases (see,
in particular, the responses of TFP to news and non-news shocks) the IRFs exhibit some slight tendency
towards mean-reversion. Since we are here using samples of length 1,000, this might be seen, at first
sight, as problematic. In fact, it is not, and it simply originates from the fact that, as mentioned in
the text, in estimation we are imposing stationarity (i.e., we are rejecting all of the draws for which the
largest eigenvalue of the VAR portion of the VARMA is greater than or equal to one). This means that,
in principle, we could trivially get rid of this simply by not imposing the stationariy constraint. Second,
in two cases—consumption, and especially GDP—the IRFs to noise shocks exhibit some imprecision.
The obvious explanation is that, since in the DGP these shocks explain very little of anything, precisely
estimating their impact is comparatively more difficult than for news and non-news shocks.

Turning to the results based on set identification, the main feature emerging from Figures E.3-
E.4 is that whereas the upper envelopes of the posterior distributions of the IRFs and fractions of
FEV systematically capture correctly the true objects, the lower envelopes do not. The obvious
explanation for this is that whereas a VARMA entails many observationally equivalent representations,
only one of them will be the ‘correct’ one. Within the present context, the evidence in Figures E.3-
E.4—especially when compared to the corresponding evidence in Figures E.1-E.2—naturally suggests
that the assumption that all non-zero roots are outside the unit circle is indeed justified, in the sense
of being consistent with the DGP. On the other hand, the other representations—which we obtain by
flipping the non-zero roots to lie inside the unit circle—systematically fail to capture the true DGP.

To focus ideas, consider the the MA(1) process: yt = aεt + εt−1, with εt ∼ N(0, σ2). As it is
well known, an observationally equivalent representation for yt is given by yt = (1/a)εt + εt−1, with εt
∼ N(0, a2σ2). Because of this identification problem, when we estimate the MA(1) we need to impose
a restriction on the parameter—either |a| < 1, which corresponds to the MA root being outside the
unit circle, or |a| > 1, which corresponds to the MA root being inside the unit circle. Now, suppose we
do a Monte Carlo experiment where the DGP is yt = 0.5εt + εt−1, with εt ∼ N(0, 1). If we estimate the
MA(1) under the restriction |a| < 1, for large enough T we will recover a=0.5, σ2=1. However, if we
estimate the process using the alternative restriction |a| > 1, we will obtain, for large T , a=2, σ2 = 0.25.
Crucially, in the second representation the variance is smaller than the true variance. This is exactly
what is happening with the results from the Monte Carlo experiment: One of the representations—let’s
call it ‘almost fundamental’, to mean that all non-zero roots are outside the unit circle—is correct,
whereas the others with the roots flipped inside the unit circle are observationally equivalent, but not
correct with respect to the true DGP.

Overall, our own assessment is that the performance of the proposed estimation and identification
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Figure E.1  Results from the Monte Carlo exercise based on point-identification: Means, across 
                all of the Monte Carlo simulations, of the 50th, 16th, 84th, 5th, and 95th percentiles  
                of the posterior distributions of the impulse-response functions  
 



 33

 
 
 

 
 

Figure E.2  Results from the Monte Carlo exercise based on point-identification: Means, across all of 
the Monte Carlo simulations, of the 50th, 16th, 84th, 5th, and 95th percentiles of the posterior 
distributions of the fractions of forecast error variance  
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Figure E.3  Results from the Monte Carlo exercise based on set-identification: Means, across all 
of the Monte Carlo simulations, of the median, the 16th, and 84th percentiles of the posterior 
distributions of the upper and lower envelopes of the impulse-response functions  
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Figure E.4  Results from the Monte Carlo exercise based on set-identification: Means, across all of 
the Monte Carlo simulations, of the median, the 16th, and 84th percentiles of the posterior 
distributions of the upper and lower envelopes of the fractions of forecast error variance  
 



methodology against this specific DGP is excellent, which justifies applying it to the data.

F The Data

We use John Fernald’s purified TFP series available from the San Francisco Fed’s website. A seasonally
adjusted series for real GDP (GDPC96) is from the U.S. Department of Commerce: Bureau of Economic
Analysis. Inflation has been computed as the log-difference of the GDP deflator (GDPCTPI) taken from
the St. Louis Fed’s website. Hours worked by all persons in the nonfarm business sector (HOANBS) is
from the U.S. Department of Labor, Bureau of Labor Statistics. The seasonally adjusted series for real
chain-weighted investment, consumption of non-durables and services, and their deflators (which we use
in order to compute the chain-weighted relative price of investment) have been computed based on the
data found in Tables 1.1.6, 1.1.6B, 1.1.6C, and 1.1.6D of the National Income and Product Accounts.
Whereas real consumption and its deflator pertain to non-durables and services, real investment and
its deflator have been computed by chain-weighting the relevant series pertaining to durable goods;
private investment in structures, equipment, and residential investment; Federal national defense and
non-defense gross investment; and State and local gross investment. All these variables are available at
the quarterly frequency.

The remaining variables are available at a monthly frequency and have been converted to the
quarterly frequency by taking averages within the quarter. The Federal funds rate (FEDFUNDS) and
the 5-year government bond yield (GS5) are taken from the St. Louis Fed’s website. They are quoted at
a non-annualized rate in order to make their scale exactly comparable to that of inflation.6 Seasonally
unadjusted nominal dividends and stock prices (the S&P 500 index) are both from Robert Shiller’s
website. They have then been deflated by the GDP deflator. Civilian non-institutional population
(CNP16OV) is from the U.S. Department of Labor, Bureau of Labor Statistics.

G Model Comparison Exercise

G.1 Deviance Information Criterion

The Deviance Information Criterion (DIC) was introduced in Spiegelhalter et al. (2002). For latent
variable models there are a few distinct variants depending on the exact notion of the likelihood Celeux
et al. (2006). Given a likelihood function f(y | θ), the DIC is defined as:

DIC = D(θ) + pD,

where
D(θ) = −2Eθ (ln f(y | θ) | y)

is the posterior mean deviance and pD is the effective number of parameters. That is, the DIC is the
sum of the posterior mean deviance, which can be used as a Bayesian measure of model fit or adequacy,
and the effective number of parameters that measures model complexity. The effective number of
parameters is in turn defined as

pD = D(θ)−D(θ̃),

where D(θ) = −2 ln f(y | θ) and θ̃ is an estimate of θ, which is typically taken as the posterior mean.
Following Chan et al. (2016), we use the likelihood implied by the system B(L)yt = Θ(L)εt, εt ∼

N(0,Σ), or equivalently

yt =

p∑
j=1

Bjyt−j +

q∑
j=1

Θjεt−j + εt, εt ∼ N(0,Σ), (3)

6To be clear, if we define an interest rate series as Rt—with its scale such that, e.g., a ten per cent rate is represented
as 10.0—the rescaled series is computed as rt=(1+Rt/100)1/4-1.
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where all the parameters can be recovered from the main sampling algorithm.
To derive this density, we stack (3) over t and obtain:

y = b+ Θε, (4)

where ε = (ε′1, . . . , ε
′
T )′ ∼ N(0, IT ⊗Σ), b = ((

∑p
j=1Bjy1−j)

′, . . . , (
∑p
j=1BjyT−j)

′)′ and Θ is a Tn×Tn
lower triangular matrix with the identity matrix In on the main diagonal block, Θ1 on first lower
diagonal block, Θ2 on second lower diagonal block, and so forth. Hence, we have

(y |B1, . . . , Bp,Θ1, . . . ,Θq,Σ) ∼ N(b,Θ(IT ⊗ Σ)Θ′).

Since the covariance matrix Θ(IT ⊗Σ)Θ′ is a band matrix, this Normal density can be evaluated quickly
using the band matrix algorithms discussed in Chan and Grant (2016).

G.2 Estimated DIC values for alternative models

We work with a set of n−variate VARMA(p,1) models and consider various choices of n and p. All
the DICs are computed using the marginal distribution of the six variables in the n = 6 case as the
likelihood. A model with a smaller DIC value is preferred. They are reported in Table G1. Models with
p = 4 clearly dominate for all choices of n and all results presented in this paper use this lag length.
With regard to n, the choice n=8 dominates choices of a similar dimension. Since medium-size VARs
of approximately this dimension are typically used in this literature, the results presented in the body
of the paper use n=8. However, the lowest value of DIC is obtained for the larger VARMA with n =
15. In the next appendix, we present IRFs and FEVs for this case and find them to be quite similar,
but slightly less precisely estimated than those with n=8.

Table G1: Estimated DIC valuesa and associated
numerical standard errors (in parentheses)

n = 6 n = 8 n = 9 n = 10 n = 15

p = 2 3064.7 3016.5 3044.4 3003.5 2908.6

(0.10) (0.05) (0.16) (0.27) (0.16)

p = 4 3022.4 3000.7 3008.4 2981.7 2883.0

(0.13) (0.13) (0.37) (0.27) (0.20)
a The DICs are computed using the marginal distribution of

the six variables in the n = 6 case as the likelihood.

G.3 Evidence based on the model selected by the DIC criterion

Figures G.1-G.6 report evidence for the model with n = 15, which, based on the results reported in
Table G1, is the one preferred by the DIC criterion. Since, as discussed in the paper, the results
produced by models in which we do, or we do not impose restrictions on the absolute values of the
IRFs to news and noise shocks are very close, the evidence reported in Figures G.1-G.6 comes from
a model in which we have not imposed such restrictions (the only reason for doing so is that, with n
=15, imposing such restrictions is very computationally intensive). The evidence reported in Figure G.3
confirms the main finding in Section 5: Noise shocks explain uniformly negligible fractions of the FEV
of all variables at all horizons. Further, the fractions of FEV are typically estimated quite precisely:
This is especially the case for noise and non-news shocks, whereas it is less so for news shocks. As
for the IRFs, the broad pattern for non-news and news shocks is the same as in Figure 8, with the
main difference being the smaller extent of precision. As for noise shocks, on the other hand, the IRFs
in Figure G.6 are so imprecisely estimated that it is essentially impossible to say anything about the
response of the economy to these disturbances.
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H Additional Empirical Results

As mentioned in the text, this online appendix contains (below) several additional results. In particular,
for our main application with TFP, we present results based on systems featuring either 6 or 8 series;
based on VARMA(p, q)’s with p = 4 and q = 1, 2, 3; based on either point or set identification; and, in
a few cases, based on imposing the restriction that the absolute magnitudes of the IRFs to news shocks
are greater than the corresponding magnitudes of the IRFs to noise shocks two periods after impact.
We also show results for systems featuring either 10 or 15 series; based on p = 4 and q = 1; based on
either point or set identification; and without imposing the restriction on the absolute magnitudes of
the IRFs to news and noise shocks.

The main points we want to stress here are that
(1) our main finding—noise shocks play a uniformly negligible role in driving macroeconomic

fluctuations—is remarkably robust across all specifications; and
(2) results pertaining to both the IRFs and the fractions of FEVs are very close across alternative

specifications.

I News, Noise and Mixed Representations

In this section, we illustrate several properties of structural representations involving news and noise
shocks. The goal is to highlight conditions under which such representations are observationally
equivalent and when they are unique. This has been the subject of close scrutiny in recent literature,
with important implications for the type of time series methods that are suitable in empirical work
(e.g., Blanchard et al. (2013); Forni et al. (2017); Chahrour and Jurado (2018)).

As a simple example, consider a news representation defined by the fundamental process

at = εNEt−1 + εNNt ,

(
εNNt
εNEt

)
∼ N

((
0
0

)
,

(
σ2
NN 0
0 σ2

NE

))
,

along with the agents’ time-t information set consisting of the history {at−τ , st−τ}∞τ=0, with st ≡ εNEt .
7 In this case, agents formulate rational expectations about future fundamentals as â1,t ≡ Et(at+1) =
st = εNEt .

Alternatively, Chahrour and Jurado (2018) define a noise representation by the signal process

st = at+1 + ut,

(
at
ut

)
∼ N

((
0
0

)
,

(
σ2
a 0

0 σ2
u

))
,

along with the agents’ time-t information set consisting of the history {at−τ , st−τ}∞τ=0. In this case,
agents formulate rational expectations about future fundamentals as â1,t ≡ Et(at+1) = κst = κat+1 +
κut, where κ = σ2

a/(σ
2
a + σ2

u).
Chahrour and Jurado (2018) show (in Proposition 1) that if an econometrician observes only the

two variables (at, â1,t), then news and noise representations of this bivariate system are observationally
equivalent if and only if

σ2
a = σ2

NN + σ2
NE ,

σ2
u

σ2
a

=
σ2
NN

σ2
NE

. (5)

It follows that to estimate the effects of noise shocks, one may proceed by first estimating σ2
NN and

σ2
NE in the news representations, then obtaining σ2

a and σ2
u in the noise representation through (5).

Moreover, if the econometrician observes additional variables that are linear combinations of at−τ and
â1,t−τ , τ ≥ 0, then the observational equivance continues to hold, so that the approach of estimating

7Note that this information set is equivalent to {εNNt−τ , εNEt−τ}∞τ=0 as stated in Chahrour and Jurado (2018).
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the news representation, then transforming to the noise representation, may be generalized under these
assumptions.

However, Forni et al. (2017) put forth the idea that certain observable variables available to the
econometrician effectively “reveal” the signal st that is observed by the agents. Indeed, this concept
plays a central role in their strategy aimed at identifying news and noise shocks from macroeconomic
data. A simple example of such a variable may be yt = st + ξt, with ξt ∼ N(0, σ2

ξ ) being measurement
error, uncorrelated with any structural shocks in the model.

Consequently, if the econometrician observes the trivariate system (at, â1,t, yt)
′ then the two

representations are given by:

news :

 at
â1,t
yt

 =

1 L 0
0 1 0
0 1 1

εNNtεNEt
ξt

 ,

εNNtεNEt
ξt

 ∼ N
0

0
0

 ,

σ2
NN 0 0
0 σ2

NE 0
0 0 σ2

ξ

 ,

noise :

 at
â1,t
yt

 =

 1 0 0
κL−1 κ 0
L−1 1 1

atut
ξt

 ,

atut
ξt

 ∼ N
0

0
0

 ,

σ2
a 0 0

0 σ2
u 0

0 0 σ2
ξ

 ,

where L−1 is the forward operator (i.e., xt+1 = L−1xt).
However, it is easy to verify that the spectral density generated by the news representation is not

equal to the spectral density under the noise representation unless σ2
u = 0. To see this, observe that

under the news representation, cov(at, â1,t−1) = cov(at, yt−1) = σ2
NE . Under the noise representation,

on the other hand, cov(at, â1,t−1) = κσ2
a and cov(at, yt−1) = σ2

a. For observational equivalence to hold,
we must have cov(at, â1,t−1) = cov(at, yt−1), or equivalently κσ2

a = σ2
a. Assuming σ2

a 6= 0, this condition
is only satisfied when σ2

u = 0; that is, when noise shocks are not present. Hence, one can no longer
obtain an estimate of the noise representation by transforming an estimated news representation—the
noise representation must be estimated directly in this case.

In the present paper, we are not interested in estimating either a “pure news” representation or a
“pure noise” representation. Instead, we focus on a representation where macroeconomic data is driven
by four shocks: a permanent surprise shocks, a transitory surprise shock, a news shock and a noise
shock. Ignoring for ease of exposition the transitory shock (and because it is sufficient to illustrate the
point), such a mixed representation may be formulated as:

at = εNEt−1 + εNNt , (6)

where agents observe in each period at along with the signal

st = εNEt + ut, (7)

and with εNNtεNEt
ut

 ∼ N
0

0
0

 ,

σ2
NN 0 0
0 σ2

NE 0
0 0 σ2

u

 .

It turns out that for a bivariate system (at, â1,t), the mixed representation in (6)-(7) is observationally
equivalent to a pair of news and noise representations (Chahrour and Jurado, 2018, Proposition 2).
An important insight in this result, however, is that it depends crucially on the way the fundamental
process is defined in (6).

In particular, the mixed representation will be unique for a system involving variables that reveal the
signal (as illustrated above), but would also be unique for systems not including signal reveal variables
if a more general fundamental process is specified. To clarify the intuition, consider a sightly more
elaborate fundamental process defined by

at = εNEt−1 + θεNEt−2 + εNNt . (8)
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Clearly, when θ = 0 this process reverts to the one given by (6). However, with θ 6= 0, the resulting
mixed representation is unique, even for systems that contain only observations of the fundamental at
and future expectations âj,t, j ≥ 1, but not any particular variables that reveal the signal.

Indeed, with θ 6= 0, agents whose time-t information set consists of the history {at−τ , st−τ}∞τ=0

formulate expectations at time-t that are given by

â1,t ≡ Et(at+1) = κ0st + θκ1at + θκ2st−1, (9)

â2,t ≡ Et(at+1) = θκ0st, (10)

âτ,t ≡ Et(at+τ ) = 0, τ ≥ 3, (11)

where

κ0 =
σ2
NE

σ2
NE + σ2

u

, κ1 =
κ0σ

2
u

θ2σ2
NE + (2− κ0)σ2

NN

κ2 =
κ0(θ2σ2

NE + σ2
NN )

θ2σ2
NE + (2− κ0)σ2

NN

.

The fundamentals and expectations have the following important properties:

E(â2,tat) = 0, E(â1,tat−1) = θκ1σ
2
NE . (12)

Now, consider a potential news representation for at, which by definition has the form:

at = η0,t + η1,t−1 + η2,t−2 + η3,t−3 + · · · ,

where each {ηj,t; t ∈ Z} is a stationary, Gaussian, mean-zero process with unconditional variance
σ2
ηj ≥ 0. Moreover, E(ηj,tηk,t−τ ) = 0 for all j 6= k and all τ ∈ Z. However, each ηj,t is potentially

correlated with ηj,t−τ for τ 6= 0. In the news representation, agents’ information consists of the space
spanned by {ηj,t−τ}∞j,τ=0. This implies the expectation

E(â2,tat) = E(Et(η0,t+2)η0,t) + E(Et(η1,t+1)η1,t−1) +

∞∑
j=2

E(ηj,t+2−jηj,t−j)

= E(η0,t+2η0,t) + E(η1,t+1η1,t−1) +

∞∑
j=2

E(ηj,t+2−jηj,t−j) (13)

= E(η0,t+1η0,t−1) + E(η1,tη1,t−2) +

∞∑
j=2

E(ηj,t+1−jηj,t−1−j) (14)

= E(Et(η0,t+1)η0,t−1) + E(η1,tη1,t−2) +

∞∑
j=2

E(ηj,t+1−jηj,t−1−j) (15)

= E(â1,tat−1),

where (13) and (15) follow from iterated expectations along with the fact that ηj,t−τ belongs the agents’
time-t information set for all τ ≥ 0, and (14) follows from ηj,t being stationary and Gaussian.

Since, E(â2,tat) and E(â1,tat−1) must satisfy (12) in the mixed representation, observational
equivalence only holds if either θ = 0 or σ2

u = 0 (which holds if and only if κ1 = 0). Of course if
σ2
u = 0 then noise is not present in the model and (8)-(7) reduces to a news representation. When
θ 6= 0, on the other hand, the exists a “pure news” representation that is observationally equivalent
to a “pure noise” representation, but neither of these will be observationally equivalent to the mixed
representation defined by (7) and (8).

Hence, θ 6= 0 is the key feature that breaks the observational equivalence between this mixed
representation and any potential news / noise pair. It follows that mixed representations of the type
analysed in this paper are unique, unless very restrictive assumptions are imposed on the fundamental
process. In the general case, therefore, mixed representations must be estimated directly, and the
structural VARMA methodology employed in this paper once again emerges as the most suitable
approach.
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Additional results for Barsky and Sims’ (2011) model 
augmented with noise shocks about TFP 








 








 

Figure I.1  Fractions of forecast error variance explained by non-news, news and noise shocks for  
               Barsky and Sims’ (2011) model augmented with noise shocks about TFP





 







 

Figure I.2  Assessing the identifying restrictions in population: Theoretical and 
               estimated fractions of FEV based on Barsky and Sims’ (2011)RBC 
               model augmented with noise shocks
 
 



 

 
 
 
 
 
 
 
 

 
 
 

Figure I.3  Comparison with Barsky and Sims (2011) for the application with TFP: Medians, 
               and 16-84 and 5-95 percentiles of the posterior distributions of the impulse-response  
               functions to the news and non-news shocks 




 
















Impulse-response functions to news and noise 
shocks in the New Keynesian model 








 










 

Figure II.1  Impulse-response functions to news and noise shocks 
                within the standard New Keynesian model




 
















Results based on VARMAs with 6 series and point 
identification, without imposing restrictions on the absolute 

magnitude of the IRFs to TFP noise shocks 








 










Figure III.1  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                  the ratio between the third and second column of A0, based on a VARMA(4,1) 
 



 








Figure III.2  Impulse-response functions to non-news, news, and noise shocks (median, and 
                 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 
 
 



 









Figure III.3  Fractions of forecast error variance explained by non-news, news, and noise shocks 
                 (median, and 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 
 
 
 



 












Figure III.4  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                 the ratio between the third and second column of A0, based on a VARMA(4,2) 
 
 
 



 








Figure III.5  Impulse-response functions to non-news, news, and noise shocks (median, and 
                 16-84 percentiles of the posterior distribution), based on a VARMA(4,2) 
 
 



 








Figure III.6  Fractions of forecast error variance explained by non-news, news, and noise shocks 
                 (median, and 16-84 percentiles of the posterior distribution), based on a VARMA(4,2)  
 
 



 












Figure III.7  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                 the ratio between the third and second column of A0, based on a VARMA(4,3) 
 
 



 









Figure III.8  Impulse-response functions to non-news, news, and noise shocks (median, and 
                 16-84 percentiles of the posterior distribution), based on a VARMA(4,3)  
 



 








Figure III.9  Fractions of forecast error variance explained by non-news, news, and noise shocks 
                 (median, and 16-84 percentiles of the posterior distribution), based on a VARMA(4,3) 
 
 



 
















Results based on VARMAs with 6 series and set 
identification, without imposing restrictions on the absolute 

magnitude of the IRFs to TFP noise shocks 








 












Figure IV.1  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                 the ratio between the third and second column of A0, based on a VARMA(4,1) 
 



 








Figure IV.2  Impulse-response functions to non-news, news, and noise shocks (median, and 
                 16-84 percentiles of the posterior distribution), based on a VARMA(4,1)  
 



 








Figure IV.3  Fractions of forecast error variance explained by non-news, news, and noise shocks 
                 (median, and 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 
 
 



 












Figure IV.4  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                 the ratio between the third and second column of A0, based on a VARMA(4,2) 
 
 



 











Figure IV.5  Impulse-response functions to non-news, news, and noise shocks (median, and 
                 16-84 percentiles of the posterior distribution), based on a VARMA(4,2) 
 



 









Figure IV.6  Fractions of forecast error variance explained by non-news, news, and noise shocks 
                 (median, and 16-84 percentiles of the posterior distribution), based on a VARMA(4,2) 
 



 










 

Figure IV.7  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                 the ratio between the third and second column of A0, based on a VARMA(4,3) 
 



 











Figure IV.8  Impulse-response functions to non-news, news, and noise shocks (median, and 
                 16-84 percentiles of the posterior distribution), based on a VARMA(4,3) 



 










Figure IV.9  Fractions of forecast error variance explained by non-news, news, and noise shocks 
                 (median, and 16-84 percentiles of the posterior distribution), based on a VARMA(4,3) 
 



 
















Results based on VARMAs with 8 series and point 
identification, without imposing restrictions on the absolute 

magnitude of the IRFs to TFP noise shocks 








 










 


Figure V.1  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                 the ratio between the third and second column of A0, based on a VARMA(4,1) 
 



 








 

Figure V.2  Impulse-response functions to non-news, news, and noise shocks (median, and  
                16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 



 









 

Figure V.3  Fractions of forecast error variance explained by non-news, news, and noise shocks (median, 
                and 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 
 



 








 

Figure V.4  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                 the ratio between the third and second column of A0, based on a VARMA(4,2) 
 



 










Figure V.5  Impulse-response functions to non-news, news, and noise shocks (median, and  
                16-84 percentiles of the posterior distribution), based on a VARMA(4,2) 



 











Figure V.6  Fractions of forecast error variance explained by non-news, news, and noise shocks (median, 
                and 16-84 percentiles of the posterior distribution), based on a VARMA(4,2) 
 



 








 

Figure V.7  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                 the ratio between the third and second column of A0, based on a VARMA(4,3) 
 



 










Figure V.8  Impulse-response functions to non-news, news, and noise shocks (median, and  
                16-84 percentiles of the posterior distribution), based on a VARMA(4,3) 



 











Figure V.9  Fractions of forecast error variance explained by non-news, news, and noise shocks (median, 
                and 16-84 percentiles of the posterior distribution), based on a VARMA(4,3) 
 



 

















Results based on VARMAs with 8 series and set 
identification, without imposing restrictions on the absolute 

magnitude of the IRFs to TFP noise shocks 








 









 

Figure VI.1  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                   the ratio between the third and second column of A0, based on a VARMA(4,1) 
 



 








Figure VI.2  Impulse-response functions to non-news, news, and noise shocks (median, and  
                  16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 



 











Figure VI.3  Fractions of forecast error variance explained by non-news, news, and noise shocks (median, 
                   and 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 
 



 
















Results based on VARMAs with 8 series and set 
identification, imposing restrictions on the absolute 

magnitude of the IRFs to TFP noise shocks 








 










 

Figure VII.1  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 

                   the ratio between the third and second column of A0, based on a VARMA(4,1) 
 



 








Figure VII.2  Impulse-response functions to non-news, news, and noise shocks (median, and  
                  16-84 percentiles of the posterior distribution), based on a VARMA(4,1) (thin 
                  lines: corresponding objects obtained without imposing restrictions on the 
                  absolute magnitude of the IRFs to TFP noise shocks) 



 








 

Figure VII.3  Fractions of forecast error variance explained by non-news, news, and noise shocks (median, 
                   and 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) (thin lines: 
                   corresponding objects obtained without imposing restrictions on the absolute magnitude of 
                   the IRFs to TFP noise shocks) 
 
 



 
















Results based on VARMAs with 10 series and point 
identification, without imposing restrictions on the absolute 

magnitude of the IRFs to TFP noise shocks 








 












 

Figure VIII.1  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                   the ratio between the third and second column of A0, based on a VARMA(4,1) 
 



 










Figure VIII.2  Impulse-response functions to non-news, news, and noise shocks (median, and 
                  16-84 percentiles of the posterior distribution), based on a VARMA(4,1)  



 









Figure VIII.3  Fractions of forecast error variance explained by non-news, news, and noise shocks 
                  (median, and 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 



 















Results based on VARMAs with 10 series and set 
identification, without imposing restrictions on the absolute 

magnitude of the IRFs to TFP noise shocks 








 










 

Figure IX.1  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                    the ratio between the third and second column of A0, based on a VARMA(4,1) 
 



 












Figure IX.2  Impulse-response functions to non-news, news, and noise shocks (median, and 
                   16-84 percentiles of the posterior distribution), based on a VARMA(4,1)  



 








 

Figure IX.3  Fractions of forecast error variance explained by non-news, news, and noise shocks 
                   (median, and 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 



 
















Results based on VARMAs with 15 series and point 
identification, without imposing restrictions on the absolute 

magnitude of the IRFs to TFP noise shocks 








 









 

Figure X.1  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                the ratio between the third and second column of A0, based on a VARMA(4,1) 
 



 










Figure X.2  Impulse-response functions to non-news, news, and noise shocks (median, and 
                  16-84 percentiles of the posterior distribution), based on a VARMA(4,1)  



 












Figure X.3  Fractions of forecast error variance explained by non-news, news, and noise shocks 
                  (median, and 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 



 















Results based on VARMAs with 15 series and set 
identification, without imposing restrictions on the absolute 

magnitude of the IRFs to TFP noise shocks 








 










Figure XI.1a  Impulse-response functions to non-news, news, and noise shocks (median, and 
                  16-84 percentiles of the posterior distribution), based on a VARMA(4,1)  



 










Figure XI.1b  Impulse-response functions to non-news, news, and noise shocks (median, and 
                  16-84 percentiles of the posterior distribution), based on a VARMA(4,1)  



 








    

Figure XI.1c  Impulse-response functions to non-news, news, and noise shocks (median, and 
                  16-84 percentiles of the posterior distribution), based on a VARMA(4,1)  



 







 

Figure XI.2a  Fractions of forecast error variance explained by non-news, news, and noise shocks 
                   (median, and 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 



 







 

Figure XI.2b  Fractions of forecast error variance explained by non-news, news, and noise shocks 
                   (median, and 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 



 






 

Figure XI.2c  Fractions of forecast error variance explained by non-news, news, and noise shocks 
                   (median, and 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 



 
















Results based on VARMAs with 7 series and set 
identification, without imposing restrictions on the absolute 

magnitude of the IRFs to noise shocks to real dividends 








 











 



Figure XII.1  Draws’ inefficiency factors and first autocorrelations, and posterior distribution of 
                   the ratio between the third and second column of A0, based on a VARMA(4,1) 
 



 









 

Figure XII.2  Impulse-response functions to non-news, news, and noise shocks (median, and 
                 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 



 















Figure XII.3  Fractions of forecast error variance explained by non-news, news, and noise shocks 
                  (median, and 16-84 percentiles of the posterior distribution), based on a VARMA(4,1) 
 



 
















Additional results based on point identification for 
dividends and stock prices and defense expenditure 








 











Figure XIII.1  Application with dividends and stock prices: Fractions of forecast error variance 
                   explained by non-news, news, and noise shocks, based on a VARMA(4,1), and  
                   point-identification 



 











Figure XIII.2  Application with defense expenditure: Fractions of forecast error variance explained by 
                   non-news, news, and noise shocks, based on a VARMA(4,1), and point-identification  
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