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Abstract

Large VARs are increasingly used in structural analysis as a unified framework

to study the impacts of multiple structural shocks simultaneously. However, the

concurrent identification of multiple shocks using sign and ranking restrictions poses

significant practical challenges to the point where existing algorithms cannot be

used with such large VARs. To address this, we introduce a new numerically efficient

algorithm that facilitates the estimation of impulse responses and related measures

in large structural VARs identified with a large number of structural restrictions on

impulse responses. The methodology is illustrated using a 35-variable VAR with

over 100 sign and ranking restrictions to identify 8 structural shocks.
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1 Introduction

Vector autoregressions (VARs) are a workhorse model in macroeconomic forecasting and

structural analysis. Among the many methodological advances in the structural VAR

(SVAR) literature since the pioneering work by Sims (1980), two recent developments are

the most prominent. First, there is a growing recognition of the need to exploit more in-

formation in structural analyses, motivated by the concern that informational deficiency

(using an information set that is too small relative to that of economic agents) substan-

tially distorts estimates of impulse responses and related objects (Hansen and Sargent,

1991; Lippi and Reichlin, 1993, 1994). Starting from the seminal paper by Leeper, Sims,

and Zha (1996) that develops various medium-sized structural VARs to study the effects

of monetary policy, large VARs with dozens of endogenous variables are increasingly being

used in applications. This trend gained momentum after the influential work by Bańbura,

Giannone, and Reichlin (2010), who demonstrate the benefits of including a large number

of variables for both forecasting and structural analysis. Notable applications using large

VARs include Carriero, Kapetanios, and Marcellino (2009), Koop (2013), Ellahie and

Ricco (2017) and Crump, Eusepi, Giannone, Qian, and Sbordone (2021).

The second development relates to the methods for identifying structural shocks. More

specifically, there has been a gradual departure from conventional recursive or zero re-

strictions to alternative structural restrictions that are deemed to be more credible. An

important class of identifying restrictions imposes sign restrictions motivated by eco-

nomic theory, developed in a series of papers by Faust (1998), Canova and Nicolo (2002)

and Uhlig (2005). Extensions of this identification approach, such as ranking restrictions

proposed in Amir-Ahmadi and Drautzburg (2021), are also widely used in empirical work.

The convergence of these two developments naturally requires the estimation of large

structural VARs identified by imposing sign and ranking restrictions on the impulse

responses. However, this remains practically infeasible in high-dimensional settings. For

instance, using the popular accept-reject algorithm of Rubio-Ramirez, Waggoner, and

Zha (2010) to impose sign restrictions might take days in larger-scale applications. Thus,

this computational burden severely limits the use of these more credible restrictions in

large systems.

We develop a new approach to estimate large SVARs identified using a large number
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of structural restrictions on impulse responses, which was until now computationally in-

feasible. The new algorithm builds upon the accept-reject algorithm of Rubio-Ramirez,

Waggoner, and Zha (2010), which we now briefly describe to provide some perspective.

First, given a uniformly drawn orthogonal matrix (i.e., a matrix drawn according to the

Haar measure), Rubio-Ramirez, Waggoner, and Zha (2010) check if the implied impulse

responses satisfy all restrictions. If all the restrictions are satisfied (the draw is admis-

sible), accept the draw and the implied impulse responses; otherwise, obtain another

uniform draw and repeat the procedure. The main computational bottleneck of this al-

gorithm comes from the fact that in high-dimensional settings with a large number of

structural restrictions, it is highly unlikely that any orthogonal matrix drawn uniformly

is admissible. Consequently, one typically needs to sample a huge number of orthogonal

matrices to obtain one that is admissible.

The key idea of our proposed algorithm comes from the recognition that, given a uniformly

distributed orthogonal matrix, a vast collection of uniform draws can be constructed

by permuting its columns and switching the signs of the columns.1 More importantly,

all these obtained orthogonal matrices are equivalent, in the sense that they represent

exactly the same structural shocks of the original orthogonal matrix, after relabeling the

shocks and proper sign normalizations. Additionally, one can effectively search through

this collection to locate any members that satisfy all structural restrictions with trivial

computations. In this way, the new algorithm significantly increases the probability

of obtaining an admissible draw with virtually no additional costs. In our benchmark

setting, we impose that any identification restriction is only imposed on impact to allow

for fast checking of identification restrictions. Economic theory generally only produces

robust restrictions across theoretical models only on impact, giving a justification for this

approach. However, we also discuss how to extend our approach to sign restrictions at

longer horizons as well as ranking restrictions along the lines of Graeve and Karas (2014)

and Amir-Ahmadi and Drautzburg (2021).

To illustrate our proposed algorithm, we consider three applications, two empirical appli-

cations based on US data and one set of Monte Carlo simulations. First, we estimate a

15-variable VAR with more than 40 sign and ranking restrictions to identify 5 structural

shocks based on empirical applications in Furlanetto, Ravazzolo, and Sarferaz (2019) and

1Since the Haar measure is invariant under permutations and sign switches, any member of this
collection is also uniformly distributed in the orthogonal group.
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Chan (2022). As a benchmark, we use the algorithm of Rubio-Ramirez, Waggoner, and

Zha (2010) to uniformly draw orthogonal matrices from the admissible set and compute

implied impulse responses. It takes about 3.6 billion orthogonal matrices to obtain 1,000

admissible draws, and the estimation takes about 6 days on a standard desktop. In

contrast, the new algorithm requires only about 31,000 orthogonal matrices to obtain

1,000 admissible draws, and the entire exercise takes about 16 seconds. We also confirm

empirically that both algorithms give identical impulse responses. Second, we conduct a

series of Monte Carlo simulations to illustrate the empirical performance of the proposed

method, and show that it works well even in settings with large numbers of variables and

structural shocks.

Our second empirical application considers a larger 35-variable VAR with over 100 sign

and ranking restrictions to identify 8 structural shocks: demand, investment, financial,

monetary policy, government spending, technology, labor supply and wage bargaining.

These macroeconomic and financial variables are broadly similar to those of Crump,

Eusepi, Giannone, Qian, and Sbordone (2021) and are closely monitored by policy insti-

tutions and market participants. Our high-dimensional model provides a unified frame-

work to study the impacts of multiple structural shocks simultaneously. In particular,

this framework allows us to disentangle the impacts of different types of demand and

supply shocks on key macroeconomic variables. Even for such a large system, the estima-

tion takes only 14 minutes. Therefore, this application demonstrates that it is practical

to study the impacts of multiple structural shocks jointly in a large system using the

proposed approach.

Our paper contributes to the emerging literature on efficient methods for conducting

structural analysis using large VARs. As noted in Crump, Eusepi, Giannone, Qian, and

Sbordone (2021), central banks and policy institutions routinely monitor and forecast

dozens of key macroeconomic variables, and VARs provide a convenient framework for

studying the joint impacts of multiple structural shocks. To reduce the computational

burden of performing structural analysis in large systems, some recent papers, such as

Korobilis (2022) and Chan, Eisenstat, and Yu (2022), propose using a factor model for the

reduced-form VAR errors and structural identification restrictions are placed on factor

loadings. In contrast, our paper uses a standard VAR framework where structural shocks

are related to the reduced-form errors through an impact matrix. Therefore, the proposed

algorithm is directly applicable to a wide variety of VARs currently used for structural
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analysis.

This paper also relates to the literature on efficient posterior sampling in structural VARs

with informative priors on impulse responses (see, e.g., Kociecki, 2010; Baumeister and

Hamilton, 2015, 2018). In particular, for VARs identified using sign restrictions, the

proposed algorithm can be used in the first stage to generate proposal draws for an

importance sampler to explore the posterior distribution that incorporates prior infor-

mation on impulse responses; a recent example of such an importance sampler is given

in Bruns and Piffer (2023). The proposed algorithm can thus boost the efficiency of the

second-stage importance sampler and make it applicable beyond medium-sized models.

The remainder of this paper is organized as follows. Section 2 first outlines the iden-

tification of shocks in a structural VAR using sign restrictions. We then introduce the

proposed algorithm for generating uniform draws of the impact matrix that satisfy all

the sign restrictions at impact. Finally, we discuss how the proposed algorithm can be

extended to handle other commonly-used identification schemes. Section 3 considers an

illustration using a 15-Variable VAR with sign restrictions to identify 5 structural shocks.

We compare the speed of the proposed algorithm as well as the impulse response esti-

mates with those obtained using the algorithm of Rubio-Ramirez, Waggoner, and Zha

(2010). Section 4 considers an application that involves 35 US macroeconomic and fi-

nancial variables. We use over 100 sign and ranking restrictions to identify 8 structural

shocks. Lastly, Section 5 concludes and outlines some future research directions.

2 Identification of Structural Shocks

In this section, we first outline the identification of structural shocks in a structural

VAR using sign restrictions. In Section 2.1 we then introduce the proposed algorithm

to efficiently generate draws of the impact matrix that satisfy all the sign restrictions at

impact. Section 2.2 further discusses how the proposed algorithm can be extended to

handle other commonly used identification schemes, such as ranking restrictions.

To set the stage, let yt = (y1,t, . . . , yn,t)
′ be an n× 1 vector of endogenous variables that
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is observed over the periods t = 1, . . . , T. Consider the following VAR with p lags:

yt = a0 + A1yt−1 + · · ·+ Apyt−p + ut, (1)

ut = B0vt, vt ∼ N (0, In), (2)

where the vector of structural shocks vt is related to the reduced-form errors ut via the

impact matrix B0 that is assumed to be non-singular. It follows that the covariance

matrix of ut is Σ ≡ B0B
′
0.

One main goal of estimating the VAR in (1)-(2) is to study the impact of structural

shock vj,t on the endogenous variable yi,t, i = 1, . . . , n and j = 1, . . . ,m. Specifically, the

impulse response at horizon h is defined to be the expected change in the conditional

mean of yi,t+h from the j-th structural shock vj,t:

fi,j,h = E [yi,t+h |vt = ej; B0,A]− E [yi,t+h |vt = 0; B0,A] , (3)

where ej is the j-th column of the n-dimensional identity matrix In and A = (a0,A1, . . . ,Ap)
′

is the k×n matrix of VAR coefficients with k = np+ 1. Note that each impulse response

fi,j,h depends implicitly on the impact matrix B0 and the VAR coefficients A.

It is well known that under the setup in (1)-(2), B0 is not point-identified: since given

any orthogonal matrix Q ∈ O(n) and B̃0 = B0Q, we have B̃0B̃
′
0 = Σ. In other words,

there is a range of impulse responses of variables to structural shocks, even if we fix

the identifiable model parameters (A,Σ). One often proceeds by restricting the set of

impulse responses—e.g., by imposing economically meaningful restrictions on the impulse

responses. Starting from the influential papers by Faust (1998), Canova and Nicolo (2002)

and Uhlig (2005), one prominent approach is to impose sign restrictions motivated by

economic theory on the impulse responses.

More specifically, let si,j,h ∈ {−1, 0, 1}. Then, a sign restriction on the impulse response

fi,j,h can be written as

si,j,h × fi,j,h > 0. (4)

For example, if si,j,h = 1, then this sign restriction implies that the h-step-ahead response

of the i-th variable to the j-th structural shock is restricted to be non-negative. If

si,j,h = 0, then the sign restriction is not imposed on this response. We define the sign
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restrictions set S to be the collection of si,j,h for all i, j, h.

Now, we can formally define the admissible set with respect to the set of sign restrictions

S and model parameters (A,Σ):

Q(A,Σ,S) = {Q : Q ∈ O(n) and the impulse responses implied by Q and (A,Σ)

satisfy the restrictions in S}.

A popular algorithm to obtain draws uniformly from the admissible set Q(A,Σ,S) is

given in Rubio-Ramirez, Waggoner, and Zha (2010). It is an accept-reject algorithm and

is implemented as follows. First, obtain a draw Q uniformly from the orthogonal group

O(n) (i.e., according to the Haar measure). Then, set R = LQ, where L is the lower

triangular Cholesky factor of Σ. If the impulse responses implied by (A,R) satisfy all

the restrictions in S, then we accept Q (it is easy to see that Q ∈ Q(A,Σ,S)); otherwise,

we obtain another draw uniformly from O(n) and repeat the procedure.

This algorithm is flexible and easy to implement and works well for a wide range of

applications using small VARs. When the application requires a VAR that involves

more than a dozen variables and restrictions, this algorithm tends to be computationally

intensive, as it requires a large number of uniform draws from O(n) to get each draw from

the admissible set Q(A,Σ,S). When n is large, this approach is simply computationally

infeasible.

2.1 A New Algorithm

For high-dimensional systems with a large number of sign restrictions, it is highly un-

likely that any given uniform draw from O(n), denoted as Q ∼ U(O(n)), would imply

impulse responses that satisfy all the restrictions in S. To make progress, we assume

that S = S0 where S0 collects sign restrictions that restrict only the signs of impulse

responses at impact, i.e., S0 = {si,j,0 : si,j,0 ∈ S}. There are two key reasons to focus

on the subset S0. First, there is often a strong consensus in economic theory about the

signs of impulse responses at impact but not at longer horizons (see, e.g., Canova and

Paustian, 2011). Second, verifying the sign restrictions on impulse responses at impact is

equivalent to verifying the signs of the elements in R, where R = LQ and L is the (lower
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triangular) Cholesky factor of Σ. As such, this verification can be done very quickly

without computing impulse responses at horizons larger than h = 0, which are much

more costly to compute in large systems. Given a uniform draw Q, one can build a huge

collection of equivalent draws (defined below) and search through this collection to obtain

any members that satisfy all sign restrictions with trivial computations.

More specifically, given Q ∼ U(O(n)), let E(Σ,Q) denote the set

E(Σ,Q) = {E : E = LQPD,where L is the Cholesky factor of Σ,P is an n-dimensional

permutation matrix and D is a diagonal matrix with elements ± 1}.

In other words, E(Σ,Q) consists of all the permutations and sign switches of the columns

of LQ. Since there are n! permutation matrices of dimension n and 2n ways to construct

an n vector from the two values ±1, the cardinality of E(Σ,Q) is 2nn!.

There are three key reasons to consider the set E(Σ,Q). First, since each column of LQ

can be viewed as the responses of the endogenous variables to a particular structural

shock at impact, E(Σ,Q) includes all possible permutations and sign normalizations of

the structural shocks represented by Q. That is, any member in E(Σ,Q) represents

exactly the same structural shocks as Q—after relabeling the shocks and proper sign

normalizations. Second, for any fixed P or D (respectively, a permutation matrix and

a diagonal matrix with elements ±1), it is orthogonal. Therefore, the Haar measure is

invariant under right multiplication of P and D. Hence, QPD is a uniform draw from

O(n). Third, one can efficiently search through all the elements—all 2nn! of them—in

E(Σ,Q) to find those that satisfy all the restrictions in S0 (discussed below). Put dif-

ferently, given each Q ∼ U(O(n)), we automatically obtain 2nn! economically equivalent

candidates with trivial additional computations. For n = 10, the number of orthogonal

matrices that we sort through is about 3.7 billion. When n = 30, the number is about

2.85× 1041.

To distinguish two structural shocks, we require that they have signed impacts on at least

two common endogenous variables. In addition, their impacts on one variable have the

same sign, while their impacts on the other variable have opposite signs. More formally,

we assume that S0 satisfies the following assumption:

Assumption 1. For any j 6= k, j, k = 1, . . . ,m, there exist i1 and i2 such that si1,j,0 =
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si1,k,0 6= 0 and si2,j,0 = −si2,k,0 6= 0.

Next, we describe an efficient way to go through all the elements in E(Σ,Q) to locate

those that satisfy all the restrictions in S0. Suppose that we have n endogenous variables

and we are interested in m structural shocks. Let T denote an m × n matrix such that

Tji, the (j, i) element, is +1 if the i-th column of R = LQ satisfies all the restrictions

in S0 corresponding to j-th structural shock. If the negative of the i-th column of R

satisfies all the inequalities in S0 corresponding to j-th structural shock, set Tji = −1;

otherwise Tji = 0. In other words, the j-th row of T encodes all potential candidates

among the columns of R that can represent the j-th structural shocks (those have entries

±1). Therefore, if any row of T contains all 0, then none of the elements in E(Σ,Q)

satisfies all the restrictions in S0. In addition, by Assumption 1, each column of T has

at most one +1 or −1—i.e., each column of R can satisfy (or violate) all the restrictions

of at most one structural shock.

It is important to note that to compute the matrix T, we only need to check each column

of R to see if all the relevant inequalities are all satisfied, all violated or neither, for each

structural shock j = 1, . . . ,m. Hence, it involves at most checking mn2 inequalities to

construct T, which can be done quickly.

Let E(Σ,Q,S0) denote the subset of elements in E(Σ,Q) that satisfy all restrictions in

S0. Given the matrix T, we can first determine whether or not E(Σ,Q,S0) is empty. If

it is not, we then uniformly obtain an element from it as follows. Since each row of T

contains at least one +1 or −1, for each j = 1, . . . ,m, we uniformly pick a column that

has entries +1 or −1, say, ij. And since each column contains at most one +1 or −1, we

would not pick the same column twice. Given the sampled i1, . . . , im, we can reconstruct

the element in E(Σ,Q,S0) that satisfies all the restrictions in S0. We summarize this

algorithm in Algorithm 1.

Proposition 1. Under Assumption 1, the output L̃ from Algorithm 1 represents struc-

tural shocks that satisfy all the restrictions in S0. In addition, L̃ = LQ∗ for some

Q∗ ∼ U(O(n)) and L̃L̃′ = LL′ = Σ.

In other words, the proposed algorithm returns structural shocks that satisfy all the

restrictions in S0 using a uniform draw Q∗ from the orthogonal group O(n) such that

L̃ = LQ∗. The proof of the proposition is given in Appendix A.
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Algorithm 1 A new accept-reject algorithm to uniformly draw from the admissible set.

Given the posterior draws A and Σ, obtain the lower triangular Cholesky factor L of Σ
such that Σ = LL′. Then, complete the following steps.

1. Sample Q ∼ U(O(n)). This can be done by sampling Z = (Zij), where Zij are
iid N (0, 1) random variables, and returning the orthogonal matrix Q from the QR
decomposition of Z.

2. Given L and Q, construct R = LQ and the associated m× n matrix T.

3. If any row of T contains all 0, then go back to Step 1 and obtain another draw Q;
otherwise, let L̃ be an n× n zero matrix and complete the following steps:

(a) For j = 1, . . . ,m, construct the index set Sj = {i : Tji = +1 or Tji = −1, i =
1, . . . , n} and sample an element uniformly from Sj, denoted as, ij. If Tjij =

+1, set the j-th column of L̃ as the ij-th column of R; if Tjij = −1, set the

j-th column of L̃ as the negative of the ij-th column of R.

(b) For j = m+ 1, . . . , n, let Sj = {1, . . . , n}\{i1, . . . , ij−1} and sample an element
uniformly from Sj, denoted as, ij. With probability 1/2, set the j-th column

of L̃ as the ij-th column of R; otherwise set it as the negative of the ij-th
column of R.

4. Return L̃, which represents structural shocks that satisfy all the restrictions in S0.

2.2 Extensions

In this section we discuss how the proposed algorithm can be extended to handle some

other commonly-used identification schemes. We start with the ranking restrictions of

Amir-Ahmadi and Drautzburg (2021). In particular, consider the ranking restriction of

the form si,j,k,lfi,j,0 > si,j,k,lλi,j,k,lfk,l,0 for si,j,k,l ∈ {−1, 0, 1} and λi,j,k,l > 0, where fi,j,0

is the impulse response of the i-th variable from the j-th structural shock on impact, as

defined in (3).

For example, if i = k, si,j,k,l = 1 and λi,j,k,l = 1, then this ranking restriction implies

that the impact of the j-th structural shock on the i-th variable is at least as large as the

impact of the l-th shock on the same variable. On the other hand, if j = l, si,j,k,l = 1

and λi,j,k,l = 1, then this ranking restriction implies that the response of the i-th variable

to the j-th structural shock at least as large as the response of the k-th variable to the
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same shock. Furthermore, it is easy to see that the ranking restriction includes the sign

restriction as a special case by setting λi,j,k,l = 0.

Let R0 = {(si,j,k,l, λi,j,k,l) : i, k = 1, . . . , n, j, l = 1, . . . ,m} denote the ranking restrictions

set on impact. We first consider the case where each ranking restriction involves only an

individual structural shock (i.e., for j 6= l, λi,j,k,l = 0); the general case will be discussed

afterward. In addition, to ensure that the structural shocks are distinct, we impose some

regularity conditions on R0. Intuitively, to distinguish two structural shocks, we require

that either 1) they have signed impacts on at least two common endogenous variables,

where on one variable they have the same sign and on the other they have opposite signs;

or 2) the impact on a linear combination of two variables from one shock is positive

whereas that from the other shock is negative. Formally, we assume R0 satisfies the

following assumption:

Assumption 2. For any j 6= l, j, l = 1, . . . ,m, at least one of the following conditions

hold:

1. there exist i1 and i2 such that si1,j,k1,m1 = si1,l,k2,m2 6= 0 and si2,j,k3,m3 = −si2,l,k4,m4 6=
0 for some k1, k2, k3, k4,m1,m2,m3,m4, with λi1,j,k1,m1 = λi1,l,k2,m2 = λi2,j,k3,m3 =

λi2,l,k4,m4 = 0 ;

2. there exist i1 and i2 such that si1,j,i2,j = −si1,l,i2,l 6= 0 and λi1,j,i2,j, λi1,l,i2,l > 0.

Condition 1 in Assumption 2 is essentially an extension of Assumption 1 to the case of

ranking restrictions. For example, if si1,j,k1,j = si1,l,k2,l = 1 and si2,j,k3,j = −si2,l,k4,l = 1,

then Condition 1 implies fi1,j,0 > 0, fi1,l,0 > 0, fi2,j,0 > 0, fi2,l,0 6 0. Condition 2

discriminates the two structural shocks by their different signed impacts on a linear

combination of two variables. For instance, if si1,j,i2,j = −si1,l,i2,l = λi1,j,i2,j = λi1,l,i2,l = 1,

then Condition 2 implies fi1,j,0 − fi2,j,0 > 0 and fi1,l,0 − fi2,l,0 6 0.

We can directly apply Algorithm 1 to obtain draws uniformly from the admissible set

E(Σ,Q,R0). In fact, the only modification one needs is to replace the sign restrictions

set S0 with the ranking restrictions set R0 in the construction of the matrix T. More

specifically, we construct the m× n matrix T as follows: set Tji = +1 if the i-th column

of R = LQ satisfies all the restrictions in R0 corresponding to j-th structural shock. If

the negative of the i-th column of R satisfies all the inequalities in S0 corresponding to
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j-th structural shock, set Tji = −1; otherwise Tji = 0. As before, T can be constructed

with trivial computations. In addition, by Assumption 2, each column of T has at most

one +1 or −1 since each column of R can satisfy (or violate) all the restrictions of at

most one structural shock. The rest of the steps in Algorithm 1 remain exactly the same.

More generally, ranking restrictions include cases where two different structural shocks

are involved. For example, one could impose fi,j,0 > λi,j,i,lfi,l,0 for λi,j,i,l > 1, i.e., the

response of the i-th variable to the j-th structural shock is larger than the response

from the l-th structural shock. This type of restrictions can be accommodated by an

extra accept-reject step. Specifically, one can first use Algorithm 1 to obtain a uniform

draw that satisfies all other ranking restrictions. If this candidate draw also satisfies the

additional ranking restrictions, we accept it; otherwise, we obtain another uniform draw

until it is accepted. Similarly, this approach can be applied to cases when one wishes to

impose sign or ranking restrictions on longer-horizon impulse responses.

3 Comparison of Computational Efficiency

In this section, we demonstrate the empirical performance of the proposed algorithm in

various settings using the algorithm of Rubio-Ramirez, Waggoner, and Zha (2010) as a

benchmark. In the first subsection, we consider an empirical example that involves a

15-variable VAR with over 40 sign and ranking restrictions. We compare both the speed

and the estimated impulse responses from the two algorithms. In the second subsection,

we further compare the computational efficiency of the proposed approach relative to the

benchmark using a series of Monte Carlo simulations.

3.1 An Illustration of a 15-Variable VAR

We first illustrate the empirical performance of the proposed algorithm using a 15-variable

VAR with over 40 sign and ranking restrictions to identify 5 structural shocks. As a

comparison, we also use the algorithm of Rubio-Ramirez, Waggoner, and Zha (2010) to

uniformly sample orthogonal matrices from the admissible set and compute the impulse

responses.
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More specifically, Furlanetto, Ravazzolo, and Sarferaz (2019) first use a 6-variable VAR

to identify 5 structural shocks—demand, supply, monetary, investment and financial

shocks—using a set of sign and ranking restrictions on the contemporaneous impact

matrix. Chan (2022) augments their 6-variable system with 9 additional variables and

sign restrictions. The variables and the structural restrictions are given in Table 1. All

rows except the fourth present the sign restrictions on the contemporaneous impact ma-

trix. The fourth row represents ranking restrictions: the entries denote the signs of the

differential impacts on investment and output from each structural shock. For example,

−1 in the demand column indicates that the impact from demand shocks on investment

is smaller than the impact on output.

It is straightforward to see that this set of sign and ranking restrictions satisfies Assump-

tion 2. More specifically, supply and monetary shocks can be distinguished from other

shocks using Condition 1 in Assumption 2. In addition, demand shocks have a negative

impact on the difference between investment and output, whereas the impacts from in-

vestment and financial shocks are positive. Hence, demand shocks can be distinguished

from the other two shocks using Condition 3.

Table 1: Sign restrictions, ranking restrictions and identified shocks for the 15-variable
VAR.

Supply Demand Monetary Investment Financial
GDP +1 +1 +1 +1 +1
GDP deflator −1 +1 +1 +1 +1
3-month tbill rate 0 +1 −1 +1 +1
Investment/GDP 0 −1 0 +1 +1
S&P 500 +1 0 0 −1 +1
Spread 0 0 0 0 0
Spread 2 0 0 0 0 0
Credit/Real estate value 0 0 0 0 0
Mortgage rates 0 0 0 0 0
CPI −1 +1 +1 +1 +1
PCE −1 +1 +1 +1 +1
employment 0 0 0 0 0
Industrial production +1 +1 +1 +1 +1
1-year tbill rate 0 +1 −1 +1 +1
DJIA +1 0 0 −1 +1

Note: All restrictions are imposed on the response of a particular variable, except for investment/GDP,
in which restrictions are imposed on linear inequalities of two responses.
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As a benchmark, we use the algorithm of Rubio-Ramirez, Waggoner, and Zha (2010)

to uniformly sample orthogonal matrices in conjunction with the posterior sampler of

Chan (2022) designed for large VARs to obtain posterior draws of the model parameters.

This approach requires approximately 3.6 billion draws from U(O(n)) to obtain 1,000

admissible draws, and the estimation takes about 6 days on a standard desktop. In

contrast, the new algorithm requires only about 31,000 draws from U(O(n)) to obtain

1,000 admissible draws, and the entire exercise takes about 16 seconds.

Next, we empirically verify that the impulse responses obtained from the two algorithms

are the same. In particular, Figure 1 reports the impulse responses of 6 variables to an

one-standard-deviation financial shock, obtained using the algorithm of Rubio-Ramirez,

Waggoner, and Zha (2010), and Figure 2 reports those from the proposed algorithm. As

expected, the impulse responses obtained using the two algorithms are identical. Thus,

these results highlight the utility of the proposed algorithm: it provides the same impulse

responses but is several orders of magnitude more efficient than the benchmark.

5 10 15 20 25 30 35
0

2

4

6

8
10-3 GDP

5 10 15 20 25 30 35
-1

0

1

2

3
10-3 GDP Deflator

5 10 15 20 25 30 35
-0.2

0

0.2

0.4
3-month Tbill

5 10 15 20 25 30 35
-0.01

0

0.01

0.02

0.03
Investment

5 10 15 20 25 30 35
-5

0

5

10

15
10-3 S&P 500

5 10 15 20 25 30 35
-0.4

-0.2

0

0.2
Spread

Figure 1: Impulse responses from a 15-variable VAR to an one-standard-deviation finan-
cial shock, obtained using the algorithm of Rubio-Ramirez, Waggoner, and Zha (2010).
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Figure 2: Impulse responses from a 15-variable VAR to an one-standard-deviation finan-
cial shock, obtained using the proposed algorithm described in Algorithm 1.

3.2 A Monte Carlo Study

Next, we conduct a series of Monte Carlo simulations to illustrate the empirical perfor-

mance of the proposed method along a few dimensions of the model. More specifically, we

consider different numbers of variables (n = 10, 30, 50) and structural shocks (m = 5, 8),

while fixing sample size T = 200 and lag length p = 5 for all Monte Carlo simulations.

For each (n,m) combination, we generate a dataset from the VAR in (1)-(2) as follows.

First, we draw the intercepts independently from the uniform distribution on the interval

(−1, 1), i.e., U(−1, 1). For the VAR coefficients, the diagonal elements of the first VAR

coefficient matrix are iid U(0, 0.5) and the off-diagonal elements are from U(−0.2, 0.2);

all other elements of the j-th (j > 1) VAR coefficient matrices are iid N (0, 0.12/j2).

Finally, to construct the impact matrix B0, we first draw the diagonal elements from

iid U(0.5, 1.5), and the off-diagonal elements from iid N (0, 1). We then store them and

change the signs of the elements in B0 to match the set of restrictions specified in each

case.
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Given a dataset, we then estimate the model using the proposed algorithm and the

benchmark, together with the direct posterior sampler of Chan (2022) designed for large

VARs. Each algorithm is run for 10,000 seconds, and we record the numbers of posterior

draws and admissible draws (i.e., those posterior draws that satisfy all the structural

restrictions). The results are reported in Table 2. The top panel refers to the case

where only sign restrictions are used (and the set of sign restrictions satisfies Assumption

1). The bottom panel considers the case where three additional ranking restrictions are

added.

Table 2: Numbers of posterior draws (in millions) and admissible draws obtained for an
n-variable VAR with m shocks within 10,000 seconds using the proposed method and the
algorithm of Rubio-Ramirez, Waggoner, and Zha (2010) (RWZ).

Top panel: sign restrictions only
n = 10 n = 30 n = 50

m = 5 # restrictions 25 35 40
RWZ Posterior draws (×106) 240 35 14

Admissible draws 1,033 0 0
Proposed method Posterior draws (×106) 12 12 9

Admissible draws 489,030 166,590 14,099
m = 8 # restrictions 40 50 60

RWZ Posterior draws (×106) 232 36 14
Admissible draws 0 0 0

Proposed method Posterior draws (×106) 34 14 7
Admissible draws 266,280 57,804 2,460

Bottom panel: 3 additional ranking restrictions
n = 10 n = 30 n = 50

m = 5 # restrictions 28 38 43
RWZ Posterior draws (×106) 258 34 13

Admissible draws 115 0 0
Proposed method Posterior draws (×106) 47 18 8

Admissible draws 310,970 14,230 1,214
m = 8 # restrictions 43 53 63

RWZ Posterior draws (×106) 260 34 14
Admissible draws 0 0 0

Proposed method Posterior draws (×106) 37 13 6
Admissible draws 99,607 2,525 1,000

It is clear from these results that the proposed method is much more efficient compared

to the benchmark. Furthermore, when n or m grows, the differences in performance
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between the two methods become more apparent. In fact, in many cases with large n or

large m, the sampling efficiency of the benchmark deteriorates so quickly that it becomes

infeasible. In contrast, the proposed method remains capable of obtaining a large number

of admissible draws for large n and m in a reasonable amount of time.

4 A 35-Variable VAR of the US Economy

To showcase the usefulness of the proposed algorithm, we consider an application that in-

volves a 35-variable VAR with sign and ranking restrictions to identify 8 structural shocks,

namely, demand, investment, financial, monetary policy, government spending, technol-

ogy, labor supply and wage bargaining. The list includes many standard macroeconomic

and financial variables, such as national accounts variables, various inflation indexes and

interest rates, labor market variables, oil and stock prices. These variables are broadly

similar to those used in Crump, Eusepi, Giannone, Qian, and Sbordone (2021) and are

closely monitored by the Federal Reserve Staff and professional forecasters.

There are several reasons in favor of using a large set of macroeconomic and financial

variables in structural analysis. First, a large system provides a convenient and unified

framework to investigate the impacts of multiple structural shocks simultaneously. In

particular, it allows the researcher to tease out the impacts of different structural shocks—

such as different types of demand and supply shocks—and their individual contributions

to macroeconomic fluctuations.

Second, it mitigates the concern of informational deficiency of using a limited information

set, as pointed out in a series of influential papers by Hansen and Sargent (1991) and

Lippi and Reichlin (1993, 1994). By using a larger set of relevant variables, one can

close the gap between the set of variables considered by the economic agent and that

considered by the econometrician, thus alleviating the concern of non-fundamentalness

(see, e.g., Gambetti, 2021, for a recent review).

Third, as argued in Loria, Matthes, and Wang (2022), the mapping from variables in an

economic model to the data is typically not unique. For example, one could match the

economic variable ‘inflation’ to data based on the CPI, PCE, or the GDP deflator. One

natural way to avoid an arbitrary choice is to include multiple data series corresponding
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to the same economic variable in the analysis.

The list of variables and the structural restrictions are given in Table 3.2 The top part of

the table lists the sign restrictions whereas the lower part lists the ranking restrictions. For

example, the row labeled ‘Government spending/GDP’ lists the signs of the differences

in impacts on government spending and GDP from each structural shock. In particular,

the +1 in the government spending column indicates that the impact from government

spending shocks on government spending is larger than the impact on GDP. It can be

easily verified that the set of restrictions in Table 3 satisfies Assumption 2.

Table 3: Sign restrictions, ranking restrictions and identified shocks for the 35-variable
VAR.
Sign restrictions Demand Investment Financial Monetary Government Technology Labor Wage

spending supply bargaining
GDP +1 +1 +1 −1 +1 +1 +1 +1
Personal consumption expenditure 0 0 0 0 0 +1 0 0
Residential investment 0 0 0 0 0 0 0 0
Nonresidential investment 0 0 0 0 0 +1 0 0
Exports 0 0 0 0 0 0 0 0
Imports 0 0 0 0 0 0 0 0
Government spending 0 0 0 0 +1 0 0 0
Federal budget surplus/deficit 0 0 0 0 −1 0 0 0
Federal tax receipts 0 0 0 0 +1 0 0 0
GDP deflator +1 +1 +1 −1 +1 −1 −1 −1
PCE index +1 +1 +1 −1 +1 −1 −1 −1
PCE index less food & energy +1 +1 +1 −1 +1 −1 −1 −1
CPI index +1 +1 +1 −1 +1 −1 −1 −1
CPI index less food & energy +1 +1 +1 −1 +1 −1 −1 −1
Hourly wage 0 0 0 0 0 +1 −1 −1
Labor productivity 0 0 0 0 0 +1 0 0
Utilization-adjusted TFP 0 0 0 0 0 +1 0 0
Employment 0 0 0 −1 0 0 0 0
Unemployment rate −1 −1 −1 +1 −1 −1 +1 −1
Industrial production index +1 +1 +1 −1 0 0 0 0
Capacity utilization +1 +1 +1 −1 0 0 0 0
Housing starts 0 0 0 0 0 0 0 0
Disposable income 0 0 0 0 0 0 0 0
Consumer sentiment 0 0 0 0 0 0 0 0
Fed funds rate +1 +1 +1 +1 +1 0 0 0
3-month tbill rate +1 +1 +1 +1 +1 0 0 0
2-year tnote rate 0 0 0 +1 0 0 0 0
5-year tnote rate 0 0 0 +1 0 0 0 0
10-year tnote rate 0 0 0 +1 0 0 0 0
Prime rate +1 +1 +1 +1 +1 0 0 0
Aaa corporate bond yield 0 0 0 +1 0 0 0 0
Baa corporate bond yield 0 0 0 +1 0 0 0 0
Trade-weighted US$ index 0 0 0 0 0 0 0 0
S&P 500 0 −1 +1 −1 0 0 0 0
Spot oil price 0 0 0 0 0 0 0 0
Ranking restrictions
Nonresidential investment/GDP −1 +1 +1 0 0 0 0 0
Government spending/GDP −1 −1 −1 0 +1 0 0 0

2Most variables are transformed by taking logs and multiplying 100, while others such as interest
rates and unemployment rates are not transformed and are in percentages.
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We use the asymmetric conjugate prior and the direct sampling approach in Chan (2022)

to obtain posterior draws under the 35-variable VAR. The key advantage of the asymmet-

ric conjugate prior is that it allows cross-variable shrinkage—i.e., shrinking coefficients on

lags of other variables more aggressively to 0 than those on own lags—and at the same

time it admits a closed-form expression of the marginal likelihood. In addition, since

the prior is conjugate, one can directly sample independent draws from the posterior

distribution instead of using MCMC methods.

We obtain the values of the optimal shrinkage hyperparameters on the VAR coefficients

by maximizing the marginal likelihood of the model. Then, we use Algorithm 1 to obtain

1,000 admissible draws that satisfy all the sign and ranking restrictions. For this 35-

variable VAR with over 100 sign and ranking restrictions, the entire exercise takes about

14 minutes and requires 557,000 draws from U(O(n)).

Figures 3–5 report the impulse responses of 6 selected variables to the (one-standard-

deviation) demand, investment and financial shocks. As expected, these demand-type

structural shocks raise output, short-term interest rate and inflation, while lowering both

unemployment rate and real wage, at least in the short-run. Compared to the generic

demand shock, both investment and financial shocks have a more substantive impact on

nonresidential investment.
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Figure 3: Impulse responses from a 35-variable VAR to an one-standard-deviation demand
shock.
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Figure 4: Impulse responses from a 35-variable VAR to an one-standard-deviation invest-
ment shock.

20



0 10 20 30
-0.1

0
0.1
0.2
0.3

GDP

0 10 20 30
-0.1

0

0.1

PCE inflation

0 10 20 30

-0.1

0

0.1

0.2
Federal Funds Rate

0 10 20 30
-0.5

0

0.5

Nonresidential Investment

0 10 20 30

-0.2

-0.1

0

Unemployment

0 10 20 30
-0.2

-0.1

0

0.1

Real Wage

Financial

Figure 5: Impulse responses from a 35-variable VAR to an one-standard-deviation finan-
cial shock.

Next, Figures 6 and 7 plot the impulse responses of the same variables to the monetary

policy shock and the government spending shock. A contractionary monetary policy

shock depresses output and inflation, while raising the unemployment rate and the real

wage. In contrast, an expansionary government spending shock mostly raises inflation

and short-term interest rate, and has negligible effects on output, unemployment or the

real wage.
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Figure 6: Impulse responses from a 35-variable VAR to an one-standard-deviation mon-
etary policy shock.
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Figure 7: Impulse responses from a 35-variable VAR to an one-standard-deviation gov-
ernment spending shock.

22



0 10 20 30
-0.2

0

0.2
GDP

0 10 20 30

0

0.1

0.2
PCE inflation

0 10 20 30
-0.1

0

0.1

Federal Funds Rate

0 10 20 30
-0.4
-0.2

0
0.2
0.4

Nonresidential Investment

0 10 20 30
-0.1

0

0.1
Unemployment

0 10 20 30
-0.1

0

0.1

Real Wage

Technology

Figure 8: Impulse responses from a 35-variable VAR to an one-standard-deviation tech-
nology shock.
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Figure 9: Impulse responses from a 35-variable VAR to an one-standard-deviation labor
supply shock.
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Figure 10: Impulse responses from a 35-variable VAR to an one-standard-deviation wage
bargaining shock.

Finally, Figures 8–10 report the impulse responses of the 6 variables to the 3 supply-

type structural shocks: technology, labor supply and wage bargaining shocks. While all 3

supply-type structural shocks raise output and depress inflation, the technology shock has

the largest impact on these two variables. In addition, the technology shock substantially

increases real wage over a relatively long horizon, whereas the other two structural shocks

have transient and negligible impacts on real wage.

Overall, this application demonstrates that it is practical to study the impacts of multiple

structural shocks jointly in a large VAR. Using a large number of sign and ranking restric-

tions to identify different structural shocks, we are able to disentangle their differential

effects on key macroeconomic variables.

5 Concluding Remarks and Future Research

Two recent developments have motivated our paper: the recognition of the need to include

a large number of variables in structural analysis and the desire to use more credible
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structural restrictions to identify structural shocks. In response to these developments,

we have introduced an efficient approach for estimating large VARs identified using a large

number of sign and ranking restrictions on the impulse responses. We showed that the

new approach is several orders of magnitude more efficient than the benchmark, reducing

the computational time from days to seconds. We illustrated the methodology using a

35-variable VAR with sign and ranking restrictions to identify 8 structural shocks.

For future research, it would be useful to extend the proposed algorithms to impose both

inequality and zero restrictions (Arias, Rubio-Ramı́rez, and Waggoner, 2018), where the

latter may arise in proxy VARs (Caldara and Herbst, 2019). It would also be interesting

to incorporate richer prior information on the impact matrix or, more generally, impulse

responses, as advocated in Baumeister and Hamilton (2015) and Bruns and Piffer (2023).
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Appendix A: Proof of Proposition

In this appendix we provide a proof of the proposition stated in the main text.

Proof of Proposition 1. Let L denote the lower triangular Cholesky factor of Σ such that

Σ = LL′, and Q ∼ U(O(n)). Recall that E(Σ,Q) consists of all the permutations and

sign switches of the columns of LQ. That is, an element E ∈ E(Σ,Q) can be represented

as E = LQPD, where P is an n-dimensional permutation matrix and D is a diagonal

matrix with elements ±1. Since the Haar measure is invariant under right multiplication

of P and D, QPD is a uniform draw from the orthogonal group O(n). Next, recall

that E(Σ,Q,S0) denotes the subset of elements in E(Σ,Q) that satisfy all restrictions in

S0. Step 3 of Algorithm 1 uniformly obtains an element L̃ in E(Σ,Q,S0), which can be

represented as L̃ = LQPD for some permutation matrix P and diagonal matrix D with

elements ±1. Hence, Q∗ = QPD ∼ U(O(n)) and L̃ = LQ∗.
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