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Abstract

Many popular specifications for Vector Autoregressions (VARs) with multivariate

stochastic volatility are not invariant to the way the variables are ordered due to

the use of a lower triangular parameterization of the error covariance matrix. We

show that the order invariance problem in existing approaches is likely to become

more serious in large VARs. We propose the use of a specification which avoids

the use of this lower triangular parameterization. We show that the presence of

multivariate stochastic volatility allows for identification of the proposed model

and prove that it is invariant to ordering. We develop a Markov Chain Monte

Carlo algorithm which allows for Bayesian estimation and prediction. In exercises

involving artificial and real macroeconomic data, we demonstrate that the choice of

variable ordering can have non-negligible effects on empirical results when using the

non-order invariant approach. In a macroeconomic forecasting exercise involving

VARs with 20 variables we find that our order-invariant approach leads to the best

forecasts and that some choices of variable ordering can lead to poor forecasts using

a conventional, non-order invariant, approach.
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age prior

∗We would like to thank Christiane Baumeister, Robin Braun, Drew Creal, Gergely Gánics, Chenghan
Hou, Elmar Mertens, Ulrich Müller, Ivan Petrella, Mikkel Plagborg-Møller, Minchul Shin and Christopher
Sims for their constructive comments and suggestions.



1 Introduction

Vector Autoregressions (VARs) have become one of the most popular models in modern

macroeconomics since the seminal work by Sims (1980). In recent years, two promi-

nent developments have occurred in the Baysian VAR literature. First, beginning with

Banbura, Giannone, and Reichlin (2010) researchers have been working with large VARs

involving dozens or even hundreds of dependent variables.1 Second, there is an increas-

ing recognition, in most macroeconomic datasets, of the need to allow for time variation

in VAR error variances, see, among many others, Clark (2011). Both of these develop-

ments have led to VAR specifications which are not invariant to the way the variables

are ordered in the VAR. In small VARs, ordering issues can be important, but as we

shall show in this paper take on additional importance in large VARs.2 These consid-

erations motivate the present paper. In it we describe an alternative VAR specification

with stochastic volatility (SV) and prove that it is invariant to the ways the variables are

ordered. We develop a computationally-efficient Markov Chain Monte Carlo (MCMC)

algorithm which is scaleable and allows for Bayesian estimation and forecasting even in

high dimensional VARs. We carry out empirical work with artificial and real data which

demonstrates the consequences of a lack of order invariance in conventional approaches

and that our approach does not suffer from them.

There are two basic insights that underlie our approach. The first is that it is the com-

bination of the use of a lower triangular parameterization of the error covariance matrix

Σt and the associated priors under this parameterization that lead to order dependence.

Beginning with influential early VAR-SV papers such as Cogley and Sargent (2005) and

Primiceri (2005), this lower triangular parameterization has been used in numerous pa-

pers. However, as noted by Carriero, Clark, and Marcellino (2019), since this multivariate

SV specification is constructed based on a lower triangular impact matrix B0 and priors

are independently elicited on B0 and the SV processes, the implied prior on Σt is not

order invariant.

1In their classic study of the effects of monetary policy, Leeper, Sims, and Zha (1996) estimate a few
SVARs of various sizes, including one with 18 variables.

2In small VARs, results for a small number of different orderings can be presented as a robustness
check. In addition, methods have been proposed for searching over different orderings in papers such as
Levy and Lopes (2021) and Wu and Koop (2022). But with a large number of variables a logical ordering
of the variables may not present itself and it is not practical to consider every possible ordering.
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The second is that SV can be used to identify the impact matrix B0, see Bertsche and

Braun (2020). We adopt a VAR-SV specification that avoids the use of the lower tri-

angular parameterization. If we were working with a homoscedastic VAR, our model

would be unidentified. But we let the SV achieve identification. In theory we prove order

invariance and, in practice, we show that it works well.

There are a few recent papers that demonstrate the empirical importance of this ordering

issue. For example, Bognanni (2018) and Hartwig (2020) show that results from structural

analysis based on the reduced-form VARs of Cogley and Sargent (2005) and Primiceri

(2005) can be sensitive to how the variables are ordered. Chan, Doucet, León-González,

and Strachan (2018) and Chan (2022) demonstrate that estimates of reduced-form error

variances based on the lower triangular parameterization can drastically change across

different variable orderings. Finally, Arias, Rubio-Ramirez, and Shin (2022) illustrate the

empirical relevance of this ordering issue for producing density forecasts using all per-

mutations of 4 macroeconomic variables. The present paper contributes to this growing

literature but focuses on the implications for high-dimensional models. In particular, we

provide some theoretical analysis to show that this ordering issue becomes much worse

in high-dimensional settings. More importantly, we propose a new order-invariant model

as well as an efficient algorithm which scales well to high-dimensional VARs.

The remainder of this paper is organized as follows. The next section discusses ordering

issues in VAR-SVs. The third section introduces our multivariate SV process and proves

that it is identified and order invariant. The fourth section adds the VAR component

to the model and discusses Bayesian estimation of the resulting order-invariant VAR-SV.

The fifth section uses artificial data to illustrate the performance of our model in terms of

accuracy and computation time. The sixth section investigates the practical consequences

of using the non-order invariant approach of Cogley and Sargent (2005) using artificial

and real macroeconomic data. Finally, section seven carries out a forecasting exercise

which demonstrates that our order-invariant approach forecasts well, but that forecasts

produced by the model of Cogley and Sargent (2005) are sensitive to the way that the

variables are ordered and some ordering choices can lead to poor forecast performance.
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2 Ordering Issues in VAR-SVs

Ordering issues in VARs relate to the error covariance matrix, not the VAR coefficients

themselves. For instance, Carriero, Clark, and Marcellino (2019) use a VAR-SV which

involves a lower triangular parameterization of the error covariance matrix, Σt. They

demonstrate that, conditional on Σt, the draws of the VAR coefficients are invariant to

ordering.3 Such invariance to ordering of the VAR coefficients holds for all the models

discussed in the paper. Accordingly, in this section and the next we focus on the multi-

variate stochastic volatility process. We say a model is invariant to ordering if the order

of the variables does not affect the posterior distribution of the error covariance matrix,

subject to permutations. In other words, if the ordering of variables i and j in the VAR is

changed, then posterior inference on the error covariances and variances associated with

variables i and j is unaffected for all i and j.

Before discussing multivariate stochastic volatility approaches which are not order invari-

ant, it is worthwhile noting that there are a few multivariate SV approaches which are

order invariant. For example, some multivariate SV models based on Wishart or inverse-

Wishart processes are invariant to ordering; examples include Philipov and Glickman

(2006), Asai and McAleer (2009), Chan, Doucet, León-González, and Strachan (2018),

Shin and Zhong (2020) and Arias, Rubio-Ramirez, and Shin (2022). Instead of using the

Wishart or inverse-Wishart processes, Arias, Rubio-Ramirez, and Shin (2022) introduce

the DSC-SV-AH model that uses random walk processes to construct a time-varying

correlation matrix based on a new parameterization of correlation matrices proposed

in Archakov and Hansen (2021). However, estimation of these SV models is computa-

tionally intensive as it typically involves drawing from high-dimensional, non-standard

distributions. Consequently, these models are generally not applicable to large datasets.

In contrast, the common stochastic volatility models considered in Carriero, Clark, and

Marcellino (2016) and Chan (2020) are order invariant and can be estimated quickly even

3It is worth noting that one major reason for triangularizing the system is to allow for equation by
equation estimation of the model. Any approach which allows for equation by equation estimation can
be shown to lead to large computational benefits since there is no need to manipulate the (potentially
enormous) posterior covariance matrix of the VAR coefficients in a single block. Triangularization is the
most popular equation by equation method and Carriero, Clark, and Marcellino (2019) show how, relative
to full system estimation, triangularisation can reduce computational complexity of Bayesian estimation
of large VARs from O(n6) to O(n4) where n is VAR dimension. This highlights the importance of
development of VAR specifications, such as the one in this paper, which allow for equation by equation
estimation.
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for large systems. However, these models are less flexible as the time-varying error covari-

ance matrix depends on a single SV process (e.g., error variances are always proportional

to each other).

Another order invariant approach is based on the discounted Wishart process, which ad-

mits efficient filtering and smoothing algorithms for estimation. Multivariate SV models

based on this approach are considered in Uhlig (1997), West and Harrison (2006), Prado

and West (2010), Bognanni (2018) and Arias, Rubio-Ramirez, and Shin (2022). How-

ever, this approach appears to be too tightly parameterized for macroeconomic data and

it tends to underperform in terms of both point and density forecasts relative to standard

SV models such as Cogley and Sargent (2005) and Primiceri (2005); see, for example,

Arias, Rubio-Ramirez, and Shin (2022) for a forecast comparison exercise.

Another model that is potentially order invariant is the factor stochastic volatility model,

and recently these models have been applied to large datasets. However, factor models

have some well-known drawbacks such as mis-specification concerns associated with as-

suming a high dimensional volatility process is well approximated with a low dimensional

set of factors. Kastner (2019) notes that, if one imposes the usual identification restric-

tions (e.g., factor loadings are triangular), then the model is not order invariant. Kastner

(2019) does not impose those restrictions, arguing that identification of the factor loadings

is not necessary for many purposes (e.g. forecasting).

The multivariate stochastic volatility specification that is perhaps most commonly used

in macroeconomics is that of Cogley and Sargent (2005). The SV specification of the

reduced-form errors, the n-dimensional vector ut, in Cogley and Sargent (2005) can be

written as

ut = B−10 εt, εt ∼ N (0,Dt), (1)

where B0 is a unit lower triangular matrix with elements bij and Dt = diag(eh1,t , . . . , ehn,t)

is a diagonal matrix consisting of the log-volatility ht = (h1,t, . . . , hn,t)
′. By assuming that

B0 is lower triangular, the implied covariance matrix on ut naturally depends on the order

of the elements in ut. In particular, one can show that under standard assumptions, the

variance of the i-th element of ut, ui,t, increases as i increases. Hence, this ordering issue

becomes worse in higher dimensional models. In addition, since the stochastic volatility

specification in Primiceri (2005) is based on Cogley and Sargent (2005) but with B0

time-varying, it has a similar ordering issue.
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To illustrate this key point, we assume for simplicity that εt ∼ N (0, In). We further

assume that the priors on the lower triangular elements of B0 are independent with prior

means 0 and variances 1. Since B0ut = εt, we can obtain the elements of ut recursively

and compute their variances Var(ui,t) = Eu2i,t. In particular, we have

u1,t = ε1,t

u2,t = ε2,t − b2,1u1,t
...

ui,t = εi,t − bi,i−1ui−1,t − · · · − bi,1u1,t.

Since E(bi,jbi,k) = 0 for all j 6= k, the expectation of any cross-product term in u2i,t is 0.

Hence, we have

Eu21,t = Eε21,t = 1

Eu22,t = Eε22,t + Eb22,1Eu21,t = 1 + Eu21,t = 2

...

Eu2i,t = Eε2i,t + Eb2i,i−1Eu2i−1,t + · · ·+ Eb2i,1Eu21,t = 2i−1.

In other words, the variance of the reduced-form error increases (exponentially) as it

is ordered lower in the n-tuple, even though the assumptions about bi,j and εi,t are

identical across i = 1, . . . , n. In Online Appendix C we provide another illustration using

a stochastic volatility specification with a time-varying impact matrix similar to that in

Primiceri (2005). There we show that the model has a similar ordering issue.

3 An Order-Invariant Stochastic Volatility Model

3.1 Model Definition

In this section we extend the stochastic volatility specification in Cogley and Sargent

(2005) with the goal of constructing an order-invariant model. The key reason why the

ordering issue in Cogley and Sargent (2005) occurs is because of the lower triangular

assumption for B0. A simple solution to this problem is to avoid this assumption and
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assume that B0 is an unrestricted square matrix. To that end, let yt = (y1,t, . . . , yn,t)
′ be

an n × 1 vector of variables that is observed over the periods t = 1, . . . , T. To fix ideas,

consider the following model with zero conditional mean:

yt = B−10 εt, εt ∼ N (0,Dt), (2)

where Dt = diag(eh1,t , . . . , ehn,t) is diagonal. Here we assume that B0 is non-singular, but

is otherwise unrestricted. Each of the log-volatilities follows a stationary AR(1) process:

hi,t = φihi,t−1 + uhi,t, uhi,t ∼ N (0, ω2
i ), (3)

for t = 2, . . . , T , where |φi| < 1 and the initial condition is specified as hi,1 ∼ N (0, ω2
i /(1−

φ2
i )). Note that the unconditional mean of the AR(1) process is normalized to be zero

for identification. We call this the Order Invariant SV (OI-SV) model.

3.2 Identification and Order-Invariance

The question of identification of our OI-SV model can be dealt with quickly. If there is no

SV, it is well-known that B0 is not identified. In particular, any orthogonal transformation

of B0 gives the same likelihood. But with the presence of SV, Bertsche and Braun (2020)

show that B0 is identified up to permutations and sign changes:

Proposition 1 (Bertsche and Braun (2020)). Consider the stochastic volatility model

given in (2)-(3) with φi 6= 0, i = 1, . . . , n. Then, B0 is unique up to permutation of its

column and multiplication of its columns by −1.

The assumptions in Proposition 1 are stronger than necessary for identification. In fact,

Bertsche and Braun (2020) show that having n − 1 SV processes is sufficient for iden-

tification and derive results relating to partial identification which occurs if there are

n − r SV processes with r > 1. Intuitively, allowing for time-varying volatility gener-

ates non-trivial autocovariances in the squared reduced form errors. These additional

moments help identify B0. We refer readers to Rigobon (2003), Lanne, Lütkepohl, and

Maciejowska (2010) and Lewis (2021) for a more detailed discussion of how identification

can be achieved in structural VARs via heteroscedasticity.
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It is worth emphasizing that Proposition 1 only guarantees B0 to be identified up to

permutations and sign changes. In the estimation we normalize the signs by restricting

the diagonal elements of B0 to be positive. There are different approaches to deal with

the permutation or label-switching problem. Here we assume a weakly informative prior

on B0 (e.g., setting the prior mean of B0 to be an identity matrix) so that column

permutations become less likely. Alternatively, one could postprocess the posterior draws

to sort them into the correct categories, as suggested in Kaufmann and Schumacher

(2019).

Below we outline a few theoretical properties of the stochastic volatility model described

in equations (2)–(3). First, we show that the model is order invariant, in the sense that if

we permute the order of the dependent variables, the likelihood function implied by this

new ordering is the same as that of the original ordering, provided that we permute the

parameters accordingly. Stacking y = (y′1, . . . ,y
′
T )′ and h = (h′1, . . . ,h

′
T )′, note that the

likelihood implied by (2) is

p(y |B0,h) = (2π)−
nT
2 | det B0|T

T∏
t=1

| det Dt|−
1
2 e−

1
2

∑T
t=1 y′tB

′
0D−1

t B0yt ,

where | det C| denotes the absolute value of the determinant of the square matrix C.

Now, suppose we permute the order of the dependent variables. More precisely, let P

denote an arbitrary permutation matrix of dimension n, and we define ỹt = Pyt. By the

standard change of variable result, the likelihood of ỹ = (ỹ′1, . . . , ỹ
′
T )′ is

| det P−1|T (2π)−
nT
2 | det B0|T

T∏
t=1

| det Dt|−
1
2 e−

1
2

∑T
t=1(P

−1ỹt)′B′0D−1
t B0P−1ỹt

= (2π)−
nT
2 | det B0P

′|T
T∏
t=1

| det Dt|−
1
2 e−

1
2

∑T
t=1 ỹ′tPB′0D−1

t B0P′ỹt

= (2π)−
nT
2 | det PB0P

′|T
T∏
t=1

| det PDtP
′|−

1
2 e−

1
2

∑T
t=1 ỹ′tPB′0P′PD−1

t P′PB0P′ỹt

= (2π)−
nT
2 | det B̃0|T

T∏
t=1

| det D̃t|−
1
2 e−

1
2

∑T
t=1 ỹ′tB̃

′
0D̃−1

t B̃0ỹt = p(ỹ | B̃0, h̃),

where B̃0 = PB0P
′, D̃t = PDtP

′ = diag(eh̃t) and h̃ = (h̃′1, . . . , h̃
′
T ) with h̃t = Pht. Note

that we have used the fact that P−1 = P′ and | det P| = 1, as all permutation matrices are
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orthogonal matrices. In addition, since P−1ỹt = yt, the first line in the above derivation

is equal to p(y |B0,h). Hence, we have shown that p(y |B0,h) = p(ỹ | B̃0, h̃). We

summarize this result in the following proposition.

Proposition 2 (Order Invariance). Let p(y |B0,h) denote the likelihood of the stochastic

volatility model given in (2). Let P be an arbitrary n×n permutation matrix and define

ỹt = Pyt and h̃t = Pht. Then, the likelihood with dependent variables ỹt has exactly

the same form but with parameters permuted accordingly. More precisely,

p(y |B0,h) = p(ỹ | B̃0, h̃),

where B̃0 = PB0P
′ and h̃ = (h̃′1, . . . , h̃

′
T ).

Proposition 2 also makes clear why the usual lower triangular assumption on the impact

matrix B0 implies an order-dependent likelihood: to obtain the same likelihood value, the

impact matrix corresponding to the permuted vector ỹ should be permuted accordingly

via B̃0 = PB0P
′. But if B0 is lower triangular, in general there does not exist a lower

triangular B̃0 such that B̃0 = PB0P
′.

Proposition 2 shows that the likelihood conditional on the log-volatility is order invariant.

It turns out that one can also recover the unconditional covariance matrix of the permuted

vector ỹt from the unconditional covariance matrix of yt by permuting its rows and

columns accordingly. To that end, we next derive the unconditional covariance matrix

of the data implied by the stochastic volatility model in (2)-(3). More specifically, given

the model parameters B0, φi and ω2
i , i = 1, . . . , n, suppose we generate the log-volatility

processes via (3). It is straightforward to compute the implied unconditional covariance

matrix of yt.

Since the unconditional distribution of hi,t implied by (3) is N (0, ω2
i /(1−φ2

i )), the uncon-

ditional distribution of ehi,t is log-normal with mean e
ω2i

2(1−φ2
i
) . Hence, the unconditional

mean of Dt is VD = diag(e
ω21

2(1−φ21) , . . . , e
ω2n

2(1−φ2n) ). It then follows that the unconditional

covariance matrix of yt can be written as

Σ ≡ (B′0V
−1
D B0)

−1 = (B
′
0B0)

−1,
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where B0 = V
− 1

2
D B0, i.e., scaling each row of B0 by e

− ω2i
4(1−φ2

i
) , i = 1, . . . , n. From this

expression it is also clear that if we permute the order of the dependent variables via

ỹt = Pyt, the unconditional covariance matrix of ỹt can be obtained by permuting the

rows and columns of B0 accordingly. More precisely:

Σ̃ ≡ PΣP′ = (PB
′
0P
′PB0P

′)−1 = (B̃
′

0B̃0)
−1,

where B̃0 = PB0P
′. Hence, the unconditional variance of any element in yt does not

depend on its position in the n-tuple.

This establishes order-invariance in the likelihood function defined by the OI-SV. Of

course, the posterior will also be order invariant (subject to permutations and sign

switches) if the prior is. This will hold in any reasonable case. All it requires is that

the prior for the parameters in equation i under one ordering becomes the prior for equa-

tion j in a different ordering if variable i in the first ordering becomes variable j in the

second ordering.

4 A VAR with an Order-Invariant SV Specification

4.1 Model Definition

We now add the VAR part to our OI-SV model, leading to the OI-VAR-SV which is given

by

yt = a + A1yt−1 + · · ·+ Apyt−p + B−10 εt, εt ∼ N (0,Dt), (4)

where a is an n×1 vector of intercepts, A1, . . . ,Ap are n×n matrices of VAR coefficients,

B0 is non-singular but otherwise unrestricted n×n matrix, and Dt = diag(eh1,t , . . . , ehn,t)

is diagonal.4 Finally, each of the log-volatility hi,t follows the stationary AR(1) process

as specified in (3).

4Following the bulk of the literature on large Bayesian VARs, we focus on the case of constant VAR
coefficients. The model can be readily extended to accommodate time-varying VAR coefficients, but
with additional computational costs.
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4.2 Shrinkage Priors

We argued previously that ordering issues are likely to be most important in high di-

mensional models. With large VARs over-parameterization concerns can be substantial

and, for this reason, Bayesian methods involving shrinkage priors are commonly used. In

this sub-section, we describe a particular VAR prior with attractive properties. But it is

worth noting that any of the standard Bayesian VAR priors (e.g. the Minnesota prior)

could have been used and the resulting model would still have been order invariant.

Let αi denote the VAR coefficients in the i-th equation, i = 1, . . . , n. We consider

the Minnesota-type adaptive hierarchical priors proposed in Chan (2021), which have

the advantages of both the Minnesota priors (e.g., rich prior beliefs such as cross-variable

shrinkage) and modern adaptive hierarchical priors (e.g., heavy-tails and substantial mass

around 0). In particular, we construct a Minnesota-type horseshoe prior as follows. For

αi,j, the j-th coefficient in the i-th equation, let κi,j = κ1 if it is a coefficient on an

‘own lag’ and let κi,j = κ2 if it is a coefficient on an ‘other lag’. Given the constants

Ci,j defined below, consider the horseshoe prior on the VAR coefficients (excluding the

intercepts) αi,j, i = 1, . . . , n, j = 2, . . . , k with k = np+ 1:

(αi,j |κ1, κ2, ψi,j) ∼ N (mi,j, κi,jψi,jCi,j), (5)√
ψi,j ∼ C

+(0, 1), (6)
√
κ1,
√
κ2 ∼ C+(0, 1), (7)

where C+(0, 1) denotes the standard half-Cauchy distribution. κ1 and κ2 are the global

variance components that are common to, respectively, coefficients of own and other lags,

whereas each ψi,j is a local variance component specific to the coefficient αi,j. Lastly, the

constants Ci,j are obtained as in the Minnesota prior, i.e.,

Ci,j =

{
1
l2
, for the coefficient on the l-th lag of variable i,
s2i
l2s2j

, for the coefficient on the l-th lag of variable j, j 6= i,
(8)

where s2r denotes the sample variance of the residuals from an AR(4) model for the

variable r, r = 1, . . . , n. Furthermore, for data in growth rates mi,j is set to be 0; for level

data, mi,j is set to be zero as well except for the coefficient associated with the first own

lag, which is set to be one.
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It is easy to verify that if all the local variances are fixed, i.e., ψi,j ≡ 1, then the Minnesota-

type horseshoe prior given in (5)–(7) reduces to the Minnesota prior.5 Hence, it can be

viewed as an extension of the Minnesota prior by introducing a local variance component

such that the marginal prior distribution of αi,j has heavy tails. On the other hand, if

mi,j = 0, Ci,j = 1 and κ1 = κ2, then the Minnesota-type horseshoe prior reduces to the

standard horseshoe prior where the coefficients have identical distributions. Therefore, it

can also be viewed as an extension of the horseshoe prior (Carvalho, Polson, and Scott,

2010) that incorporates richer prior beliefs on the VAR coefficients, such as cross-variable

shrinkage, i.e., shrinking coefficients on own lags differently than other lags.

To facilitate estimation, we follow Makalic and Schmidt (2016) and use the following

latent variable representations of the half-Cauchy distributions in (6)-(7):

(ψi,j | zψi,j) ∼ IG(1/2, 1/zψi,j), zψi,j ∼ IG(1/2, 1), (9)

(κl | zκl) ∼ IG(1/2, 1/zκl), zκl ∼ IG(1/2, 1), (10)

for i = 1, . . . , n, j = 2, . . . , k and l = 1, 2, where IG(α, β) denotes the inverse gamma

distribution with density p(x) = βαΓ(α)−1x−(α+1)e−β/x.

Next, we specify the priors on other model parameters. Let bi denote the i-th row of B0 for

i = 1, . . . , n, i.e., B′0 = (b1, . . . ,bn). We consider independent priors on bi, i = 1, . . . , n:6

bi ∼ N (b0,i,Vbi).

For the parameters in the stochastic volatility equations, we assume the priors for j =

1, . . . , n:

φj ∼ N (φ0,j, Vφj)1(|φj| < 1), σ2
j ∼ IG(νj, Sj).

5There are many different versions of “the Minnesota prior”. The version that we are using is an
independent normal and inverse-Wishart prior that is applicable to VARs with time-varying volatility.
See, e.g., Equation (14) in Karlsson (2013) or Equation (13) in Carriero, Clark, and Marcellino (2015).

6In the simulations and the empirical application, we set b0,i = ei and Vbi
= In, where ei is the

i-th column of the identity matrix In. This choice of hyperparameters implies an order invariant prior
in the sense that if we permute the endogenous variables ỹt = Pyt, the prior mean of PB0P

′ is also an
identity matrix (and all prior variances of the elements of PB0P

′ are also 1). Since B0 is identified up
to permutations and sign normalization, this relatively weak prior works well in a range of simulations.
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4.3 MCMC Algorithm

In this section we develop a posterior sampler which allows for Bayesian estimation of the

order-invariant stochastic volatility model with the Minnesota-type horseshoe prior. For

later reference, let ψi = (ψi,1, . . . , ψi,k)
′ denote the local variance components associated

withαi and define κ = (κ1, κ2)
′. Furthermore, let zψi = (zψi,1 , . . . , zψi,k)

′ denote the latent

variables corresponding to ψi and similarly define zκ. Next, stack y = (y′1, . . . ,y
′
T )′,

α = (α′1, . . . ,α
′
n)′, ψ = (ψ′1, . . . ,ψ

′
n)′, zψ = (z′ψ1

, . . . , z′ψn)′ and h = (h′1, . . . ,h
′
T )′ with

ht = (h1,t, . . . , hn,t)
′. Finally, let hi,· = (hi,1, . . . , hi,T )′ represent the vector of log-volatility

for the i-th equation, i = 1, . . . , n. Then, posterior draws can be obtained by sampling

sequentially from each of the full conditional distributions. Below we discuss sampling

of B0 from p(B0 |y,α,h,φ,ω2,ψ,κ, zψ, zκ) = p(B0 |y,α,h). The details of the rest of

the posterior sampler are given in Online Appendix B. In addition, we report in Online

Appendix C the inefficiency factors of the MCMC samples associated with the empirical

application. The results indicates that the posterior sampler is efficient in terms of being

able to generate MCMC draws with relatively low autocorrelations.

To sample B0, we adapt the sampling approach in Waggoner and Zha (2003) and Villani

(2009) to the setting with stochastic volatility. More specifically, we aim to draw each

row of B0 given all other rows. To that end, we first rewrite (4) as:

(Y −XA)B′0 = E, (11)

where Y is the T × n matrix of dependent variables, X is the T × k matrix of lagged

dependent variables with k = 1 + np, A = (a,A1, . . . ,An)′ is the k × n matrix of VAR

coefficients and E is the T × n matrix of errors. Then, for i = 1, . . . , n, we have

(Y −XA)bi = Ei, Ei ∼ N (0,Ωhi,·),

where Ei is the i-th column of E and Ωhi,· = diag(ehi,1 , . . . , ehi,T ). Hence, the full condi-

tional distribution of bi is given by

p(bi |y,α,b−i,hi,·) ∝ | det B0|T e
− 1

2
b′i(Y−XA)′Ω−1

hi,·
(Y−XA)bi × e

− 1
2
(bi−b0,i)

′V−1
bi

(bi−b0,i)

∝ | det B0|T e−
1
2
(bi−b̂i)

′Kbi
(bi−b̂i) (12)
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where

Kbi = V−1bi
+ (Y −XA)′Ω−1hi,·

(Y −XA), b̂i = K−1bi
V−1bi

b0,i.

The above full conditional posterior distribution is non-standard and direct sampling is

infeasible. Fortunately, Waggoner and Zha (2003) develop an efficient algorithm to sample

bi in the case when b̂i = 0. Villani (2009) further generalizes this sampling approach for

non-zero b̂i.

The key idea is to show that bi has the same distribution as a linear transformation of

an n-vector that consists of one absolute normal and n− 1 normal random variables. A

random variable Z follows the absolute normal distribution AN (µ, ρ) if it has the density

function

fAN (z;µ, ρ) = c|z|
1
ρ e−

1
2ρ

(z−µ)2 , z ∈ R, ρ ∈ R+, µ ∈ R,

where c is a normalizing constant.

To formally state the results, let Ci denote the Cholesky factor of T−1Kbi such that

Kbi = TCiC
′
i. Let F−i represent the matrix F with the i-th column deleted and F⊥ be

the orthogonal complement of F. Furthermore, define v1 = C−1i (B′0,−i)
⊥/||C−1i (B′0,−i)

⊥||,
where (B′0,−i)

⊥ ≡ ((B′0)−i)
⊥, and let (v2, . . . ,vn) = v⊥1 . Then, we claim that

(bi |y,α,b−i,hi,·)
d
= (C′i)

−1
n∑
j=1

ξjvj,

where ξ1 ∼ AN (ξ̂1, T
−1) and ξj ∼ N (ξ̂j, T

−1), j = 2, . . . , n with ξ̂j = b̂′iCivj.

To prove the claim, let bi = (C′i)
−1∑n

j=1 ξjvj. It suffices to show that if we substitute

bi into (12), ξ1, . . . , ξn are independent with ξ1 ∼ AN (ξ̂1, T
−1) and ξj ∼ N (ξ̂j, T

−1), j =

2, . . . , n. To that end, note that by construction, v1, . . . ,vn forms an orthonormal basis
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of Rn, particularly
∑n

j=1 vjv
′
j = In. We first write the quadratic form in (12) as:

(bi − b̂i)
′Kbi(bi − b̂i) = T

(
n∑
j=1

ξjvj −C′ib̂i

)′( n∑
j=1

ξjvj −C′ib̂i

)

= T

(
n∑
j=1

ξ2j − 2
n∑
j=1

ξjb̂
′
iCivj + b̂′iCi

(
n∑
j=1

vjv
′
j

)
Cib̂i

)

= T
n∑
j=1

(ξj − ξ̂j)2.

Next, note that by construction, (v2, . . . ,vn) spans the same space as B′0,−i. Hence, it

follows that

| det B0| = | det B′0| = | det(b1, . . . ,bi−1, (C
′
i)
−1

n∑
j=1

ξjvj,bi+1, . . . ,bn)| ∝ |ξ1|.

Finally, substituting the quadratic form and the determinant into (12), we obtain

p(bi |y,α,b−i,hi,·) ∝|ξ1|T e−
T
2

∑n
j=1(ξj−ξ̂j)2

=|ξ1|T e−
T
2
(ξ1−ξ̂1)2

n∏
j=2

e−
T
2
(ξj−ξ̂j)2 .

In other words, ξ1 ∼ AN (ξ̂1, T
−1) and ξj ∼ N (ξ̂j, T

−1), j = 2, . . . , n, and we have proved

the claim.

In order to use the above result, we need an efficient way to sample from AN (ξ̂1, T
−1).

This can be done by using the 2-component normal mixture approximation considered in

Appendix C of Villani (2009). In addition, the orthogonal complement of v1, namely, v⊥1 ,

can be obtained using the singular value decomposition.7 In the sampler we fix the sign

of the i-th element of bi to be positive (so that the diagonal elements of B0 are positive).

This is done by multiplying the draw bi by −1 if its i-th element is negative. Details of

the other steps of the posterior sampler are given in Online Appendix B.

7In MATLAB, the orthogonal complement of v1 can be obtained using null(v′1).
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5 Experiments with Artificial Data

In this section we first present results on two artificial data experiments to illustrate how

the new model performs under DGPs with and without stochastic volatility. In the first

experiment, we generate a dataset from the VAR in (4) with n = 3, T = 500, p = 4 and

the stochastic volatility processes as specified in (3). We then estimate the model using

the posterior sampler outlined in the previous section. The first dataset is generated

as follows. First, the intercepts are drawn independently from U(−10, 10), the uniform

distribution on the interval (−10, 10). For the VAR coefficients, the diagonal elements

of the first VAR coefficient matrix are iid U(0, 0.5) and the off-diagonal elements are

from U(−0.2, 0.2); all other elements of the j-th (j > 1) VAR coefficient matrices are iid

N (0, 0.12/j2). For the impact matrix B0, the diagonal elements are iid U(0.5, 2), whereas

the off-diagonal elements are iid N (0, 1). Finally, for the SV processes, we set φi = 0.95

and ω2
i = 0.05, i = 1, . . . , n. The results of the artificial data experiments are reported in

Figures 1-3.
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Figure 1: Scatter plot of the posterior means of B0 (left panel), intercepts (middle panel)
and VAR coefficients (right panel) against true values from a DGP with stochastic volatil-
ity.
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Figure 2: Estimated time-varying reduced-form variances, where σii,t denote the i-th
diagonal element of Σt = B−10 Dt(B

−1
0 )′, from a DGP with stochastic volatility.
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Figure 3: Estimated time-varying reduced-form covariances, where σij,t denote the (i, j)
element of Σt = B−10 Dt(B

−1
0 )′, from a DGP with stochastic volatility.
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Overall, all the estimates track the true values closely. In particular, the new model is

able to recover the time-varying reduced-form covariance matrices. In addition, it is also

evident that B0 can be estimated accurately.

In the second experiment, we generate data from the same VAR but with the stochastic

volatility component turned off so that the errors are homoscedastic (in particular, we

set hi,t = 0). In other words, we have generated data from a homoscedastic, unidentified

model. But we are estimating it using the (mis-specified) heteroscedastic model with the

posterior sampler outlined in the previous sections. The results are reported in Figures 4-

6.
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Figure 4: Scatter plot of the posterior means of B0 (left panel), intercepts (middle panel)
and VAR coefficients (right panel) against true values from a DGP without stochastic
volatility.
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Figure 5: Estimated time-varying reduced-form variances, where σii,t denote the i-th
diagonal element of Σt = B−10 Dt(B

−1
0 )′, from a DGP without stochastic volatility
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Figure 6: Estimated time-varying reduced-form covariances, where σij,t denote the (i, j)
element of Σt = B−10 Dt(B

−1
0 )′, from a DGP without stochastic volatility.
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When the DGP does not have stochastic volatility, elements of the impact matrix B0 are

much harder to pin down (as expected since these parameters are not identified). But

it is interesting to note that the estimates of the time-varying variances are still able to

track the true values fairly closely (as these reduced-form error variances are identified).

The VAR coefficients, as well, are well-estimated.

Finally, we document the runtimes of estimating OI-VAR-SV models of different di-

mensions to assess how well the posterior sampler scales to higher dimensions. More

specifically, we report in Table 1 the computation times (in minutes) to obtain 10,000

posterior draws from the proposed OI-VAR-SV model of dimensions n = 10, 20, 50 and

sample sizes T = 300, 800. The posterior sampler is implemented in MATLAB on a desktop

with an Intel Core i7-7700 @3.60 GHz processor and 64 GB memory. It is evident from

the table that for typical applications with 15-30 variables, the OI-VAR-SV model can

be estimated quickly. More generally, its estimation time is comparable to that of the

triangular model in Carriero, Clark, and Marcellino (2019).

Table 1: The computation times (in minutes) to obtain 10,000 posterior draws from the
proposed order invariant VAR-SV model with n variables and T observations. All VARs
have p = 4 lags.

T = 300 T = 800
n = 10 n = 20 n = 50 n = 10 n = 20 n = 50

2.5 17.5 233 6.8 39.7 630

6 Sensitivity to Ordering in the VAR-SV of Cogley

and Sargent (2005)

In the preceding sections, we have developed Bayesian methods for order-invariant infer-

ence in VARs with SV. In this section, we illustrate the importance of this by showing the

degree to which results are sensitive to ordering in the VAR-SV of Cogley and Sargent

(2005), hereafter CS-VAR-SV, which is one of the most popular VAR-SV specifications in

empirical macroeconomics.8 We do this using both simulated and macroeconomic data.

8In the original model of Cogley and Sargent (2005), the log-volatility follows a unit root process.
Here we consider a version in which the log-volatility follows a stationary AR(1) process (with a non-zero
mean) so that it is directly comparable to the OI-VAR-SV.
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To ensure comparability, we use the same prior for the CS-VAR-SV as for our OI-VAR-

SV. In particular, we set the hyperparameters φ0,j = 0.95, Vφj = 0.052, νj = 3 and

Sj = 0.1, j = 1, . . . , n, for both models. The only exception is the prior on B0. For the

CS-VAR-SV, B0 is unit lower triangular, and we assume the lower triangular elements

have prior distribution N (0, 1). For OI-VAR-SV, we assume the same N (0, 1) prior for

the off-diagonal elements of B0, whereas the diagonal elements are iid N (1, 1). MCMC

estimation of the CS-VAR-SV is carried out using the algorithm of Carriero, Chan, Clark,

and Marcellino (2022).

6.1 A Simulation Experiment

As discussed in Primiceri (2005), the lower triangular parameterization used in the model

of Cogley and Sargent (2005) is unable to accommodate certain co-volatility patterns. To

illustrate this point, we simulate T = 500 observations from the model in (3) and (4) with

p = 4 and n = 3. To investigate the consequences of the lower triangular restriction we

choose a non-triangular data generating process (DGP). We emphasise that the presence

of SV in the DGP means that the model is identified. We set

B0 =

 1 −0.8 −0.8

0.8 1 −0.8

0.8 0.8 1

 .

The VAR coefficients and volatilities are simulated in exactly the same way as described

in Section 5. Figure 7 reports the estimated time-varying reduced-form error covariance

matrices produced by the CS-VAR-SV and OI-VAR-SV models. It is clear from the figure

that the estimates from the CS-VAR-SV model tend to be flat and do not capture the

time-variation in the error covariances well. This is perhaps not surprising as the B0

is restricted to be lower triangular in the CS-VAR-SV. However, the OI-VAR-SV does

track the true σij,t quite well. Since error covariances play an important role in features

of interest such as impulse responses, this illustrates the potential negative consequences

of working with triangularized systems.

21



0 50 100 150 200 250 300 350

21,t

-1

-0.5

0

0 50 100 150 200 250 300 350

31,t

0

0.5

1

0 50 100 150 200 250 300 350

32,t

-1

-0.5

0

true
OI
CS

Figure 7: Estimated time-varying reduced-form covariances from the OI-VAR-SV and
CS-VAR-SV models, where σij,t denote the (i, j) element of Σt = B−10 Dt(B

−1
0 )′.

6.2 Ordering Issues in a 20-Variable VAR

Next we provide a simple illustration of how the choice of ordering can influence empir-

ical results in large VARs using a dataset of 20 popular US monthly variables obtained

from the FRED-MD database (McCracken and Ng, 2016). The sample period is from

1959:03 to 2019:12. These variables, along with their transformations are listed in Online

Appendix A. Four core variables, namely, industrial production, the unemployment rate,

PCE inflation and the Federal funds rate, are ranked as the first to the fourth variables,

respectively. The remaining 16 variables are ordered as in Carriero, Clark, and Mar-

cellino (2019). We estimate the OI-VAR-SV and CS-VAR-SV models with the variables

in this order (we call these models OI-VAR-SV-1 and CS-VAR-SV-1). Then we reverse

the order of the variables and re-estimate them (these models are OI-VAR-SV-2 and

CS-VAR-SV-2).

Estimates (posterior means) of reduced-form variances and covariances of selected vari-

ables are reported in Figure 8 and Figure 9. That is, the first figure reports selected

diagonal elements of Σt = B−10 Dt(B
−1
0 )′ under two different variable orderings, whereas
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the second figure reports selected off-diagonal elements of Σt.
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Figure 8: Estimates of time-varying reduced-form error variances from CS-VAR-SV and
OI-VAR-SV under two different variable orderings

There are three points to note about these figures. First, as expected, estimates produced

by the OI-VAR-SV model under the two different variable orderings are identical (up to

MCMC approximation error). Second, estimates produced by the CS-VAR-SV model

under the two different variable orderings are often similar to one another, but occasion-

ally differ, particularly in periods of high volatility. This is in line with the results in

Hartwig (2020), who shows that the reduced-form covariances in the application of Prim-

iceri (2005) can be substantially different across alternative orderings of variables. Third,

estimates from the CS-VAR-SV models are often similar to the OI-VAR-SV models, but
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sometimes are substantially different, particularly in the error covariances.
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Figure 9: Estimates of time-varying reduced-form error covariances from from CS-VAR-
SV and OI-VAR-SV under two different variable orderings

Estimates of other parameters that are not directly related to log-volatility can also be

heavily influenced by the choice of ordering. For example, Table 2 reports the posterior

means of the shrinkage hyperparameters κ1 and κ2 under the two models with two differ-

ent orderings of the variables. As is clear from the table, the estimates of κ1 and κ2 can

differ substantially when using the CS-VAR-SV model, depending on how the variables

are ordered. For example, the estimate of κ2 increases by 84% when one reverses the
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order of the variables. Of course, under the proposed order-invariant model the estimates

are the same (up to MCMC approximation error).

Table 2: Posterior means of κ1 and κ2 from the proposed order-invariant stochastic
volatility model under two different orderings (OI-VAR-SV-1 and OI-VAR-SV-2), as well
as those from the model of Cogley and Sargent (2005) (CS-VAR-SV-1 and CS-VAR-SV-2).

CS-VAR-SV-1 CS-VAR-SV-2 OI-VAR-SV-1 OI-VAR-SV-2
κ1 0.0177 0.0170 0.0356 0.0358
κ2 2.34× 10−6 4.30× 10−6 2.36× 10−6 2.25× 10−6
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Figure 10: Posterior means of B0 using CS-VAR-SV-1 (left panel) and OI-VAR-SV-1
(right panel)

We next present results relating to B0 which highlight the differences between our OI-

VAR-SV-1 and the CS-VAR-SV-1.9 Figure 10 reports the posterior means of B0 of these

two models. Note that the two panels of the figure are very different. Part of this

difference is due to the fact that, under OI-VAR-SV, the SV processes are assumed to

have zero unconditional means and the diagonal elements of B0 are unrestricted. Hence,

the diagonal elements of B0 play a key role in adjusting the scale of the error variances. In

9Note that we are comparing the two models under the first ordering of the variables. The comparable
figure using the second ordering reveals similar patterns.
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contrast the diagonal elements of B0 are restricted to be one for the CS-VAR-SV model.

But the key difference lies in the upper-triangular elements of B0. These are restricted to

be zero in the CS-VAR-SV. But several of these upper triangular elements are estimated

to be large in magnitude using our OI-VAR-SV model. The data strongly supports an

unrestricted impact matrix B0. In the next subsection, we formally test the hypothesis

that B0 is lower triangular via a Bayesian model comparison exercise.

6.3 Bayesian Model Comparison

In this section we conduct a series of model comparison exercises using the marginal

likelihood. First, as highlighted in Herwartz and Lütkepohl (2014), in the presence of

heteroskedasticity the lower triangular assumption on B0 is testable through the lens

of the unrestricted OI-VAR-SV model. We test this lower triangular assumption and

quantify the impact of different orderings. Another practical issue is the choice of m, the

number of stochastic volatility processes, in the model. In the baseline OI-VAR-SV we

set m = n, but it is plausible that the bias-variance trade-off might favor a smaller value

of m. We therefore compare specifications with different values of m to provide guidance

for practitioners.

The gold standard for Bayesian model comparison is the marginal likelihood or the

marginal data density, defined for model Mk as

p(y |Mk) =

∫
p(y |θk,Mk)p(θk |Mk)dθk,

where y = (y′1, . . . ,y
′
T )′ is the full sample, θk is the vector of model-specific parameters

and latent variables, p(y |θk,Mk) is the likelihood and p(θk |Mk) is the prior distribution.

The integration involved in the marginal likelihood computation is typically very high

dimensional for large-scale models. Despite recent advances, direct computation of the

marginal likelihood for large VARs with stochastic volatility remains challenging. Here

we circumvent this computational challenge by approximating the marginal likelihood

using a sum of predictive likelihoods, which can be obtained by running the posterior

sampler multiple times with an expanding window of data points. More specifically, note
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that we can factor the marginal likelihood as

p(y |Mk) = p(y1 |Mk)
T−1∏
t=1

p(yt+1 |y1:t,Mk),

where y1:t = (y′1, . . . ,y
′
t)
′ denotes all the data up to time t and p(yt+1 |y1:t,Mk) is the

predictive likelihood, i.e., the one-step-ahead density forecast for yt+1 evaluated at the

actual observation. Notice that in the above expression, the one-step-ahead density fore-

cast p(y1 |Mk) depends only on the prior distribution under model Mk. More generally,

p(yt+1 |y1:t,Mk) is heavily influenced by the specific choice of the prior when t is small.

To reduce the impact of the prior, one often discards part of the initial sample and uses

instead the following approximation of the marginal likelihood:

p(y |Mk) ≈
T−1∏
t=t0

p(yt+1 |y1:t,Mk).

We set t0 so that the first 20 years are used as the training sample. Each predictive

likelihood p(yt+1 |y1:t,Mk) is obtained by running a separate MCMC using data y1:t.

To test the lower triangular assumption on B0, as well as quantifying the impact of

different orderings, we compare four models: OI-VAR-SV-1, OI-VAR-SV-2, CS-VAR-SV-

1 and CS-VAR-SV-2. The log marginal likelihood estimates are reported in Table 3. Two

points are immediately clear from these results. First, the data overwhelmingly favor the

proposed OI-VAR-SV relative to the CS-VAR-SV. For instance, under the first ordering,

the difference in marginal likelihood values is over 3,500 in log scale. Second, the marginal

likelihood values of the proposed OI-VAR-SV under the two different orderings are the

same (up to MCMC approximation error), whereas for the CS-VAR-SV, the two orderings

give very different marginal likelihood values—a difference of more than 400 in log scale.

All in all, these results further highlight the advantages of the proposed OI-VAR-SV: not

only is it robust to different variable orderings, it is also more flexible and provides a

much better fit of the data.
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Table 3: Log marginal likelihood values of the proposed order-invariant stochastic volatil-
ity model under two different orderings (OI-VAR-SV-1 and OI-VAR-SV-2), as well as
those from the model of Cogley and Sargent (2005) (CS-VAR-SV-1 and CS-VAR-SV-2).

CS-VAR-SV-1 CS-VAR-SV-2 OI-VAR-SV-1 OI-VAR-SV-2
log ML −26,301 −26,709 −22,714 −22,712

Next, we investigate the number of SV processes m needed to fit the data well, while

accounting for model complexity. To that end, we compare the baseline OI-VAR-SV-1

with different values of m.10 When m 6 n−2 = 18, the impact matrix B0 is only partially

identified, but the log marginal likelihood values remain valid. The results in Table 4

show that the data favor the specification with m = 19 SV processes. Interestingly,

it outperforms both a more restricted version (m = 18) as well as a more flexible one

(m = 20), highlighting the value of conducting a model comparison exercise to select m.

In addition, that the best value of m is large suggests that the co-volatility structure in

macroeconomic data is complex and requires more a flexible modeling approach.

Table 4: Log marginal likelihood values of the OI-VAR-SV-1 with m stochastic volatility
processes.

m 17 18 19 20
log ML −22,713 −22,701 −22,684 −22,714

7 A Forecasting Exercise

7.1 Comparison of OI-VAR-SV to CS-VAR-SV

Since VARs are commonly used for forecasting, it is interesting to investigate how the

sensitivity to ordering of the CS-VAR-SV models affects forecasts and whether working

with our order-invariant specification can lead to forecast improvements. Accordingly we

carry out a forecasting exercise using the monthly macroeconomic dataset of sub-section

6.2 for the four models (OI-VAR-SV-1, OI-VAR-SV-2, CS-VAR-SV-1 and CS-VAR-SV-

2). Forecast performance of the models is evaluated from 1970:03 till the end of the

10For m < n, the n× n diagonal matrix Dt in (2) is set to be Dt = diag(eh1,t , . . . , ehm,t , 1, . . . , 1).
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sample. Root mean squared forecast errors (RMSFEs) are used to evaluate the quality of

point forecasts and averages of log predictive likelihoods (ALPLs) are used to evaluate the

quality of density forecasts. We focus on four core variables: industrial production, the

unemployment rate, PCE inflation and the Federal funds rate. Results for three different

forecast horizons (h = 1, 6, 12) are presented in Table 5. We use the iterated method of

forecasting to compute longer horizon forecasts.

Note first that, as expected, OI-VAR-SV-1 and OI-VAR-SV-2 are producing the same

forecasts (up to MCMC approximation error). CS-VAR-SV-1 and CS-VAR-SV-2 are

often producing forecasts which are substantially different both from one another and

from those produced by the order-invariant approaches. These differences are not that

noticeable in the RMSFEs, but are very noticeable in the ALPLs. This suggests ordering

issues are more important for density forecasts than for point forecasts. This is not

surprising since ordering issues are important for the multivariate stochastic volatility

process (which plays an important role in determining predictive variances) but not for

the VAR coefficients (which are the key determinants of predictive means). These findings

are similar to those found in smaller VAR-SVs by Arias, Rubio-Ramirez, and Shin (2022).

A careful examination of the ALPL results indicates that the best forecasting model is al-

most always the OI-VAR-SV and in most cases the forecast improvements are statistically

significant relative to the CS-VAR-SV-1 benchmark. A comparison of CS-VAR-SV-1 to

CS-VAR-SV-2 yields no simple conclusion. Remember that CS-VAR-SV-1 uses a similar

ordering of Carriero, Clark, and Marcellino (2019). For most variables and forecast hori-

zons, this ordering is leading to higher ALPLs than the reverse ordering. This finding

is also consistent with the results in Arias, Rubio-Ramirez, and Shin (2022). But there

are exceptions such as forecasting the Fed funds rate for h = 6 and h = 12. But the

important point is not that, when using CS-VAR-SV models, one ordering is better than

the other. The important points are that ordering matters (often in a statistically signif-

icant way) and that different variables prefer different orderings. That is, there is no one

ordering that forecasts all of the variables best.
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Table 5: RMSFE and ALPL of four core macroeconomic time series.
Variables Models RMSFE ALPL

h = 1 h = 6 h = 12 h = 1 h = 6 h = 12
Industrial production CS-VAR-SV-1 0.007 0.007 0.007 2.071 2.159 2.266

CS-VAR-SV-2 0.007∗∗ 0.007∗∗ 0.007∗∗ 1.522∗∗∗ 1.651∗∗∗ 1.767∗∗∗

OI-VAR-SV-1 0.007 0.007 0.007∗∗∗ 3.660∗∗∗ 3.458∗∗∗ 3.360∗∗∗

OI-VAR-SV-2 0.007 0.007 0.007∗∗∗ 3.659∗∗∗ 3.459∗∗∗ 3.358∗∗∗

Unemployment rate CS-VAR-SV-1 0.159 0.169 0.173 −0.005 −0.689 −0.707
CS-VAR-SV-2 0.158 0.169 0.173 −0.124 −0.761 −0.742
OI-VAR-SV-1 0.158 0.167 0.173 0.463∗∗∗ 0.276 0.152
OI-VAR-SV-2 0.158 0.167∗ 0.173 0.463∗∗∗ 0.276 0.156

PCE inflation CS-VAR-SV-1 0.002 0.002 0.002 2.210 2.311 2.425
CS-VAR-SV-2 0.002∗∗∗ 0.002 0.002 1.811∗∗∗ 1.919∗∗∗ 2.024∗∗∗

OI-VAR-SV-1 0.002∗∗ 0.002 0.002∗ 4.821∗∗∗ 4.448∗∗∗ 4.249∗∗∗

OI-VAR-SV-2 0.002∗∗ 0.002 0.002 4.823∗∗∗ 4.453∗∗∗ 4.260∗∗∗

Federal funds rate CS-VAR-SV-1 0.492 1.566 2.216 0.222 −8.473 −16.704
CS-VAR-SV-2 0.497 1.597∗ 2.264 −0.327∗∗∗ −6.708∗∗∗ −12.474∗∗∗

OI-VAR-SV-1 0.493 1.576 2.233 0.294∗∗∗ −6.956∗ −13.466∗

OI-VAR-SV-2 0.494 1.570 2.236 0.296∗∗∗ −7.039 −13.662
Note: The bold figure indicates the best model in each case. ∗, ∗∗ and ∗∗∗ denote, respectively, 0.10,
0.05 and 0.01 significance level for a two-sided Diebold and Mariano (1995) test. The benchmark model
in the Diebold Mariano test is CS-VAR-SV-1.

7.2 Adding Time Variation to B0

So far all the models in this paper have assumed B0 to be constant over time and we have

used the specification of Cogley and Sargent (2005) which maintains this assumption as

a benchmark in our investigation of ordering issues. However, following Primiceri (2005)

many papers have allowed for time variation in B0 as well. It is straightforward to

extend our model to allow for this, leading to the order-invariant time varying parameter

VAR-SV, or OI-TVP-VAR-SV which replaces B0 by B0,t and assumes the elements of

the latter follow random walks. The definition of the OI-TVP-VAR-SV along with an

MCMC algorithm which allows for Bayesian inference is given in the Online Appendix.

The Online Appendix also shows that the model of Primiceri (2005), which uses a lower

triangular specification for B0,t, is subject to the same sensitivity to ordering issues as in

the model of Cogley and Sargent (2005).

One issue with any TVP-VAR is that the computational burden can be very high in large

TVP-VARs when using MCMC. But a lack of identification of a model does not preclude

good forecast performance. Accordingly, we have repeated our forecasting exercise using

a OI-TVP-VAR-SV involving our four core variables as well as the TVP-VAR-SV which
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assumes a lower triangular form for B0,t. We consider two versions of the latter with the

variables ordered in two different ways (i.e. in the order they appear in Table 5 and in

the reverse order. These are labelled Primiceri-1 and Primiceri-2 in the table). Table 6

provides the results and indicates that our OI-TVP-VAR-SV is typically forecasting better

than TVP models which use the lower triangular form. The importance of ordering can be

seen in the non-order invariant TVP-VAR-SV in that Primiceri-2 is typically forecasting

much worse than Primiceri-1.

It is also interesting to compare Table 5 (involving 20 dimensional VARs without TVPs)

to Table 6 (involving 4 variable TVP-VARs). The pattern is mixed, but in most cases the

high-dimensional OI-VAR-SV is beating its lower-dimensional TVP counterpart. This in-

dicates that the extra variables in the larger model are typically helping improve forecasts

more than simply adding TVPs to a smaller model.

Table 6: RMSFE and ALPL of four core macroeconomic time series.
Variables Models RMSFE ALPL

h = 1 h = 6 h = 12 h = 1 h = 6 h = 12
Industrial production OI-TVP-VAR-SV 0.007∗∗∗ 0.008∗ 0.008 3.465∗∗∗ 2.673∗∗∗ 2.097∗∗∗

Primiceri-1 0.009 0.022 0.073 1.757 -0.468 -3.695
Primiceri-2 0.052∗∗∗ 0.966∗∗∗ 6.217∗∗∗ -0.344∗∗∗ -2.685∗∗∗ -6.085∗∗∗

Unemployment rate OI-TVP-VAR-SV 0.203∗∗∗ 0.207∗ 0.200∗ 0.249∗ -0.839∗∗∗ -1.697∗∗∗

Primiceri-1 0.175 0.194 0.252 0.339 -3.120 -6.878
Primiceri-2 0.548∗∗ 1.304∗∗∗ 5.200∗∗∗ -1.046∗∗∗ -5.199∗∗∗ -9.446∗∗

PCE inflation OI-TVP-VAR-SV 0.002 0.002 0.002 4.234∗∗∗ 3.842∗∗∗ 3.586
Primiceri-1 0.009 0.036 0.117 1.573 -0.832 -3.874
Primiceri-2 0.054∗∗ 0.618∗∗∗ 4.549∗∗ -0.222∗∗∗ -2.576∗∗∗ -6.042∗∗∗

Fed funds rate OI-TVP-VAR-SV 0.596∗∗∗ 1.998 2.692 -0.298 -8.676∗∗∗ -15.755∗∗

Primiceri-1 0.529 1.808 3.905 0.048 6.245 -11.650
Primiceri-2 0.549 4.109∗∗∗ 21.992∗∗∗ 0.058∗∗∗ -8.501∗∗∗ -22.344∗∗∗

Note: ∗, ∗∗ and ∗∗∗ denote, respectively, 0.10, 0.05 and 0.01 significance level for a two-sided Diebold
and Mariano (1995) test. The benchmark model for the Diebold-Mariano test is Primiceri-1.

8 Conclusions

In this paper, we have demonstrated, both theoretically and empirically, the consequences

of working with VAR-SVs which use a lower triangular parameterization of the error

covariance matrices such as that used in Cogley and Sargent (2005) and are thus not order

invariant. We have proposed a new specification which is order invariant which involves

working with an unrestricted version of the impact matrix, B0. Such a model would
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be unidentified in the homoscedastic VAR but we draw on Bertsche and Braun (2020)

to establish that the incorporation of SV identifies the model. We develop an MCMC

algorithm which allows for Bayesian inference and prediction in our order-invariant model.

In an empirical exercise involving 20 macroeconomic variables we demonstrate the ability

of our methods to produce accurate forecasts in a computationally efficient manner.
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Online Appendix A: Data Description

This appendix provides details of the monthly dataset used in the forecasting exercise.

The variables and their transformations are the same as in Carriero, Clark, and Marcellino

(2019).

Table 7: Monthly dataset of 20 variables from FRED-MD.

Variable Mnemonic Transformation
Real personal income RPI ∆log
Real PCE DPCERA3M086SBEA ∆log
Real manufacturing and trade sales CMRMTSPLx ∆log
Industrial production INDPRO ∆log
Capacity utilization in manufacturing CUMFNS ∆
Civilian unemployment rate UNRATE ∆
Total nonfarm employment PAYEMS ∆log
Hours worked: goods-producing CES0600000007 no transformation
Average hourly earnings: goods-producing CES0600000008 ∆log
PPI for finished goods WPSFD49207 ∆2log
PPI for commodities PPICMM ∆2log
PCE price index PCEPI ∆2log
Federal funds rate FEDFUNDS no transformation
Total housing starts HOUST log
S&P 500 price index S&P 500 ∆log
U.S.-U.K. exchange rate EXUSUKx ∆log
1 yr. Treasury-FEDFUNDS spread T1YFFM no transformation
10 yr. Treasury-FEDFUNDS spread T10YFFM no transformation
BAA-FEDFUNDS spread BAAFFM no transformation
ISM: new orders index NAPMNOI no transformation

36



Online Appendix B: Estimation Details

In this appendix we provide the estimation details of two models: the baseline OISV-VAR

and a variant with a time-varying impact matrix B0,t.

Estimation of the Baseline OISV-VAR

For the baseline OISV-VAR, we consider a posterior sampler that sequentially samples

from the following full conditional distributions:

1. p(B0 |y,α,h,φ,ω2,ψ,κ, zψ, zκ) = p(B0 |y,α,h);

2. p(α |y,B0,h,φ,ω
2,ψ,κ, zψ, zκ) = p(α |y,B0,h,ψ,κ);

3. p(ψ |y,α,B0,h,φ,ω
2,κ, zψ, zκ) =

∏n
i=1

∏k
j=2 p(ψi,j |αi,j,κ, zψi,j);

4. p(κ |y,α,B0,h,φ,ω
2,ψ, zψ, zκ) =

∏2
l=1 p(κl |α,ψ, zκl);

5. p(zψ |y,α,B0,h,φ,ω
2,κ,ψ, zκ) =

∏n
i=1

∏k
j=2 p(zψi,j |ψi,j);

6. p(zκ |y,α,B0,h,φ,ω
2,κ,ψ, zψ) =

∏2
l=1 p(zκl |κl).

7. p(h |y,B0,α,φ,ω
2,ψ,κ, zψ, zκ) =

∏n
i=1 p(hi,· |y,B0,α,φ,ω

2);

8. p(ω2 |y,B0,α,h,φ,ψ,κ, zψ, zκ) =
∏n

i=1 p(ω
2
i |hi,·, φi);

9. p(φ |y,B0,α,h,ω
2,ψ,κ, zψ, zκ) =

∏n
i=1 p(φi |hi,·, σ2

i );

The main text discusses the computation details of Step 1. Below we outline the remaining

steps.

Step 2. We sample the reduced-form VAR coefficients row by row along the lines of

Carriero, Clark, and Marcellino (2019). In particular, we extend the triangular algorithm

in Carriero, Chan, Clark, and Marcellino (2022) that is designed for a lower triangular

impact matrix B0 to the case where B0 is a full matrix. To that end, define Ai=0 to be a
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k × n matrix that has exactly the same elements as A except for the i-th column, which

is set to be zero, i.e., Ai=0 = (α1, . . . ,αi−1,0,αi+1, . . . ,αn). Then, we can rewrite (4) as

B0(yt −A′i=0xt) = (B0,i ⊗ x′t)αi + εt, εt ∼ N (0,Dt),

where xt = (1,y′t−1, . . . ,y
′
t−p)

′ and B0,i is the i-th column of B0. Let zit = B0(yt−A′i=0xt)

and stack zi = (zi
′
1 , . . . , z

i′
T )′, we have

zi = Wiαi + ε, ε ∼ N (0,D),

where Wi = X⊗B0,i and D = diag(D1, . . . ,DT ).

Next, the Minnesota-type horseshoe prior on αi is conditionally Gaussian given the local

variance component ψi. More specifically, we can rewrite the conditional prior on αi

in (5) as:

(αi |κ,ψi) ∼ N (mi,Vαi),

where mi = (mi,1, . . . ,mi,k)
′ and Vαi = diag(Ci,1, κi,2ψi,2Ci,2 . . . , κi,kψi,kCi,k) (the prior

on the intercept is Gaussian). Then, by standard linear regression results, we have

(αi |y,B0,α−i,h,ψi,κ) ∼ N (α̂i,K
−1
αi

),

where α−i = (α′1, . . . ,α
′
i−1,α

′
i+1, . . . ,α

′
n)′,

Kαi = V−1αi + Wi′D−1Wi, α̂i = K−1αi

(
V−1αi mi + Wi′D−1zi

)
.

The computational complexity of this step is the same, i.e., O(n4), as in the triangular

case considered in Carriero, Chan, Clark, and Marcellino (2022).

Step 3. First, note that the elements of ψi are conditionally independent and we can

sample them one by one without loss of efficiency. Next, combining (5) and (9), we obtain

p(ψi,j |αi,j,κ, zψi,j) ∝ ψ
− 1

2
i,j e

− 1
2κi,jCi,jψi,j

(αi,j−mi,j)2 × ψ−
3
2

i,j e
− 1
ψi,jzψi,j

= ψ−2i,j e
− 1
ψi,j

(
z−1
ψi,j

+
(αi,j−mi,j)

2

2κi,jCi,j

)
,
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which is the kernel of the following inverse-gamma distribution:

(ψi,j |αi,j,κ, zψi,j) ∼ IG
(

1, z−1ψi,j +
(αi,j −mi,j)

2

2κi,jCi,j

)
.

Step 4. Note that κ1 and κ2 only appear in their priors in (10) and in (5) — re-

call κi,j = κ1 for coefficients on own lags and κi,j = κ2 for coefficients on other lags.

To sample κ1 and κ2, first define the index set Sκ1 that collects all the indexes (i, j)

such that αi,j is a coefficient associated with an own lag. That is, Sκ1 = {(i, j) :

αi,j is a coefficient associated with an own lag}. Similarly, define Sκ2 as the set that col-

lects all the indexes (i, j) such that αi,j is a coefficient associated with a lag of other

variables. It is easy to check that the numbers of elements in Sκ1 and Sκ2 are respectively

np and (n− 1)np. Then, we have

p(κ1 |α,ψ, zκ1) ∝
∏

(i,j)∈Sκ1

κ
− 1

2
1 e

− 1
2κ1Ci,jψi,j

(αi,j−mi,j)2 × κ−
3
2

1 e
− 1
κ1zκ1

= κ
−(np+1

2
+1)

1 e
− 1
κ1

(
z−1
κ1

+
∑

(i,j)∈Sκ1

(αi,j−mi,j)
2

2ψi,jCi,j

)
,

which is the kernel of the IG
(
np+1

2
, z−1κ1 +

∑
(i,j)∈Sκ1

(αi,j−mi,j)2
2ψi,jCi,j

)
distribution. Similarly,

we have

(κ2 |α,ψ, zκ2) ∼ IG

(n− 1)np+ 1

2
, z−1κ2 +

∑
(i,j)∈Sκ2

(αi,j −mi,j)
2

2ψi,jCi,j

 .

Steps 5-6. It is straightforward to sample the latent variables zψ and zκ. In particular,

it follows from (9) that zψi,j ∼ IG(1, 1 + ψ−1i,j ), i = 1, . . . , n, j = 2, . . . , k. Similarly, from

(10) we have zκl ∼ IG(1, 1 + κ−1l ), l = 1, 2.

Step 7. The log-volatility vector for each equation, hi,·, i = 1, . . . , n, can be sampled

using the auxiliary mixture sampler of Kim, Shephard, and Chib (1998) once we obtain

the orthogonalized errors. More specifically, we first compute E using (11). Then, we

transform the i-th column of E via y∗i = (logE2
1,i, . . . , logE2

T,i)
′. Finally we implement

the auxiliary mixture sampler in conjunction with the precision sampler of Chan and

Jeliazkov (2009) to sample hi,· using y∗i as data.

39



Steps 8-9. These two steps are standard; see, e.g., Chan and Hsiao (2014).

Estimation of the OISV-VAR with a Time-Varying B0,t

We consider a variant of the OISV-VAR with a time-varying impact matrix B0,t:

yt = a + A1yt−1 + · · ·+ Apyt−p + B−10,tεt, εt ∼ N (0,Dt), (13)

where Dt = diag(eh1,t , . . . , ehn,t) is diagonal and B0,t is a non-singular but otherwise

unrestricted n×n matrix. Let bi,t denote the i-th row of B0,t, i.e., B′0,t = (b1,t, . . . ,bn,t).

Each bi,t, i = 1, . . . , n, is assumed to evolve according to the following random walk

process:

bi,t = bi,t−1 + ubi,t, ubi,t ∼ N (0,Σbi) (14)

for t = 2, . . . , T , where Σbi = diag(σ2
b,i1, . . . , σ

2
b,in) is a diagonal matrix. The random walk

process is initialized as bi,1 ∼ N (bi,0,Vbi), where bi,0 and Vbi are fixed hyperparameters.

As before, each of the log-volatility hi,t follows a stationary AR(1) process:

hi,t = φihi,t−1 + uhi,t, uhi,t ∼ N (0, σ2
i ),

for t = 2, . . . , T , where |φi| < 1 and the initial condition is specified as hi,1 ∼ N (0, σ2
i /(1−

φ2
i )). We assume similar priors as in the baseline model. The only new addition is

the priors on the error variances in the state equation (14), which we assume to be

independent inverse-gamma distributions: σ2
b,ij ∼ IG(νb,ij, Sb,ij), i, j = 1, . . . , n.

To estimate this model, we modify the posterior sampler for the baseline model to incor-

porate a time-varying impact matrix. In particular, one only needs to modify Steps 1, 2

and 7 as follows and implement an additional step to sample Σbi .

Step 1. We sample each bi,t, the i-th row of B0,t, given B0,s, s 6= t and other rows of

B0,t using the sampling approach in Waggoner and Zha (2003) and Villani (2009) but

adopted to our time-varying setting. To that end, let b−it denote the vector b with the

sub-vector bi,t removed. First, the i-th equation of (13) can be written as

u′tbi,t = εi,t, εi,t ∼ N (0, ehi,t),
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where ut = yt − a−A1yt−1 − · · · −Apyt−p and εi,t is the i-th element of εt. Combining

the state equation in (14), the full conditional distribution of bi,t, for 2 6 t 6 T , is given

by

p(bi,t |y,α,b−it, hi,t) ∝| det B0|e−
1
2
e−hi,tb′i,tutu

′
tbi,t × e

− 1
2
(bi,t−bi,t−1)

′Σ−1
bi

(bi,t−bi,t−1)

× e
− 1

2
(bi,t−bi,t+1)

′Σ−1
bi

(bi,t−bi,t+1)

∝ | det B0|e−
1
2
(bi,t−b̂i,t)

′Kbi,t
(bi,t−b̂i,t) (15)

where

Kbi,t = 2Σ−1bi
+ e−hi,tutu

′
t, b̂i,t = K−1bi,t

Σ−1bi
(bi,t−1 + bi,t+1).

For t = 1 and t = T , the full conditional distribution has the same form, but Kbi,t and

b̂i,t become

Kbi,1 = V−1bi
+ Σ−1bi

+ e−hi,1u1u
′
1, b̂i,1 = K−1bi,1

(
V−1bi

bi,0 + Σ−1bi
bi,2
)

Kbi,T = Σ−1bi
+ e−hi,TuTu′T , b̂i,T = K−1bi,T

Σ−1bi
bi,T−1.

The full conditional posterior distribution in (15) is non-standard, but as before one can

adopt the approach in Waggoner and Zha (2003) and Villani (2009) to sample bi,t. In

particular, bi,t has the same distribution as a linear transformation of an n-vector that

consists of one absolute normal and n − 1 normal random variables. More specifically,

let Ci,t denote the Cholesky factor of Kbi such that Kbi = Ci,tC
′
i,t. Let F−i represent

the matrix F with the i-th column deleted and F⊥ be the orthogonal complement of F.

Furthermore, define v1 = C−1i,t ((B′0,t)−i)
⊥/||C−1i,t ((B′0,t)−i)

⊥|| and let (v2, . . . ,vn) = v⊥1 .

Then, we have

(bi,t |y,α,b−it, hi,t)
d
= (C′i,t)

−1
n∑
j=1

ξjvj,

where ξ1 ∼ AN (ξ̂1, 1) and ξj ∼ N (ξ̂j, 1), j = 2, . . . , n with ξ̂j = b̂′iCi,tvj.

To sample fromAN (ξ̂1, 1), we use the inverse-transform method instead of the 2-component

normal mixture approximation considered in Villani (2009). This is because the normal

mixture is designed to approximate AN (µ, ρ) well for ρ close to 0. In our time-varying

setting, ρ = 1 and this mixture approximation appears to be quite different from the

target. Finally, in the sampler we fix the sign of the i-th element of bi,t to be positive (so
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that the diagonal elements of B0 are positive). This is done by multiplying the draw bi,t

by −1 if its i-th is negative.

Step 2. We sample the reduced-form VAR coefficients row by row by extending the trian-

gular algorithm of Carriero, Chan, Clark, and Marcellino (2022) to the case where the im-

pact matrix is unrestricted and time-varying. Let Ai=0 = (α1, . . . ,αi−1,0,αi+1, . . . ,αn).

Then, we can rewrite (13) as

B0,t(yt −A′i=0xt) = B0,t,ix
′
tαi + εt, εt ∼ N (0,Dt),

where xt = (1,y′t−1, . . . ,y
′
t−p)

′ and B0,t,i is the i-th column of B0,t. Let zit = B0,t(yt −
A′i=0xt) and Wi

t = B0,t,ix
′
t. Then, stacking t = 1, . . . , T , we have

zi = Wiαi + ε, ε ∼ N (0,D),

where zi = (zi′1 , . . . , z
i′
T )′, Wi = (Wi′

1 , . . . ,W
i′
T )′ and D = diag(D1, . . . ,DT ). The

Minnesota-type horseshoe prior on αi is conditionally Gaussian given the local variance

component ψi. More specifically, we can rewrite the conditional prior on αi in (5) as:

(αi |κ,ψi) ∼ N (mi,Vαi),

where mi = (mi,1, . . . ,mi,k)
′ and Vαi = diag(Ci,1, κi,2ψi,2Ci,2 . . . , κi,kψi,kCi,k) (the prior

on the intercept is Gaussian). Then, by standard linear regression results, we have

(αi |y,B0,α−i,h,ψi,κ) ∼ N (α̂i,K
−1
αi

),

where α−i = (α′1, . . . ,α
′
i−1,α

′
i+1, . . . ,α

′
n)′,

Kαi = V−1αi + Wi′D−1Wi, α̂i = K−1αi

(
V−1αi mi + Wi′D−1zi

)
.

Step 7. The log-volatility vector for each equation, hi,·, i = 1, . . . , n, can be sampled

using the auxiliary mixture sampler of Kim, Shephard, and Chib (1998) once we obtain

the T ×n matrix of orthogonalized errors E. That is, the t-th row of E is (y′t−x′tA)B′0,t.

Then, we transform the i-th column of E via y∗i = (logE2
1,i, . . . , logE2

T,i)
′. Finally we

implement the auxiliary mixture sampler in conjunction with the precision sampler of

Chan and Jeliazkov (2009) to sample hi,· using y∗i as data.
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Step 10. It is straightforward to sample the error variances Σbi = diag(σ2
b,i1, . . . , σ

2
b,in).

In particular, we have

σ2
b,ij ∼ IG

(
νb,ij + (T − 1)/2, Sb,ij +

T∑
t=2

(bij,t − bij,t−1)2/2

)

for i, j = 1, . . . , n.
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Online Appendix C: Additional Results

In this appendix we present additional analytical and simulation results. First, we provide

another illustration that shows the reduced-form error variances increase as the variables

is ranked lower in yt, under a time-varying impact matrix B0,t similar to that in Primiceri

(2005). Next, we report some efficiency measures of the posterior sampler for the baseline

OISV-VAR-SV.

Consider the following multivariate stochastic volatility specification of the reduced-form

errors, the n-dimensional vector ut, in Primiceri (2005):

ut = B−10,tεt, εt ∼ N (0,Dt),

where B0,t is a unit lower triangular matrix with elements bij,t and Dt = diag(eh1,t , . . . , ehn,t)

is a diagonal matrix consisting of the log-volatility ht = (h1,t, . . . , hn,t)
′. Since B0,t is lower

triangular, the implied covariance matrix on ut naturally depends on the order of the el-

ements in ut.

To demonstrate this point, suppose that the vector of the lower triangular elements in

B0,t, denoted as αt = (b21,t, b31,t, b32,t, . . . , bn(n−1),t)
′, follows the following state transition:

αt = µ+ Φ(αt−1 − µ) + uαt , uαt ∼ N (0,Σα),

where Φ = diag(φ21, . . . , φn(n−1)) and Σα = diag(σ2
α,21, . . . , σ

2
α,n(n−1)) are diagonal with

|φij| < 1.11 It follows that unconditionally bij,t ∼ N (µij, σ
2
α,ij/(1 − φ2

ij)). For simplicity

we set µij = 0, σ2
α,ij/(1 − φ2

ij) = 1 and εt ∼ N (0, In). In particular, Ebij,t = 0,Eb2ij,t = 1

and E(bij,tbik,t) = 0 for all j 6= k.

Now, we obtain the elements of ut recursively and compute their variances Var(ui,t) =

11In Primiceri (2005) αt is assumed to follow a random walk process with Φ set to be the identity
matrix. Consequently, the unconditional mean of αt does not exist, which in turn implies that the
variances of ut do not either.
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Eu2i,t as before. Again, we have

Eu21,t = Eε21,t = 1

Eu22,t = Eε22,t + Eb221,tEu21,t = 1 + Eu21,t = 2

...

Eu2i,t = Eε2i,t + Eb2i(i−1),tEu2i−1,t + · · ·+ Eb2i1,tEu21,t = 2i−1.

That is, the variance of the reduced-form error increases as it is ordered lower in the

n-tuple, even though the assumptions about bij,t and εi,t are identical across i = 1, . . . , n.

Next, to assess the efficiency of the posterior sampler for the baseline OISV-VAR-SV,

we compute the inefficiency factors of the MCMC samples obtained from the poste-

rior sampler. Specifically, Figure 11 plots the inefficiency factors of selected parameters

of interest from the empirical application involving a 20-variable VAR. To present the

information more succinctly, boxplots of the inefficiency factors are used. Each boxplot

summarizes the quantiles of each group of model parameters. The middle line of each box

denotes the median, while the lower and upper lines represent, respectively, the 25- and

the 75-percentiles. The whiskers extend to the maximum and minimum. For instance,

the boxplot associated with B0 indicates that the median of the inefficiency factors of

the impact matrix elements is about 15, and the maximum is about 120. Similarly, the

boxplot associated with σii,t, i = 1, . . . , n, shows that most of the inefficiency factors of

the reduced-form variances are below 10, with the maximum being about 40.
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Figure 11: Boxplots of the inefficiency factors corresponding to the posterior draws of the
impact matrix B0 and the reduced-form variances σii,t and covariances σij,t, i 6= j, i, j =
1, . . . , n.
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