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Abstract

The time-varying parameter vector autoregressive (TVP-VAR) model has been used
to successfully model interest rates and other variables. As many short interest rates are
now near their zero lower bound (ZLB), a feature not included in the standard TVP-VAR
speci�cation, this model is no longer appropriate. However, there remain good reasons to
include short interest rates in macro models, such as to study the e¤ect of a credit shock.
We propose a TVP-VAR that accounts for the ZLB and study algorithms for computing
this model that are less computationally burdensome than others yet handle many states
well. To illustrate the proposed approach, we investigate the e¤ect of the zero lower bound
of interest rate on transmission of a monetary shock.
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1 Introduction

The time-varying parameter vector autoregressive (TVP-VAR) model has become prominent
in empirical macroeconomics with important applications such as Cogley and Sargent (2001
and 2005) and Primiceri (2005). Interest rates are often included in such models to capture
monetary policy changes. As interest rates have recently fallen to be very near the zero lower
bound (ZLB), the usual linear Gaussian speci�cation of the TVP-VAR is no longer appropriate
since these models do not allow for bounds on the support of variables. As target interest rates
have reached the bound of their supports, alternative instruments have been employed to imple-
ment monetary policy and such instruments have therefore been included in macroeconometric
models (see, for example, Ugai (2007)). However, as interest movements re�ect more than just
monetary policy changes, there remain good reasons to include short term interest rates in mul-
tivariate macroeconometric models and therefore the ZLB must be incorporated into the model
speci�cation.

One approach to the problem of the ZLB is to treat interest rates as a censored variable, where
the value of the interest rate is not observed below some chosen positive level. This approach
was adopted in Iwata and Wu (2006) and Nakajima (2011), where the point of censoring was
chosen to be 50 basis points. These studies maintain a focus upon monetary policy transmission
and so this censoring is appropriate as it is reasonable to assume there are no further monetary
policy changes via interest rates when they are at such low levels. However, interest rates are
not censored variables as a censored variable is observed in some ranges of its support but not
observed in others. Interest rates are more accurately described, and modelled, as variables with
a bounded or truncated support. A variable with a truncated support may always be observed.
Interest rates are always observed but always positive1, and censoring below a positive level
excludes inference on behaviour in an important range of the variable as it excludes those
observations from the likelihood.

While the focus of many studies has been on the transmission of monetary policy shocks, such
shocks are not transmitted via interest rates when the growth is low, in�ation is low and interest
rates are already pushing up against the ZLB. It is in this state of the economy when interest
rates are low that other shocks, such as credit shocks say, would be more evident and have
more apparent and immediate e¤ect. Consider, for example, that changes in the U.S. nominal
federal funds rate or target rate are re�ected in the e¤ective funds rate and other short rates
such as the three month treasury bill rate. The target rate was set in 2008 as a range from 0
to 25 basis points and has not changed since this setting until the time of writing, re�ecting no
further changes in monetary policy via this instrument. Yet, as we see in Figure 1, the three
month treasury bill rate has continued to vary over that period due to other shocks manifest
that are transmitted via short interest rates. One potential shock we consider is a credit shock.
An important feature of interest rates, evident from Figure 1, is that when they are low any
shock of say 10 or 25 basis points would be large relative to the conditional variance.

Treating the ZLB on interest rates as a bound on the support rather than a point of censure,

1 (at the frequencies we consider).
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Figure 1: Quarterly plot of the E¤ective Federal Funds Rate (EFFR) and the 3-Month Treasury
Bill (3mth TBill) from 1995 Q1 to 2013 Q3.

therefore, has important modelling implications. In this paper we present a speci�cation for
a TVP-VAR with stochastic volatility that accounts for the ZLB as a bound on the support
of the interest rates. Borrowing the acronym from Nakajima (2011), we denote this model by
TVP-VAR-ZLB. The model could be used to study other variables with bounded supports such
as exchange rates.

Drawing upon recent developments in precision-based algorithms for the linear Gaussian TVP-
VAR, we present three fast sampling schemes for e¢ cient simulation of the TVP-VAR-ZLB.
The �rst algorithm, the baseline algorithm, approximates the conditional distribution of the
states by a multivariate Gaussian or t density, which is then used as a proposal density for
posterior simulation using Markov chain Monte Carlo (MCMC) methods. This approximat-
ing density can also used for evaluating the integrated likelihood � the joint distribution of
the observations given the model parameters but integrated over the states � via importance
sampling. We then build upon this baseline approach to consider two other more e¢ cient al-
gorithms for posterior simulation. The �rst of these, our second algorithm, is the accept-reject
Metropolis-Hastings (ARMH) algorithm that combines the classic accept-reject sampling and
the Metropolis-Hastings algorithm. The third algorithm is a collapsed sampler used in con-
junction with the cross-entropy method, where we sample the states and the model parameters
jointly to reduce autocorrelations in the posterior simulator.

The speci�c framework we consider is a general state space model where the evolution of the n�1
vector of observations yt is governed by the measurement or observation equation characterised
by a generic density function p(yt j �t; �), where �t is an m � 1 vector of latent states and �
denotes the set of model parameters. Note that the density p(yt j �t; �) may depend on previous
observations yt�1; yt�2; etc. and other covariates as is the case in the application in this paper.
These observations are suppressed in the conditioning sets for notational convenience. The
evolution of the states �t, in turn, is speci�ed by the state or transition equation summarised
by the density function p(�t j �t�1; �). We note in passing that the proposed approach can be
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easily generalized to the case where the state equation is non-Markovian and the observation yt
depends on previous states �t�1; �t�2; etc.

The contributions of this paper are three-fold. In the �rst contribution we build upon the
recently proposed precision-based sampler in Chan and Jeliazkov (2009b) and McCausland,
Millera, and Pelletier (2011) originally developed for linear Gaussian state space models. Com-
bining a Gaussian approximation to the measurement equation with the precision sampler, we
present a quick method to obtain a Gaussian or a student t approximation for the conditional
density of the states p (� j �; y). We develop an accept-reject Metropolis Hastings (ARMH) al-
gorithm for e¢ cient simulation of the states. The e¢ ciency in the MH step with a Gaussian
proposal can be quite low in certain settings, presumably because the Gaussian approximation
is not su¢ ciently accurate. By using the ARMH algorithm, we construct a better approxima-
tion and consequently the acceptance rate is substantially higher compared to the baseline MH
algorithm. The cost of this increased acceptance rate is that multiple draws from the proposal
density might be required and this is why it is essential to have low marginal cost for additional
draws.

The second contribution of the paper is to develop a practical way to sample the model pa-
rameters � and the states � jointly. As � and � are often highly correlated, this motivates
sampling � and � jointly by �rst drawing from p(� j y) marginally of the states � followed by
a draw from p(� j y; �). To locate a good proposal density for �, denoted as q(� j y), we adopt
the cross-entropy method (Rubinstein and Kroese, 2004) to obtain the optimal q(� j y) in a
well-de�ned sense. We show via an empirical example that the e¢ ciency of the sampling scheme
is substantially improved.

In the third contribution of the paper we demonstrate the overall approach with a topical
application. We investigate the implications for transmission of monetary shocks of accounting
for the zero lower bound (ZLB) on interest rates. Recent work using time-varying parameter
vector autoregressive models (TVP-VARs) by Cogley and Sargent (2001 and 2005), Primiceri
(2005), Sims and Zha (2006) and Koop, Leon-Gonzalez and Strachan (2009) demonstrated the
importance of model speci�cation for the evidence on changes in the transmission mechanism
for monetary shocks. These studies considered periods of relatively high interest rates, with the
exception of the period after the dot com bubble when interest rates fell as low as 1%. This latter
event, and the history of Japan in the 1990s, led to an increase in interest in the e¤ect of the
ZLB on the conduct of monetary policy (see, for example, Iwata and Wu (2006), Reifschneider
and Williams (2000) and Svensson (2003)). We study the e¤ect of the ZLB on the transmission
of a contractionary monetary shock in a low growth, low interest rate environment. We use a
TVP-VAR with a truncated support for an interest rate variable and multivariate stochastic
volatility. Our interest is in how estimates of the impulse responses to positive monetary shocks
change when we allow for the ZLB.

The rest of this article is orgainsed as follows. Section 2 �rst introduces the TVP-VAR-ZLB
model. In Section 3 we consider a general form of the state space model for which we propose
an approximation to the conditional density for the states and the three e¢ cient simulation
schemes for the states using the precision sampler. In Section 4 we apply the sampler to
estimate a standard model used a number of times in the literature to investigate the evolution
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of the transmission of monetary shocks, but we incorporate the ZLB on interest rates which
results in a non-linear measurement equation. Section 5 concludes and discusses various future
research directions.

2 The TVP-VAR-ZLB Model

To illustrate the proposed approach we estimate a VAR with a lower bound restriction on
one of the variables; this restriction implies a measurement equation that is non-linear in the
states. Speci�cally, we investigate the implications for the transmission of monetary shocks of
accounting for the zero lower bound (ZLB) on interest rates. With time varying parameters,
incorporating the lower bound on interest rates introduces a non-linearity in the states into
the measurement equation. Recent work using time-varying parameter vector autoregressive
models (TVP-VARs) on changes in the transmission mechanism for monetary policy shocks
(see for example, Cogley and Sargent, 2001, 2005, Primiceri, 2005, Sims and Zha, 2006, and
Koop, Leon-Gonzalez and Strachan, 2009) has ignored the lower bound on interest rates. Not
accounting for the ZLB is reasonable when interest rates are relatively high and far from zero.
However, episodes of low interest rates have occurred often in recent history including, as
examples, in the U.S. just after the dot com bubble of 2001, during the 1990s in Japan, or
since 2009 in much of the developed world. The prevalence of low interest rates suggests it is
important to know whether transmission of monetary shocks is a¤ected and, if so, to understand
how the transmission mechanism is a¤ected. Our focus is upon the e¤ect of a contractionary
monetary shock when interest rates are on the ZLB. Such a situation might arise for the U.S.
if several rating agencies were to downgrade the rating of U.S. government debt and creditors
then began to demand a premium to compensate for the risk of default, or if the cost of funds
to banks increased independently of moves in the Federal Funds rate inducing an e¤ective,
unintended tightening of monetary policy.2

2.1 The Model

The framework we consider is the following time-varying parameter vector autoregressive (TVP-
VAR) model with l lags:

yt = �t +A1tyt�1 + � � �+Altyt�l + �t; �t � N(0;��1t );

where �t is an n � 1 vector of time-varying intercepts, At1; : : : ; Atl are n � n matrices of VAR
lag coe¢ cients at time t, and �t is a time-varying precision matrix, i.e., the inverse of the
covariance matrix. For the purpose of estimation, we write the VAR system in the form of
seemingly unrelated regressions:

yt = xt�t + �t; �t � N(0;��1t ); (1)
2This e¤ect was observed in February 2012 in Australia when, after the central bank kept its rate unchanged,

all banks increased their lending rates in response to increased costs of wholesale funding costs.
It is for this reason we do not term the shock a monetary policy shock, but an unintended shock to monetary

conditions.
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where xt = In 
 [1; y0t�1; : : : ; y0t�l] and �t = vec([�t : A1t : � � � : Alt]0) is a k � 1 vector of VAR
coe¢ cients with k = n2l + n. To model the time-varying precision matrix �t, we follow the
approach proposed in Primiceri (2005) by �rst factoring the precision matrix as �t = L0tD

�1
t Lt,

where Dt = diag(eh1t ; : : : ; ehnt) is a diagonal matrix, and Lt is a lower triangular matrix with
ones on the main diagonal, i.e.,

Dt =

0BBB@
eh1t 0 � � � 0
0 eh2t � � � 0
...

...
. . .

...
0 0 � � � ehnt

1CCCA ; Lt =

0BBBBBB@
1 0 0 � � � 0
a21;t 1 0 � � � 0

a31;t a32;t 1 � � �
...

...
...

...
. . .

...
an1;t an2;t � � � an(n�1);t 1

1CCCCCCA :

This decomposition has been employed in various applications, especially in the context of e¢ -
cient estimation of covariance matrices (Pourahmadi, 1999, 2000, Smith and Kohn, 2002, Chan
and Jeliazkov, 2009a, among others). In the setting of VAR models with time-varying volatility,
this approach is �rst considered in Cogley and Sargent (2005). For notational convenience, we
let h�t = (h1t; : : : ; hnt)

0 and hi� = (hi1; : : : ; hiT )
0. That is, h�t is the n � 1 vector obtained by

stacking hit by the �rst subscript, whereas hi� is the T � 1 vector obtained by stacking hit by
the second subscript. The log-volatilities h�t evolve according to the state equation

h�t = h�t�1 + �t; �t � N(0;
�1h ) (2)

for t = 2; : : : ; T; where 
h = diag(!h1; : : : ; !hn) is a diagonal matrix. The process is initialised
with h�1 � N(0; V �1h ) for some known diagonal precision matrix Vh. Let at denote the free
elements in Lt ordered by rows, i.e., at � a�t = (a21;t; a31;t; a32;t; : : : ; an(n�1);t)0, so that at is an
m� 1 vector of parameters where m = n(n� 1)=2. The evolution of at is modelled as a random
walk

at = at�1 + �t; �t � N(0;
�1a ) (3)

for t = 2; : : : ; T; where 
a = diag(!a1; : : : ; !am) is a diagonal precision matrix. The process is
initialised with a1 � N(0; V �1a ) for some known diagonal precision matrix Va. In what follows
we use these two parameterizations, namely, �t and (h�t; at), interchangeably. To complete the
speci�cation of the model, it remains to specify the evolution of the VAR coe¢ cients �t. We
follow the standard approach of modelling the VAR coe¢ cients �t as a random walk process:

�t = �t�1 + "t; "t � N(0;
�1� ) (4)

for t = 2; : : : ; T; where 
� = diag(!�1; : : : ; !�k) is a diagonal precision matrix. The process is
initialised with �1 � N(0; V �1� ) for some known precision matrix V�.

After presenting the basic setup of a TVP-VAR model with stochastic volatility, we now wish to
impose the restriction that the nominal interest rate is always non-negative. For this purpose,
arrange the data yt so that y1t, the �rst element of yt, is the nominal interest rate, and let x1t
be the �rst row of xt. We assume that y1t > 0. Consequently, given �t and �t, yt follows a
multivariate Gaussian distribution with the �rst element restricted to be positive. To derive
the likelihood function, �rst note that since only y1t is constrained while other elements of yt
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are not, the marginal distribution of y1t is a univariate Gaussian variable truncated below at 0.
In fact, it can be shown that

(y1t j�t;�t) � N(x1t�t; eh1t)1l(y1t > 0):

It follows that given �t and �t, we have

P(y1t > 0 j�t;�t) = 1� �
�
�x1t�t=e

1
2
h1t
�
= �

�
x1t�te

� 1
2
h1t
�
;

where �(�) denotes the standard Gaussian cumulative distribution function. Letting y =
(y01; : : : ; y

0
T )
0, � = (�01; : : : ; �

0
T )
0 and � = (�1; : : : ;�T ), the log-likelihood function is thus

log p(y j�;�) =
TX
t=1

log p(yt j�t;�t); (5)

where

p(yt j�t;�t) / �
1

2
log j��1t j �

1

2
(yt � xt�t)0�t(yt � xt�t)� log �

�
x1t�te

� 1
2
h1t
�
:

Given the measurement equation (5) and the state equations (2)�(4), we present three e¢ -
cient Markov samplers to sample from the posterior distribution. To this end, we �rst spec-
ify the priors for the remaining parameters: !� = (!�1; : : : ; !�k)

0, !h = (!h1; : : : ; !hn)
0 and

!a = (!a1; : : : ; !am)
0. Speci�cally, the elements of !� , !h and !a follow independently Gamma

distributions: !�i � Gamma(r�i; s�i) for i = 1; : : : ; k, !hi � Gamma(rhi; shi); for i = 1; : : : ; n;
and !ai � Gamma(rai; sai); for i = 1; : : : ;m. For later reference, we stack h = (h0�1; : : : ; h0�T )0 and
a = (a01; : : : ; a

0
T )
0. In the following section we present the sampling algorithms. As the blocks of

states �; h and a are drawn sequentially, we use � to denote the current state being drawn and
let � denote the set of parameters except the current latent state. We will refer to the relevant
measurement and state equations then as p (yj�; �) and p (�j�) respectively.

3 General State Space Model

The algorithms we propose for estimating the TVP-VAR-ZLB are quite general in that they
are applicable to general non-linear and non-Gaussian models. More speci�cally, we consider a
general state space model where the measurement equation is characterised by a generic density
function p(yt j �t; �), whereas the state equation, p (�j�), is linear Gaussian as in previous studies.
We give the explicit details on the measurement and state equations for the TVP-VAR-ZLB in
Section 2.

A few comments are in order on the scope of the approaches we propose. In the applica-
tion in Section 2 the non-linearity and non-Gaussianity are induced by the truncated support
of interest rates, for which the conditional distribution is truncated Gaussian. However, our
approaches may be applicable in other non-linear and or non-Gaussian settings. In our appli-
cation, as interest rates move away from the ZLB, the model is very well approximated by the
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standard TVP-VAR. As interest rates are far from zero for much of the sample, this gives us a
benchmark for comparison between the two speci�cations over these periods. Using the algo-
rithms presented below, one can estimate the integrated likelihood, p(y j �) � an ingredient for
maximum likelihood estimation and e¢ cient MCMC design � via importance sampling using
multiple draws from the proposal density.3 We demonstrate this only in the �nal algorithm
where it is integral to the procedure. Finally, we should point out that these approaches will
probably work better in macroeconomic applications with sample sizes of a few hundred obser-
vations, rather than in, say, �nance with sample sizes of tens of thousands. This conjecture is
based upon the likely fall in acceptance rates in large samples.

3.1 Gaussian Approximation

We �rst discuss a quick method to obtain a Gaussian approximation for the conditional density
p(� j y; �). This approach builds upon the precision-based algorithm detailed in Chan and Jeli-
azkov (2009b) and McCausland, Millera, and Pelletier (2011). To begin, let ft and Gt denote
respectively the gradient and negative Hessian of log p(yt j �t; �) evaluated at �t = e�t, i.e.,

ft �
@

@�t
log p(yt j �t; �)

����
�t=e�t ; Gt � �

@2

@�t�
0
t

log p(yt j �t; �)
����
�t=e�t :

Stacking these terms and de�ne the following vector and matrix:

f =

26664
f1
f2
...
fT

37775 ; G =

26664
G1 0 � � � 0
0 G2 � � � 0
...

...
. . .

...
0 0 � � � GT

37775 :
We then expand the log-likelihood log p(y j �; �) =

PT
t=1 log p(yt j �t; �) around e� = (e�01; : : : ;e�0T )0

to obtain the expression

log p(y j �; �) � log p(y je�; �) + (� � e�)0f � 1
2
(� � e�)0G(� � e�)

= �1
2

�
�0G� � 2�0(f +Ge�)�+ c1; (6)

where c1 is some unimportant constant independent of �.

The evolution of the states is governed by the following transition equation

�t = �t�t�1 + ut (7)

for t = 1; : : : ; T , where ut � N(0;
�1t ). The directed conditional structure for p
�
�tj�; �t�1

�
3A further advantage of the proposed method is that it can be applied to non-Markovian state equations,

which arise in, e.g., various DSGE models, and they are more di¢ cult to handle under other approaches.
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in (7) implies that the joint density for � is also Gaussian. To see this, de�ne

K =

0BBBBB@
Im
��2 Im

��3 Im
. . . . . .

��T Im

1CCCCCA and 
 =

0BBBBB@

1


2

3

. . .

T

1CCCCCA ;

so that (7) can be written as K� =  + �, where

 =

26664
�1�0
0
...
0

37775 and � =

26664
�1
�2
...
�T

37775 � N(0;
�1):
Noting that jKj = 1, by a change of variable from � to �, we have

log p(� j �) / �1
2
log j
�1j � 1

2
(� � �0)0K 0
K(� � �0)); (8)

where �0 = K�1 is the prior mean. Note that the Tm�Tm precision matrix K 0
K is banded,
i.e., it only contains a small number of non-zero elements on a narrow band around the main
diagonal. Combining (6) and the prior density in (8), we have

log p(� j y; �) / log p(y j �; �) + log p(� j �)

� �1
2

�
�0(G+K 0
K)� � 2�0(f +Ge� +K 0
K�0)

�
+ c2:

(9)

where c2 is some unimportant constant independent of �. In other words, the approximating dis-
tribution is Gaussian with precision H � G+K 0
K and mean vector H�1 �f +Ge� +K 0
K�0

�
.

Since G and X 0�X are banded, it follows that H is also banded. An important consequence
is that its Cholesky decomposition can be obtained in O(N) operations instead of O(N3) op-
erations for full matrices, where N is the dimension of the matrix. By exploiting this fact, one
can sample (� j y; �) without the need to carry out an inversion to obtain H�1 and b�. More
speci�cally, the mean b� can be found in two steps. First, we compute the (banded) Cholesky
decomposition CH of H such that C 0HCH = H. Second, we solve

C 0HCHb� = f +Ge� +K 0
K�0:

Further details on this sampler can be found in Chan and Jeliazkov (2009b). The important
point is that additional draws from this Gaussian approximation can be obtained with low
marginal costs.

It remains to choose the point e� around which to construct the Taylor expansion. One obvious
choice is the posterior mode, denoted as b�, which has the advantage that it can be easily obtained
via the Newton-Raphson method. More speci�cally, it follows from (9) that the negative Hessian
of log p(� j y; �) evaluated at � = e� is H, while the gradient at � = e� is given by

@

@�
log p(� j y; �)

����
�=e� = �He� + 2(f +Ge� +K 0
K�0):
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Hence, we can implement the Newton-Raphson method as follows: initialise with � = �(1). For
s = 1; 2; : : :, use e� = �(s) in the evaluation of f , G and H, and denote them as f(�(s)), G(�(s))
and H(�(s)) respectively, where the dependence on �(s) is made explicit. Compute �(s+1) as

�(s+1) = �(s) +H(�(s))�1
@

@�
log p(� j y; �)

����
�=�(s)

= H(�(s))�1
�
f(�(s)) +G(�(s))�(s) +K 0
K�0

�
:

(10)

If jj�(s+1) � �(s)jj > � for some pre-�xed tolerance level �, then continue; otherwise stop and
set b� = �(s+1). Again, it is important to note that because the precision H is banded, and its
Cholesky decomposition CH can be readily obtained. Hence, (10) can be e¢ ciently evaluated
without inverting any high-dimensional matrix. More precisely, we compute �(s+1) as follows:
given the Cholesky decomposition CH for H(�(s)), �rst solve C(s)

0

H x = f
�
�(s)

�
+ G(�(s))�(s) +

K 0
K�0 for x by forward-substitution. Then given x, solve CH�(s+1) = x for �(s+1) by back-
substitution. Finally, given the mode b�, the negative Hessian H at b� can be easily computed.
3.2 E¢ cient Simulation for the States

Building upon the Gaussian approximation presented previously, we propose three di¤erent
sampling schemes for drawing the states e¢ ciently.

3.2.1 Metropolis-Hastings with Gaussian and t proposals

A simple sampling scheme is to implement a Metropolis-Hastings step with proposal density
N(b�;H�1). The mode b� and the negative Hessian at b� of the conditional density p(� j y; �) can
be computed as discussed in earlier. Moreover, a draw from the proposal can be obtained using
the precision-based sampler as in Chan and Jeliazkov (2009b). Using a Gaussian approximation
would be adequate in models where either the measurement or the state equations is Gaussian, as
the resulting conditional posterior in either case has exponentially decaying tails. We summarise
this basic sampling scheme as follows:

Algorithm 1. Metropolis-Hastings with the Gaussian Proposal N(b�;H�1)

1. Obtain b� iteratively via (10). Given H, compute its Cholesky decomposition CH such that
H = C 0HCH .

2. Sample u � N(0; ITm), and solve CHx = u for x by back-substitution. Take � = b� + x, so
that � � N(b�;H�1).

In implementing the Metropolis-Hastings algorithm, it is often suggested that the proposal
density q(� j y; �) should have heavier tails than the posterior distribution p(� j y; �), so that the
likelihood ratio p(� j y; �)=q(� j y; �) is bounded. This is important because a bounded likelihood
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ratio ensures the geometric ergodicity of the Markov chain (Roberts and Rosenthal, 2004). In
the context of estimating the integrated likelihood, this guarantees the estimator has �nite
variance. Thus, one concern of using a Gaussian proposal is that it has exponentially decaying
tails, and consequently, the likelihood ratio might not be bounded. This motivates using a
proposal density with heavier tails, such a t distribution. We note that one can easily modify
the above Gaussian approximation to obtain a t proposal density instead. More explicitly,
consider the t proposal � � q(� j y; �) � t(�;b�;H�1) with degree of freedom parameter �,
location vector b� and scale matrix H�1. Note that sampling from t(�;b�;H�1) involves only Tm
iid standard Gaussian draws and a draw from the Gamma(�=2; �=2) distribution. We summarise
the algorithm as follows:

Algorithm 2. Metropolis-Hastings with the t proposal t(�;b�;H�1)

1. Given the posterior mode b� and negative Hessian H, obtain the Cholesky decomposition
CH such that H = C 0HCH .

2. Sample u � N(0; ITm) and r � Gamma(�=2; �=2). Then v � u=
p
r � t(�; 0; ITm).

3. Solve CHx = v for x by back-substitution and take � = b� + x, so that � � t(�;b�;H�1).

3.2.2 Accept-Reject Metropolis-Hastings

As its name suggests, the accept-reject Metropolis-Hastings (ARMH) algorithm (Tierney, 1994;
Chib and Greenberg, 1995) is an MCMC sampling procedure that combines classic accept-reject
sampling with the Metropolis-Hastings algorithm. In the our setting the target density is the
conditional density of the states p(� j y; �) / p(y j �; �)p(� j �). Suppose we have a proposal
density q(� j y; �) from which we generate candidate draws (e.g. q(� j y; �) can be the Gaussian
or t density discussed in the previous section). In the classic accept-reject sampling a key
requirement is that there exists a constant c such that

p(y j �; �)p(� j �) 6 cq(� j y; �) (11)

for all � in the support of p(� j y; �). When � is a high-dimensional vector, as in the present
case, such a constant c, if it exists, is usually di¢ cult to obtain. To make matters worse,
the target density p(� j y; �) depends on other model parameters � that are revised at every
iteration. Finding a new value of c for each new set of parameters might signi�cantly increase
the computational costs. The ARMH relaxes the domination condition (11) such that when
it is not satis�ed for some �, we resort to the MH algorithm. To present the algorithm, it is
convenient to �rst de�ne the set

D = f� : p(y j �; �)p(� j �) 6 cq(� j y; �)g;

and let Dc denote its complement. Then the ARMH algorithm proceeds as follows:

Algorithm 3. Accept-Reject Metropolis-Hastings with Gaussian or t proposal
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1. AR step: Generate a draw �� � q(� j y; �), where q(� j y; �) is the Gaussian or t proposal
obtained in Algorithms 1 or 2. Accept �� with probability

�AR(�
� j y; �) = min

�
1;
p(y j ��; �)p(�� j �)
cq(�� j y; �)

�
:

Continue the above process until a draw �� is accepted.

2. MH step: Given the current draw � and the proposal ��

(a) if � 2 D, set �MH(�; �
� j y; �) = 1;

(b) if � 2 Dc and �� 2 D, set

�MH(�; �
� j y; �) = cq(� j y; �)

p(y j �; �)p(� j �) ;

(c) if � 2 Dc and �� 2 Dc, set

�MH(�; �
� j y; �) = min

�
1;
p(y j ��; �)p(�� j �)q(� j y; �)
p(y j �; �)p(� j �)q(�� j y; �)

�
:

Return �� with probability �MH(�; �
� j y; �); otherwise return �.

As shown in Chib and Greenberg (1995), the draws produced at the completion of the AR step
have the density

qAR(� j y; �) = d�1�AR(� j y; �)q(� j y; �);

where d is the normalising constant (which needs not be known for implementing the algo-
rithm). In other words, one might view the AR step as a means to sample from the density
qAR(� j y; �). By adjusting the original proposal density q(� j y; �) by the function �AR(� j y; �),
a better approximation of the target density is achieved. In fact, we have

qAR(� j y; �) =
�
p(y j �; �)p(� j �)=cd; � 2 D;
q(� j y; �)=d; � 2 Dc;

i.e., the new proposal density coincides with the target density on the set D (albeit with di¤erent
normalising constants), whereas on Dc the new proposal density is reduced to the original one.
To give a feeling for the improvement this approach brings, consider Figure 2. In this �gure,
the true density is shown as a grey shaded area and the Gaussian candidate by the dotted
line. The candidate density qAR(� j y; �) is shown as the solid line which �ts the true density
for values less than 1.6, then di¤ers above this point but still �ts better than the Gaussian
density. The better approximation, of course, comes at a cost, because multiple draws from the
proposal density q(� j y; �) might be required in the AR step. This is where the precision-based
method (as in Algorithms 1 or 2) comes in. As we have emphasized before, the marginal cost of
generating additional draws using the precision-based method is low, and is substantially lower
than generating candidate draws via Kalman �lter-based algorithms. In fact, as demonstrated
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Figure 2: Illustration of the two approximations for a skew normal distribution (shaded):
Gaussian (dotted line) and the same Gaussian with AR adjustment (solid line).

in the application, the gain in e¢ ciency under the ARMH sampling scheme more than justi�es
its additional cost compared to a plain MH step.

Chib and Jeliazkov (2005) present a practical way to select the constant c and the trade-o¤ in
such a choice which we outline here. Notice that if a bigger c is chosen, then the set D is larger
and we are more likely to accept the candidate ��. The cost, on the other hand, of selecting a
larger c is that more draws from q(� j y; �) are required in the AR step. A practical way to strike
a balance between these two con�icting considerations is to set c = rp(y jb�; �)p(b� j �)=q(b� j y; �),
where b� is the mode of the conditional density p(� j y; �) and r is, say, between 1 and 5. Such
a choice would ensure that c is su¢ ciently small to reduce the required number of draws from
q(� j y; �), while big enough so that the set D contains the mode b� and its neighboring points.
3.2.3 Collapsed Sampling with the Cross-entropy Method

We have so far discussed two sampling schemes for e¢ cient simulation from the conditional
density p(� j y; �): the MH and the ARMH algorithms with either a Gaussian or a t proposal.
In performing a full Bayesian analysis, one often sequentially draws from p(� j y; �) followed by
sampling from p(� j y; �). In typical situations where � contains parameters in the state equation,
� and � are expected to be highly correlated. Consequently, the conventional sampling scheme
might induce high autocorrelation and slow mixing in the Markov chain, especially in high-
dimensional settings. For this reason, we seek to sample (�; �) jointly by �rst drawing from
p(� j y) marginally of the states � followed by a draw from p(� j y; �), where the latter step can
be accomplished by either the MH or ARMH algorithm previously discussed. To sample from
p(� j y), we again implement a MH step: we �rst generate a candidate draw �� from the proposal
density g(�), then we decide whether to accept �� or not according to the acceptance probability.
Hence, we need two ingredients: (1) a quick routine to evaluate the integrated likelihood p(y j �),
which arises in computing the acceptance probability; and (2) a good proposal density g(�) for
generating candidate draws for the MH step.
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The �rst ingredient, an e¢ cient method to evaluate the integrated likelihood, is provided by the
importance sampling estimator bp (yj�) discussed in Appendix C (or see, for example, Geweke
(1989) or Kroese et al. (2011, ch. 9)). And this in turn gives us an estimator for the acceptance
probability

� (� j y) = min
�
1;
p(y j ��)p (��) g(�)
p(y j �)p(�)g(��)

�
:

One might raise the concern that the simulation error may a¤ect the convergence properties
of the Markov chain, as the candidate draws are accepted or rejected according to estimated
acceptance probabilities rather than the actual values. However, since the importance sampling
estimator bp(y j �) is unbiased, the results in Andrieu, Berthelsen, Doucet, and Roberts (2007)
and Flury and Shephard (2008) show that the stationary distribution of the constructed Markov
chain is the posterior distribution as desired.

The second ingredient is a proposal density for generating candidate draws for �. Of course, one
may generate candidates via a random walk, but this strategy is not recommended as a random
walk chain is typically ine¢ cient, and it would defeat the purpose � to improve the mixing
properties of the Markov chain � of the whole exercise. Therefore, it is essential to locate a
good proposal density g(�) to implement an independence-chain MH step. We adopt the so-
called cross-entropy adaptive independence sampler introduced in Keith, Kroese, and Sofronov
(2008). Speci�cally, the proposal density is chosen such that the Kullback-Leibler divergence,
or the cross-entropy (CE)distance between the proposal density and the target (the posterior
density) is minimal, where the CE distance between the densities g1 and g2 is de�ned as:

D(g1; g2) =
Z
g1(x) log

g1(x)

g2(x)
dx:

Let G be a parametric family of densities g(�; v) indexed by the parameter vector v. Minimizing
the CE distance is equivalent to �nding

vce = argmax
v

Z
p(� j y) log g(�; v) d�:

As in the CE method (Rubinstein and Kroese, 2004; Kroese, Taimre, and Botev, 2011, ch. 13),
we can estimate the optimal solution vce by

bvce = argmax
v

1

N

NX
i=1

log g(�i; v); (12)

where �1; : : : ; �N are draws from the marginal posterior density p(� j y). The solution to the
maximization problem in (12) is typically easy to obtain; in fact, analytic solutions are often
available. On the other hand, �nding bvce requires a pre-run to obtain a small sample from p(� j y).
This can be achieved by sequentially drawing from p(� j y; �) and p(� j y; �), as discussed in the
previous section. It is important to note that although the sample obtained in this pre-run may
exhibit slow mixing, we only use it to obtain the proposal density, and thus it has little adverse
e¤ect on the main collapsed sampler. Once we �nd bvce, we then use the proposal density g(�; bvce)
to implement the independence-chain MH step. We discuss in more details the implementation
in Appendix B.
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3.3 Estimation of the TVP-VAR-ZLB

In what follows, we brie�y discuss the implementation of the three samplers to estimate the
TVP-VAR-ZLB; we refer the readers to Appendices A and B for more details. The �rst sampling
scheme is the baseline Metropolis-Hastings sampler that involves sequentially drawing from:

a. p(� j y; h; a; �) via an MH step;

b. p(h j y; �; a; �) via an MH step;

c. p(a j y; �; h; �) via a Gibbs step;

d. p(� j y; �; h; a) via a Gibbs step.

To e¢ ciently sample the states � in the non-linear state space model (4) and (5), we consider
implementing an independence-chain MH step by approximating the conditional distribution
p(� j y; h; a; �) via a Gaussian distribution as discussed in Section 3.1. The next step is to
sample from the conditional distribution p(h j y; �; a; �). Recall that hit is the i-th diagonal
element in Dt, h�t = (h1t; : : : ; hnt)

0 and hi� = (hi1; : : : ; hiT )
0. Note that we are able to write

log p(h j y; a; �; �) =
Pn
i=1 log p(hi� j y; a; �; �): What this means is that to obtain a draw from

p(h j y; a; �; �), we can instead sample from p(hi� j y; a; �; �) sequentially without adversely af-
fecting the e¢ ciency of the sampler. Now, a draw from p(hi� j y; a; �; �) can be obtained via an
independence-chain Metropolis-Hastings step with a Gaussian proposal density; more details
are given in Appendix A. Thirdly, it can be easily shown that p(a j y; �; h; �) is a Gaussian
distribution (see, e.g. Primiceri, 2005), and a draw from which can be obtained using the
precision-based sampler. Finally, p(� j y; �; h; a) is a product of Gamma densities, and a draw
from which is standard (see Koop, 2003, p. 61-62).

In the second sampling scheme, we also sequentially draw from the four full conditional densities
as before. The only di¤erence is that instead of using the MH algorithm to sample p(� j y; h; a; �)
and p(h j y; �; a; �), we use the ARMH algorithm described in Section 3.3.2. Finally, in the third
sampling scheme, we sample

a. p(!� j y; h; a) marginally via an MH step, followed by p(� j y; h; a; �) via an ARMH step;

b. p(!h j y; �; a) marginally via an MH step, followed by p(h j y; �; a; �) via an ARMH step;

c. p(!a j y; �; h) marginally via an MH step, followed by p(a j y; �; h; �) via a Gibb step.

The details for the collapsed sampler are given in Appendix B.

4 Empirical Results

We now present empirical results based on a set of U.S. macroeconomic variables commonly
used in the study of the evolution of monetary policy transmission. We have an interest rate
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to capture e¤ects of monetary conditions, a real growth rate variable to capture the state of
the economy, and in�ation. The dataset is obtained from the U.S. Federal Reserve Bank at St.
Louis website that consists quarterly observations from 1947Q1 to the 2011Q2 on the following
n = 3 U.S. macroeconomic series: U.S. 3-month Treasury bill rate, CPI in�ation rate, and
real GDP growth. Both the CPI in�ation rate and real GDP growth are computed via the
formula 400(log(zt) � log(zt�1)), where zt is the original quarterly CPI or GDP �gures. The
inclusion of the interest rate variable, which is bounded below at zero, provides a useful example
to demonstrate our methods. The plot of the evolution of the interest rate, given in Figure 3,
shows that since the start of the quantitative easing in late 2008, the 3-month Tbill rate has
become essentially zero.
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Figure 3: The U.S. 3-month Tbill rate (left), CPI in�ation rate (middle), and GDP growth rate
(right) from 1947 Q1 to 2011 Q2.

We allow one lag in the VAR as this seems su¢ cient to capture much of the dynamics. We begin
with a comparison of performance of the three sampling schemes. To this end, we estimate the
restricted model using the three di¤erent sampling schemes outlined in the previous section: the
Metropolis-Hastings sampler (S1), the Accept-Reject Metropolis-Hastings sampler (S2), and the
collapsed sampler with cross-entropy method (S3). We also include results from the unrestricted
model (U), for which both the transition and measurement equations are linear Gaussian. As
such, this unrestricted model can be estimated using standard algorithms.

One popular measure of MCMC e¢ ciency is the ine¢ ciency factor, de�ned as:

1 + 2

JX
j=1

�j ;

where �j is the sample autocorrelation at lag length j, and J is chosen large enough so that the
autocorrelation tapers o¤. This statistic approximates the ratio of the numerical variance of the
posterior mean from the MCMC output relative to that from hypothetical iid draws. As the
posterior draws from the Markov chain become less serially correlated, the ratio will approach
the ideal minimum value of 1. In the presence of ine¢ ciency due to serial correlation in the
draws, the ratio will be larger than 1. Figure 4 presents the boxplots of the ine¢ ciency factors
for the four sampling schemes.
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Figure 4: Boxplots of the ine¢ ciency factors for the unrestricted linear Gaussian model (U),
and the three sampling schemes: MH (S1), ARMH (S2) and the collapsed sampler (S3). The
central mark of each box is the median, the edges of the box are the 25th and 75th percentiles,
and the whiskers extend to the maximum and minimum.

Remember that the unrestricted model is linear Gaussian and can be estimated via a standard
Gibbs sampler. In contrast, the restricted model that incorporates the ZLB is non-linear, and
the conditional densities of the states are non-standard. Since the proposed samplers need to
approximate these conditional densities, we would generally expect that they would not perform
as well compared to the standard Gibbs sampler used to estimate the unrestricted model. As
evidenced by the plots in Figure 4, the proposed samplers do not perform substantially worse
at estimating the non-linear model than the standard precision sampler for �tting the linear
Gaussian model. The collapsed sampler with cross-entropy, S3, has ine¢ ciency factors as small
as or smaller than the other samplers for most parameters, including the standard sampler
for the unrestricted model. The improvement in e¢ ciency for S3 is most substantial in the
precision of the state parameters, which is signi�cant as these are hyperparameters and are
typically not as well estimated as parameters that appear in the measurement equation. These
hyperparameters are also important as they play an important role in the estimation of the
states. We see that S1 (the MH sampler) is generally not as e¢ cient compared to the other
samplers, although its performance is not greatly worse than the others. The e¢ ciency of S2
(the ARMH sampler) is as good as S3 for the states, but it is worse than S3 for the estimation
of the state precisions.
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Table 1: Acceptance rate (in %) and the computing time (in minutes) of the three sampling
schemes: MH (S1), ARMH (S2) and the collapsed sampler with CE (S3).

� h1� h2� h3� 
� 
h 
a Time
S1 68 28 35 59 � � � 23
S2 95 71 79 97 � � � 27
S3 98 69 79 97 62 58 76 182

In Table 1 we present the acceptance rates of draws from candidates, as well as the computation
time for obtaining 50,000 draws. On the whole the three samplers are relatively fast and have
reasonable acceptance rates. These results are more signi�cant given our high-dimensional
model: � has more than 3,000 elements and h has more than 750. To compare among the three
sampling schemes, we see that although S1 is relatively fast, it can have low acceptance rates
particularly for the log volatilities. By contrast, S2 has higher acceptance rates at the expense
of only a little more computation time. Although S3 is more e¢ cient relative to S2 in terms of
lower ine¢ ciency factors, its computation time is almost seven times compared to that of S2.
For our model and dataset, it would seem that S2 is the best among the three.

We now present empirical results for the restricted model estimated using the ARMH sampler
(S2). For comparison, we also report the corresponding results for the unrestricted model.
This comparison is provided to demonstrate the implications for inference of neglecting the
restriction of the ZLB. We begin with a discussion of the implications of the restriction for
parameter estimation and then show the e¤ect on impulse responses of not correctly accounting
for the ZLB. These di¤erences are signi�cant and justify the new estimation methods presented
in this paper.

The e¤ect of neglecting the ZLB restriction shows up in all blocks of parameters: the variances;
the correlations; and mean equation coe¢ cients. Figure 5 shows the estimated log-volatilities
and correlations for the restricted model and the unrestricted model. The �gure for the log-
volatilities of the monetary shock, h1;t, shows that ignoring the restriction would lead to a
signi�cant underestimation of this parameter in the period since 2005. The monetary shock
volatility is much higher than the unrestricted model suggests. Similarly the volatility of real
activity, h3;t, is over estimated when the ZLB is ignored. The volatility and correlations of the
nominal variable shock does not show much in�uence from the ZLB. However, the correlation
of the error from the interest rate equation with the error from the growth equation is strongly
a¤ected, this correlation would be estimated as being near zero rather than very negative. This
e¤ect has important implications for the impulse responses.

The plots in Figure 6 show the e¤ect of the ZLB on the impulse response functions of the three
variables to a monetary shock. In the introduction we made the point that in a state of low
output and prices growth, when interest rates are low, shocks to the interest rate equatoin, such
as credit shocks, would be stronger have a more immediate e¤ect. For this reason we identify the
credit shock by allowing it to have a contemporaneous e¤ect on all three variables.4 We produce

4Note that the ordering used in the estimation does not dictate the identi�cation. We can use estimates
to construct the precision matrix as �t = L0tD

�1
t Lt; and then take whatever appropriate decomposition of the
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Figure 5: Evolution of the log-volatilities and correlations. The solid red line is the estimated
posterior mean under the unrestricted model. The solid blue line is the estimated posterior
mean and the dotted green lines are the 5%-tile and 95%-tile, respectively, under the model
with the inequality restrictions imposed.

the impulse responses as the di¤erences in forecasts. However, due to the non-linear form of
the model, these impulses are not the standard ones derived from the VMA representation
in linear models. We forecast the variables using the parameter values at 2011 Q2, assuming
the parameters cease evolving, but taking into account the ZLB into these forecasts. We then
forecast again, but increase the error in the interest rate equation, the monetary shock, by
0.25%. Our impulse responses are the di¤erences between these two forecasts. We see that
there is a faster response of interest rates to the monetary shock, but the form of the response
is similar.

The responses of in�ation and growth to this shock are very di¤erent with the ZLB imposed
compared to that without the restriction. As these results come from a time varying parameter
model, it is important to interpret these responses in the context of the economic environment
at the time. In 2011 Q2 in�ation and in�ation volatility were increasing, while growth and
volatility of the error in the growth equation were both low. The response of in�ation with
the ZLB is initially positive but then falls by a larger amount than the initial response. This
pattern contrasts with the steady decline toward zero from the initial shock we would conclude

covariance matrix ��1t that accords with our chosen identi�cation scheme.
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Figure 6: Impulse response of a 0.25% increase in interest rate under the unrestricted model
(red solid line) and the model with the inequality restrictions imposed (blue solid line).

was the response from the unrestricted model. The di¤erence in the response of growth to this
shock under the two speci�cations is even more stark. While the shock is negative but small
for the unrestricted model, when we account for the ZLB we see the initial response is negative
and very large. The di¤erences of these responses would lead to very di¤erent assessments of
the risks of unanticipated monetary shocks.

5 Concluding Remarks and Further Research

In this paper we have proposed a new approach to e¢ ciently estimate high-dimensional non-
linear non-Gaussian state space models. Due to the general applicability of the proposed ap-
proach, it will prove useful in a wide range of applications. We extend the recently developed
precision-based samplers (Chan and Jeliazkov, 2009b and McCausland, Millera, and Pelletier,
2011) and sparse matrix procedures to build fast, e¢ cient samplers for these non-linear mod-
els. We develop a practical way to sample the model parameters � and the states � jointly to
circumvent the problem of high autocorrelations in high-dimensional settings. This approach
uses the cross-entropy method (Rubinstein and Kroese, 2004) to obtain the optimal candidate
densities q(� j y). We show via an empirical example that the e¢ ciency of the sampling scheme
is substantially improved by drawing (�; y) jointly. Three samplers are presented each with
virtues in di¤erent circumstances. Finally, we apply these techniques in a TVP-VAR in which
one of the variables is restricted to be strictly positive. Using this framework, we investigate the
implications for transmission of monetary shocks of accounting for the zero lower bound (ZLB)
on interest rates.

Another advantage of the proposed method is that it can be applied to non-Markovian state
equations, which arise in, e.g., various non-linear DSGE models, and they are more di¢ cult to
handle under other approaches. Therefore in future work we will apply this approach to the
estimation of non-linear DSGE models. Another direction will be in models with measurement
equations that involving more than current, past or even future states.
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Appendix A: E¢ cient Simulation of � and h

In this appendix we provide the details of the independence-chain Metropolis-Hastings step for
sampling from p(� j y; h; a; �) and p(h j y; a; �; �). We use the decomposition �t = L0tD

�1
t Lt,

where

Dt =

0BBB@
eh1t 0 � � � 0
0 eh2t � � � 0
...

...
. . .

...
0 0 � � � ehnt

1CCCA ; Lt =

0BBBBBB@
1 0 0 � � � 0
a21;t 1 0 � � � 0

a31;t a32;t 1 � � �
...

...
...

...
. . .

...
an1;t an2;t � � � an(n�1);t 1

1CCCCCCA :

Recall that hit is the i-th diagonal element in Dt, h�t = (h1t; : : : ; hnt)0 and hi� = (hi1; : : : ; hiT )0.
That is, h�t is the n� 1 vector obtained by stacking hit by the �rst subscript, whereas hi� is the
T �1 vector obtained by stacking hit by the second subscript. Also, at denotes the free elements
in Lt ordered by rows, i.e., at = (a21;t; a31;t; a32;t; : : : ; an(n�1);t)0. In what follows we use the two
parameterizations �t and (h�t; at) interchangeably. Then the log-density for yt given (�t;�t) is

log p(yt j�t;�t) / �
1

2
(yt � xt�t)0�t(yt � xt�t)� log �(�t);

where �t = x1t�te
� 1
2
h1t : Using the notation in Section 3.1, we have

ft �
@

@�t
log p(yt j�t;�t)

����
�t=

e�t ; Gt � �
@2

@�t�
0
t

log p(yt j�t;�t)
����
�t=

e�t ;
where

@

@�t
log p(yt j�t;�t) = x0t�t(yt � xt�t)�

�(�t)

�(�t)
e�

1
2
h1tx01t;

@2

@�t�
0
t

log p(yt j�t;�t) = �x0t�txt +
�(�t)

�(�t)
e�h1t

�
�t +

�(�t)

�(�t)

�
x01tx1t;

where �(�) and �(�) denote the standard Gaussian probability density function and cumula-
tive distribution function respectively. Given ft and Gt, we can then use the Gaussian or t
approximations in Section 3.1 as a proposal density.

We now discuss sampling from the conditional density p(h j y; a; �; �). We �rst show that

log p(h j y; a; �; �) =
nX
i=1

log p(hi� j y; a; �; �):

Put di¤erently, to obtain a draw from p(h j y; a; �; �), we can instead sample from p(hi� j y; a; �; �)
sequentially without adversely a¤ecting the e¢ ciency of the sampler. To this end, decompose
�t = L0tD

�1
t Lt as before. Since log j�tj = log jDtj =

Pn
i=1 hit and �

2
t;11 = eh1t , it follows that
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the log-likelihood is given by

log p(y j�; h; a; �) /
TX
t=1

"
�1
2

nX
i=1

hit �
1

2
(Lt�t)

0D�1t Lt�t � log �
�
e�h1t=2x1t�t

�#
;

=
TX
t=1

"
�1
2

nX
i=1

hit �
1

2

nX
i=1

e�hits2it � log �
�
e�h1t=2x1t�t

�#
; (13)

where �t = yt � xt�t and s2it is the i-th diagonal element of (Lt�t)(Lt�t)0. On the other hand,
the state equation (2) implies that each hi� follows independently a Gaussian distribution. In
fact, we have

hit = hi;t�1 + �it; �it � N(0; !hi): (14)

Hence, it follows from (13) and (14) that hi�; i = 1; : : : ; n are conditionally independent given
the data and other parameters.

We note that although one can apply the auxiliary variable approach in Kim, Shepherd, and
Chib (1998) to sample from p(hi� j y; a; �; �) for i = 2; : : : ; n, it cannot be used to draw from
p(h1� j y; a; �; �) due to the extra term log �

�
e�h1t=2x1t�t

�
in the log-likelihood (13) that depends

on h1t. Instead, we sample each hi� sequentially via an independence-chain Metropolis-Hastings
step. As before, we �rst derive an expression for a second order Taylor expansion of the log-
likelihood (13) around the posterior mode bhi� = (bhi1; : : : ;bhiT )0. De�ne t = e�h1t=2x1t�t

qit =
@

@hit
log p(y j�; h; a; �)

����
hit=bhit ; rit = �

@2

@h2it
log p(y j�; h; a; �)

����
hit=bhit ;

qi = (qi1; : : : ; qiT )
0 and Ri = diag(ri1; : : : ; riT ), where

@

@hit
log p(y j�; h; a; �) = 1

2

�
e�hits2it � 1 + t

�(t)

�(t)
1l(i = 1)

�
;

and
@2

@h2it
log p(y j�; h; �) = �1

2
e�hits2it +

1

4
t
�(t)

�(t)

�
2t + t

�(t)

�(t)
� 1
�
1l(i = 1):

If we expand the log-likelihood (13) around the mode bhi�, we have
log p(y j�; h; a; �) � �1

2

hbh0i�Ribhi� � 2bh0i�(qi +Ribhi�)i+ c3;
where c3 is some unimportant constant independent of bhi�. We consider the proposal density
N(bhi�; (qi +Ribhi�)�1), and everything follows as before.
Appendix B: Collapsed Sampler with the Cross-Entropy Method

In this appendix we provide the details on the collapsed sampler used in the third sampling
scheme. In a nutshell, we �rst use a small posterior sample from a pre-run and the cross-entropy
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method to locate an optimal proposal density within a given parametric family. Then given a
candidate draw from the proposal, we implement a Metropolis-Hastings step to decide whether
or not to accept the candidate, where the acceptance probability is computed using the im-
portance sampling estimator for the integrated likelihood proposed in Section 3.2. We focus
on discussing the approximation to p(!� j y; h; a), where !� = (!�1; : : : ; !�k)0. The approxima-
tions to the other two marginal densities follow similarly. Recall that the elements of !� have
an independent gamma prior: !�i � Gamma(r�i; s�i) for i = 1; : : : ; k. Therefore, a natural
parametric family within which to locate the proposal density is the gamma family:

G =
(

kY
i=1

fG(!�i; c�i; d�i)

)
;

where fG(�; c; d) is the density of Gamma(c; d). Given the R posterior draws f!(j)�1 ; : : : ; !
(j)
�kg, j =

1; : : : ; R, we solve the CE optimization problem in (12) to obtain bvce = (bc�1; bd�1; : : : ;bc�k; bd�k):
Speci�cally, the optimal CE reference parameter vector bvce can be obtained as follows. First
note that bd�i can be solved analytically given c�i:

bd�i = Rc�iPR
j=1 !

(j)
�i

:

Now by substituting d�i = bd�i into the density fG(�; c�i; d�i); bc�i can be obtained by any
one-dimensional root-�nding algorithm (e.g., Newton-Raphson method). Hence, we can obtain
(bc�1; bd�1; : : : ;bc�k; bd�k) easily. Finally, the proposal density is

f�(!�) =
kY
i=1

fG(!�i;bc�i; bd�i);
which is the member within G that is the closest in cross-entropy divergence to the marginal
density p(!� j y; h; a).

Appendix C: Integrated Likelihood Evaluation

The integrated likelihood p(y j �) is de�ned as the joint distribution of the data conditional on
the parameter vector � but integrated over the states �. More explicitly,

p(y j �) =
Z
p(y j �; �)p(� j �)d�: (15)

The need to evaluate the integrated likelihood e¢ ciently arises in both frequentist and Bayesian
estimation. In classical inference, one needs to maximize the integrated likelihood p(y j �) with
respect to � to obtain the maximum likelihood estimator (MLE). In our context one has to
compute the MLE numerically, and the maximization routine typically requires hundreds or
even thousands of functional evaluations of p(y j �). Hence, it is crucial to be able to evalu-
ate the integrated likelihood e¢ ciently. For Bayesian estimation, if one can evaluate p(y j �)
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quickly, more e¢ cient samplers can be developed to obtain draws from the posterior, such as
the collapsed sampler that draws � and � jointly in a single step which we discuss in Section 3.2.

Given the Gaussian approximation proposed in the previous section, one can estimate p(y j �)
via importance sampling (see, e.g., Geweke, 1989; Kroese et al., 2011, ch. 9). To do this, sample
M independent draws �1; : : : ; �M from the proposal density q(� j y; �), and compute the Monte
Carlo average

bp(y j �) = 1

M

MX
i=1

p(y j �; �i)p(�i j �)
q(�i j y; �) :

It is easy to see that the Monte Carlo estimator bp(y j �) is an unbiased and consistent esti-
mator for p(y j �). In addition, if the likelihood ratio p(y j �; �)p(� j �)=q(� j y; �) or equivalently
p(� j y; �)=q(� j y; �) is bounded for all �, then the variance of the estimator is also �nite (Geweke,
1989). The proposed precision-based algorithms are especially �t for evaluating the integrated
likelihood via importance sampling. This is because one needs multiple draws (often hundreds
or thousands) from the proposal density q(� j y; �) to compute the Monte Carlo average. As
discussed earlier, one important and useful feature of the precision-based algorithms is that
once we obtained the mean vector and precision matrix, additional draws can be obtained with
little marginal cost.
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