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ticularly in terms of developing useful extensions. We address these computational
challenges with a Bayesian approach. Specifically, we develop a Gibbs sampler for
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1 Introduction

Vector autoregressive moving average (VARMA) models have long been considered an
appropriate framework for modeling covariance stationary time series. As is well known,
by the Wold decomposition theorem, any covariance stationary time series has an infinite
moving average representation. Whenever this is characterized by a rational transfer
function, the multivariate series can be exactly represented by a finite-order VARMA
model. When the transfer function is irrational, the VARMA specification can be used
to provide an arbitrarily close approximation (Lütkepohl and Poskitt, 1996).

However, in most empirical work, only purely autoregressive models are considered. In
fact, since the seminal work of Sims (1980), VARs have become the most prominent
approach in empirical macroeconometrics. This is in spite of long-standing criticisms
of VARs, especially with short lag orders, as being theoretically deficient for macroeco-
nomic applications. There are two main theoretical drawbacks of VARs in this context:
first, linearized DSGE models typically result in VARMAs, not VARs (e.g., Cooley and
Dwyer, 1998; Yang, 2005; Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson,
2007; Leeper, Walker, and Yang, 2008). Second, even if a particular set of variables can
be adequately described by a VAR, any linear combination, temporal aggregation, or
subsets of these variables will follow a VARMA process.

Over the past two decades, a number of authors (e.g., Lütkepohl and Poskitt, 1996;
Lütkepohl and Claessen, 1997; Athanasopoulos and Vahid, 2008; Athanasopoulos, Poskitt,
and Vahid, 2012; Dufour and Stevanović, 2013; Dufour and Pelletier, 2014; Kascha and
Trenkler, 2014; Poskitt, 2016) have pointed out this unfortunate phenomenon and various
approaches have been proposed aimed at making VARMAs accessible to applied macroe-
conomists. Nevertheless, VARs continue to dominate in this field. One possible reason
for this is that many flexible extensions of the basic VAR have been developed. For ex-
ample, VARs are now routinely augmented with time-varying coefficients (Canova, 1993;
Koop and Korobilis, 2013), Markov switching or regime switching processes (Paap and
van Dijk, 2003; Koop and Potter, 2007), and stochastic volatility (Cogley and Sargent,
2005; Primiceri, 2005). Recently, specifications targeting a large number of variables such
as factor augmented VARs (Bernanke, Boivin, and Eliasz, 2005; Korobilis, 2012), among
many others (see, e.g., Koop and Korobilis, 2010) have been introduced.

While these extensions have made VARs extremely flexible, papers such as Banbura, Gi-
annone, and Reichlin (2010); Koop (2011); Korobilis (2013); Eisenstat, Chan, and Stra-
chan (2016) have focused on achieving parsimony and controlling over-parameterization.
This balance between flexibility and parsimony have contributed to the success of VARs
in forecasting macroeconomic time series. Seemingly, these developments surrounding
VARs have largely overshadowed the advantages inherent to VARMA specifications. In-
deed, VARMAs remain largely underdeveloped in this sense, and this is a central concern
of the present paper.

The lack of development of VARMAs is unfortunate because well-specified VARMAs are
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naturally parsimonious, and recent evidence suggests that VARMAs do forecast macroe-
conomic variables better than basic VARs (Athanasopoulos and Vahid, 2008; Athana-
sopoulos, Poskitt, and Vahid, 2012; Kascha and Trenkler, 2014).1 Therefore, similar
extensions such as time-varying coefficients and stochastic volatility in a VARMA specifi-
cation may offer even further forecasting gains. Moreover, for structural analysis such as
estimation of impulse response functions, VARs remain fundamentally deficient. Cooley
and Dwyer (1998), and more recently Poskitt and Yao (2016), argue that typical appli-
cations of structural VARs in macroeconomics use lag lengths that are much too short
to adequately approximate the underlying, theoretically founded VARMA processes. In
certain cases—such as in DSGEs with fiscal foresight—the VARMA process arising in
equilibrium entails a non-fundamental moving average part, and therefore, a VAR ap-
proximation does not exist at all (Yang, 2005; Leeper, Walker, and Yang, 2008).

The identification and estimation of VARMAs is, however, far more involved than with
VARs. Even for a pure VMA process, the likelihood is highly nonlinear in the parameters,
and in Gaussian models identification further requires imposing constraints on the roots
of the determinant of the VMA polynomial, which corresponds to a system of nonlinear
constraints on VMA parameters. In consequence, estimation using maximum likelihood
or Bayesian methods is difficult, and most practical applications rely on approximate
methods rather than exact inference from the likelihood (see Kascha, 2012, for a review).
Combining VMA with VAR terms gives rise to further problems in terms of specification
and identification (see Lütkepohl, 2005, for a textbook treatment), thereby complicating
matters even more.

We propose a Bayesian approach that draws on a few recent developments in the state
space literature. First, we make use of a convenient state space representation of the
VARMA introduced in Metaxoglou and Smith (2007). Specifically, by using the fact that
a VMA plus white noise remains a VMA (Peiris, 1988), the authors write a VARMA
as a latent factor model, with the unusual feature that lagged factors also enter the
current measurement equation. This linear state space form is an equivalent, but over-
parameterized representation of the original VARMA. To estimate the model in this form,
Metaxoglou and Smith (2007) set ex ante certain parameters to pre-determined values
and estimate the remaining parameters using the EM algorithm based on the Kalman
filter.

Our point of departure is to develop an efficient Gibbs sampler for this state space repre-
sentation of the VARMA. First, we show that the pre-determined parameter restrictions
in this case are neither desirable nor necessary—in a Bayesian setting, we work directly
with the “unidentified” model and recover the identified VARMA parameters ex post. We
emphasize from the start and demonstrate below that doing so does not require restric-
tive priors on the coefficients. Another advantage of this approach is that restrictions on
roots can be imposed in the post-processing of draws, rather than directly in the sampling
scheme. To further accelerate computation, instead of the conventional forward-filtering

1Chan (2013) arrives at a similar conclusion in forecasting inflation with univariate MA models with
stochastic volatility.
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and backward-smoothing algorithms based on the Kalman filter, we make use of the more
efficient precision sampler of Chan and Jeliazkov (2009) to simulate the latent factors.

The significance of our contribution lies in the realization that once the basic VARMA
can be efficiently estimated via the Gibbs sampler, a wide variety of generalizations, anal-
ogous to those mentioned earlier extending the basic VAR, can also be fitted easily using
the machinery of Markov chain Monte Carlo (MCMC) techniques. We will focus on a
particular generalization of the VARMA: allowing for time-varying VMA coefficients and
stochastic volatility. For estimation using Bayesian methods, we focus on Gaussian distur-
bances, although our algorithms can be readily adopted for other popular distributions,
such as Student’s t.

Within this scope, we do not address the important issue of specifying a VARMA in
canonical form, except to point out that the methods developed below can be readily
used to estimate a VARMA in echelon form, conditional on knowledge of the Kronecker
indices. An in-depth investigation of Bayesian approaches to specifying and estimating
an echelon form VARMA is undertaken in our related work in Chan, Eisenstat, and Koop
(2016). We show in the latter that building on the foundation laid out in the present
paper, the same extensions may be incorporated in straightforward fashion in the fully
canonical echelon form specification (where Kronecker indices are estimated jointly with
the model parameters) as well.

In the present work, our main aim is to assess the forecasting potential of VARMAs with
time-varying coefficients and stochastic volatility. Specifically, we investigate whether
adding moving average components to VARs with stochastic volatility (i.e., a modern,
widespread forecasting tool) improves forecasting performance. The sampling algorithm
we develop is expressly suitable for this purpose, and we do find that VARMAs with
time-varying coefficients and stochastic volatility generate better density forecasts than
their VAR counterparts, particularly for inflation over short horizons.

To our knowledge, few attempts have been made to apply Bayesian methods in specifying
and estimating VARMA models. Two noteworthy exceptions are Ravishanker and Ray
(1997), who consider a hybrid Metropolis-Hastings algorithm for a basic VARMA, and
Li and Tsay (1998), who use stochastic search variable selection (SSVS) priors (e.g.,
George and McCulloch, 1993) to jointly sample the Kronecker indices and coefficients of
a VARMA in echelon form. The latter sampler is based on the observation that each
equation within a VARMA is a univariate ARMAX, conditional on the other variables
in the system. Both of these approaches, however, are computationally intensive and do
not provide a convenient framework for incorporating the type of extensions we develop
here.

The rest of this article is organized as follows. Section 2 first introduces a state space
representation of a VARMA(p, q)—which we term the expanded VARMA form—that
facilitates efficient estimation, followed by a detailed discussion of the correspondence
between this representation and the original VARMA. In Section 3 we consider a gen-
eral VARMA framework with time-varying coefficients and stochastic volatility. We then
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develop a Gibbs sampler for this general model. In Section 4, the methodology is illus-
trated using a recursive forecasting exercise involving inflation and GDP growth. Lastly,
we discuss some future research directions in Section 5.

2 The Expanded VMA Form

In this section we discuss the identification issues in the expanded VMA form and how one
can recover the original VMA parameters from those in the expanded VMA form. The
theory developed in sub-sections 2.1 and 2.2 assumes the disturbances follow a weak white
noise process. When we discuss recovering the original VMA parameters in sub-section
2.3, as well as estimation in the next section, we will assume a stronger condition—the
disturbances follow Gaussian distributions.

2.1 The Basic Setup

To build up the general framework, we start with the pure VMA(q) specification:

ut = Θ(L)εt ≡ Θ0εt +Θ1εt−1 + · · ·+Θqεt−q, εt ∼ WN (0,Σ), (1)

where ut is n×1 and all other matrices conform accordingly. WN (0,Σ) denotes a (weak)
white noise process with covariance Σ, i.e., {εt} satisfies E(εt) = 0, E(εtε

′
t) = Σ, and

E(εtε
′
t−s) = 0 for all s ≥ 1. Θ0 is assumed to be non-singular, but not necessarily equal

to In (as would be relevant in an echelon form VARMA specification, for example). The
autocovariances generated by this VMA(q) process are given by

Γj ≡ E(utu
′
t−j) =

q∑

l=j

ΘlΣΘ′
l−j, j = 0, . . . , q.

In what follows, it will also be useful to consider a VMA(1) representation of the general
VMA(q), defined as




ut
ut−1

...
ut−q+1




︸ ︷︷ ︸
ũτ

=




Θ0 Θ1 · · · Θq−1

. . . . . .
...

. . . Θ1

Θ0




︸ ︷︷ ︸
Θ̃0




εt
εt−1

...
εt−q+1




︸ ︷︷ ︸
ε̃τ

+




Θq

Θq−1

. . .
...

. . . . . .

Θ1 · · · Θq−1 Θq




︸ ︷︷ ︸
Θ̃1




εt−q
εt−q−1

...
εt−2q+1




︸ ︷︷ ︸
ε̃τ−1

,

(2)
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with ε̃τ ∼ WN (0, Σ̃) and Σ̃ = Iq ⊗ Σ. In this form, the corresponding autovariances
may be denoted by

Γ̃0 =




Γ0 Γ1 · · · Γq−1

Γ′
1

. . . . . .
...

...
. . . . . . Γ1

Γ′
q−1 · · · Γ′

1 Γ0


 and Γ̃1 =




Γq

Γq−1

. . .
...

. . . . . .

Γ1 · · · Γq−1 Γq


 . (3)

Writing the VMA(q) this way allows us to work directly with the simplest case, q = 1,
and generalize the developed concepts and methods to any q through (2)-(3).

We assume throughout that the VMA(q) process is invertible, i.e., the characteristic
equation

detΘ(z) ≡ det(Θ0 +Θ1z + · · ·+Θqz
q)

has no roots exactly on the unit circle (equivalently, no eigenvalues of Θ̃1Θ̃
−1

0 in (2)
are exactly one in modulus). We shall further refer to a VMA process with all roots of
detΘ(z) strictly outside the unit circle as fundamental, and a VMA process with any
root strictly inside the unit circle as non-fundamental. Note that a fundamental VMA
process is invertible in the past of ut (i.e. ut,ut−1,ut−2, . . . ), while a non-fundamental
process is invertible in the past and future of ut (i.e. . . . ,ut+2,ut+1,ut,ut−1,ut−2, . . . ).
The methods we develop below are applicable to both fundamental and non-fundamental
processes, as long as they are invertible.

Following Metaxoglou and Smith (2007), consider now the decomposition of ut:

ut = Φ0ft + · · ·+Φqft−q + ηt,

(
ft
ηt

)
∼ WN

((
0

0

)
,

(
Ω 0

0 Λ

))
, (4)

where ft is n × 1, ηt is n × 1, Ω and Λ are both diagonal (with elements ω2
i ≥ 0 and

λ2i > 0, respectively), and Φ0 is lower triangular with ones on the diagonal. We shall refer
to this as the expanded VMA form; the autocovariances implied by this decomposition
are

Γ̊j =

q∑

l=j

ΦlΩΦ′
l−j + 1l(j = 0)Λ, j = 0, . . . , q, (5)

and the mapping between (Θ0, . . . ,Θq,Σ) and (Φ0, . . . ,Φq,Ω,Λ) is established by setting

Γj = Γ̊j, i.e.,

q∑

l=j

ΘlΣΘ′
l−j =

q∑

l=j

ΦlΩΦ′
l−j + 1l(j = 0)Λ, for all j = 0, . . . , q. (6)

The theoretical justification for decomposing ut this way is as follows. Peiris (1988,
Theorem 2) proved that the sum of any two independent VMA processes yields a VMA
process. The following theorem shows that any VMA process ut = Θ(L)εt, satisfying
detΘ(z) 6= 0 for all |z| = 1, can be written in the form (4).
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Theorem 1. Every VMA(q) process with finite first and second-order moments and no
roots on the unit circle can be expressed in the expanded VMA form.

Proof. Appendix A.2.

We make two observations regarding the expanded form. First, it is possible that some
(although not all) ω2

i = 0, which corresponds to fi,t = 0. Suppose that ω2
1 > 0, . . . , ω2

n1
> 0

and ω2
n1+1 = · · · = ω2

n = 0. If n1 ≪ n, then (4) reduces to a latent factor model, where
f1,t, . . . , fn1,t can be interpreted as n1 latent factors (see Chan, Eisenstat, and Koop, 2016,
Section 3.4, for more details).

In the general case, the decomposition may be regarded as a projection of ut onto some
closed linear subspace spanned by ft, ft−1, . . . ; consequently, there is no sensible interpre-
tation to be attached to ft, ft−1, . . . , in lieu of a specific economic theory. In fact, while
Theorem 1 ensures that most VMAs of interest admit an expanded form representation,
such representations are generally not unique. In the following subsection, we address
this feature and establish useful properties of the expanded form that make it suitable
for Bayesian analysis of VMA processes. For the remainder of the paper, we focus on the
case where ω2

i > 0 for all i = 1, . . . , n.

2.2 Identification in the Expanded VMA Form

Suppose that for estimation purposes, the VMA(q) in (1) is specified with Σ unre-
stricted and enough constraints on Θ0, . . . ,Θq such that there are altogether m =
qn2 + 0.5n(n + 1) free parameters, which are uniquely identified (i.e., are uniquely re-
covered from Γ0,Γ1, . . . ,Γq). It is clear that relative to this specification, there are n
additional parameters in the corresponding expanded form. Thus, to estimate the ex-
panded form in practice, we must consider the “identification problem” generated by the
expansion.

Metaxoglou and Smith (2007) deal with this by fixing the elements of Λ to pre-determined
values and estimate the remaining coefficients as free parameters. However, such a strat-
egy might lead to mis-specification (e.g., it automatically imposes arbitrary lower bounds
on the process variance). In fact, there seems to be no reasonable approach to “fixing
parameters” in this context. Fortunately, it is not necessary either.

To clarify the basic ideas, consider the simplest case of a fundamental MA(1). The
mapping between the two forms is defined by

σ2(1 + θ2) = ω2(1 + φ2) + λ2,

σ2θ = ω2φ.

Note further that in this case, we have σ2 > 0, ω2 > 0, λ2 > 0 and −1 < θ < 1. It is easy
to show, however, that these equalities and inequalities jointly imply

0 < λ2 < σ2(1− |θ|)2. (7)
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Since θ, σ2 are uniquely identified from data, λ2 is always bounded within a finite interval—
this interval is largest when θ = 0 (and the model reduces to white noise) and shrinks
towards zero as θ → ±1.

This fact has several important implications. Specifically, there always exists (except for
the extreme case where θ = ±1) some nonzero (positive) λ2 such that any θ, σ2 can be
recovered from φ, ω2, λ2. However, given a particular value of λ2, the reverse mapping
from θ, σ2 to φ, ω2 is not well defined (i.e., it does not exist for all values of σ2 > 0,
−1 < θ < 1). On the other hand, while many combinations of φ, ω2, λ2 will generally
map to the same θ, σ2, only values of λ2 satisfying (7) are admissible. Two implications
follow:

1. arbitrarily fixing λ2 at a particular value may lead to mis-specification;

2. φ, ω2, λ2 are all partially identified in the expanded form.

The first point demonstrates why a strategy such as the one employed by Metaxoglou
and Smith (2007) might not be appropriate; the second suggests that leaving φ, ω2, λ2

as unrestricted parameters and employing Bayesian methods should work well in this
context.

Before discussing further details, note that the above intuition generalizes in a straight-
forward way. Let λ = (λ21, . . . , λ

2
n)

′ and ϕ be the m × 1 vector of all free parameters
in Φ0,Φ1, . . . ,Φq,Ω. For each λ∗ ∈ R

n, define Mλ∗ = {ϕ ∈ R
m : λ = λ∗ and Γj =

Γ̊j for all j = 0, . . . , q} and let L = {λ ∈ R
n : Mλ 6= ∅}. Using this notation, we de-

fine the set of all admissible expanded form parameters that correspond to a particular
VMA(q) specification as P = {(λ,ϕ) ∈ R

m+n : λ ∈ L and ϕ ∈ Mλ}. The following
theorem characterizes the expanded form parameter space.

Theorem 2. Consider a VMA(q) process with VMA(1) representation parameters Θ̃0,

Θ̃1, Σ̃ and expanded form parameters Φ0,Φ1, . . . ,Φq,Ω,Λ, where ω2
i > 0 for i = 1, . . . , n.

For every ρ ∈ C satisfying |ρ| = 1, define the qn× qn Hermitian matrix

Hρ =
(
Θ̃0 + ρΘ̃1

)
Σ̃
(
Θ̃

′

0 + ρ̄Θ̃
′

1

)
, (8)

with eigenvalues (ordered from smallest to largest) µ1(Hρ), . . . , µqn(Hρ). Then, the set P
of all permissible expanded form parameters that correspond to the given VMA(q), is a
bounded subset of Rm+n with the properties:

1. for every λ ∈ L, the r-th largest λ2i is bounded on the interval

0 < λ2i ≤ min
|ρ|=1

(µqr(Hρ)); (9)

2. for every λ ∈ L, the set Mλ is finite.
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Corollary 1. Let z∗ be a root of Θ(z). Then as |z∗| −→ 1, at least one (possibly all)
λ2i −→ 0.

Proof. Appendix A.2.

In a Bayesian context, Theorem 2 provides guidance for setting priors on the expanded
form parameters. Specifically, a Bayesian approach may generally proceed by

1. sampling Φ0, . . . ,Φq,Ω,Λ using the expanded form;

2. recovering Θ1, . . . ,Θq,Σ ex-post from the simulated draws.

It is important to emphasize that identification of Φ0, . . . ,Φq,Ω,Λ is not necessary to
successfully implement Step 1. This is because a well-defined posterior distribution may
be obtained even when the likelihood does not uniquely identify the parameters in the
model. For example, if all priors are proper, then the posterior is always proper (Poirier,
1995). The same may hold for certain classes of improper priors as well. The key issue in a
Bayesian analysis is that the weaker the identification in the likelihood, the more sensitive
is the posterior to the prior; in the extreme case where no likelihood identification exists,
the posterior will simply be equal to the prior.

In the present context, we are not interested in the posterior distribution ofΦ0, . . . ,Φq,Ω,
and Λ itself; we only use it as a means to analyze the posterior of identified quantities such
as Θ0, . . . ,Θq,Σ or the forecasts ut+1, . . . ,ut+h. To this end, recall that sampling directly

from any posterior distribution (θ̃ |y) and applying the transformation g : θ̃ → θ to each

draw of θ̃ automatically yields samples from the posterior (θ |y). If sampling is easier

from (θ̃ |y) than from (θ |y), such a two-step approach provides clear computational
gains. Moreover, if restrictions are needed to, say, ensure a uni-modal (θ |y), then it
makes sense to incorporate such restrictions into the transformation g, and apply them
in the post-processing of draws.

The underlying premise of the approach we propose is that sampling from the expanded
form is computationally easier than sampling from the standard VMA posterior. Indeed,
sampling from an unidentified (or partially identified) parameter space, then transform-
ing to draws from an identified parameter space is a common strategy employed by
Bayesians to improve computation (examples include Meng and van Dyk, 1999; Liu and
Wu, 1999; Gustafson, 2005; Imai and van Dyk, 2005; Ghosh and Dunson, 2009; Koop,
León-González, and Strachan, 2010, 2012). The primary computational advantage of the
expanded VMA form, is that it can be cast as a linear state space model, for which
efficient MCMC algorithms already exist (e.g., Durbin and Koopman, 2002; Chan and
Jeliazkov, 2009). Moreover, as detailed in Subsection 2.3 and Appendix A.1, it is straight-
forward to implement restrictions on the roots ofΘ(L) in the post-processing of expanded
form parameter draws (Step 2), when such restrictions are necessary for identification.
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Following this reasoning, we propose to assign priors to each λ21, . . . , λ
2
n instead of fixing

them to specific values. However, priors on expanded form parameters affect both the
efficiency of the sampling algorithm and the posterior of the VMA parameters of interest
through the implied priors on the latter, so it is important to do this prudently. One
implication of Theorem 2 is that priors on λ21, . . . , λ

2
n correspond to priors on the roots of

detΘ(L): lower prior probabilities assigned to small values of λ2i imply higher probabili-
ties of restricting the roots to be away from unity. On the other hand, the upper bound
on λ2i is identified from the data, so the tail of the prior plays a minor role in determining
the posterior of Θ0, . . . ,Θq,Σ.

Consequently, a sensible prior on λ2i may be formulated using the inverse-gamma distri-
bution as

λ2i ∼ IG(νλ,0, Sλ,0),

with νλ,0, Sλ,0 set to low values. Setting a small Sλ,0 ensures that VMA processes with
roots close to unity are not excluded a priori ; setting a low νλ,0 results in a fat-tailed
distribution that improves the mixing efficiency of MCMC algorithms based on this spec-
ification. In our extensive experimentation (with a variety of data sets and VARMA
models) using this prior, we have consistently found that mixing improves as νλ,0 is de-
creased for any given Sλ,0 and the prior is flattened. We discuss priors on the remaining
expanded form parameters in more detail in Section 3.

2.3 Recovering (Θ0, . . . ,Θq, Σ) from (Φ0, . . . ,Φq, Ω, Λ)

For forecasting applications, the expanded VMA form by construction yields identical
predictive distributions to the standard VMA form. Therefore, there is no need to re-
cover Θ0, . . . ,Θq,Σ, and forecasts ut+1, . . . ,ut+h can be generated directly from draws
of expanded form parameters.

However, in many applications—particularly those focused on analyzing impulse responses—
the posterior of Θ0, . . . ,Θq,Σ is of primary interest. Fortunately, it is straightforward
to recover draws of Θ0, . . . ,Θq,Σ from draws of Φ0, . . . ,Φq,Ω and Λ. For clarity and
to highlight a key computational advantage of using the expanded form, we describe the
procedure assuming that εt is Gaussian.2

A well-known feature of VMA models with Gaussian errors is that fundamental and
non-fundamental specifications are observationally equivalent. In practice, it is common
to estimate the fundamental one (Canova, 2007, Chapter 4). However, many theoret-
ical macroeconomic models (e.g. Yang, 2005; Leeper, Walker, and Yang, 2008) imply

2When the white noise process {εt} is Gaussian, condition (6) is necessary and sufficient for any given
expanded form to be an observationally equivalent representation of the VMA(q) process. This is because
in the Gaussian case, the spectral density of {ut} completely characterizes all stochastic properties of
the series. When {εt} is non-Gaussian, however, condition (6) is necessary but not sufficient in the
sense that a given expanded form satisfying (6) may not preserve the generalized spectral density of {ut},
which further accounts for non-linear dependence in the series (Hamilton and Lin, 1996).
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that impulse responses should be computed from non-fundamental representations, while
Lippi and Reichlin (1994) argue that economic theory is rarely informative about a par-
ticular non-fundamental representation (even when strong justification exists for non-
fundamentalness in general), and therefore, impulse responses from the fundamental and
all basic non-fundamental representations should be reported.3

With respect to the expanded form, note that εt is a Gaussian white noise process if
and only if ft and ηt are Gaussian white noise processes. This makes the Gaussian
framework particularly convenient for implementing algorithms based on the expanded
form. Moreover, an important consequence of sampling from the expanded form is that
draws from all fundamental and basic non-fundamental VMA representations are easily
obtained from draws of expanded form parameters.

In particular, assume that Θ0 is known, Σ is unrestricted, and we have obtained draws
of Φ0, . . .Φq,Ω, and Λ.4 We proceed to recover Θ1, . . . ,Θq,Σ (given Θ0) by appealing
to the corresponding VMA(1) representation, which yields the system of equations:

Γ̃0 = Θ̃0Σ̃Θ̃
′

0 + Θ̃1Σ̃Θ̃
′

1 = Σ̂+ Θ̂1Σ̂Θ̂
′

1, (10)

Γ̃1 = Θ̃1Σ̃Θ̃
′

0 = Θ̂1Σ̂, (11)

where Θ̂1 = Θ̃1Θ̃
−1

0 , Σ̂ = Θ̃0Σ̃Θ̃
′

0, and Γ̃0, Γ̃1 are computed from Φ0, . . . ,Φq,Ω and Λ

by setting Γj = Γ̊j for j = 0, . . . , q. Left-multiplying (10) by Θ̂1 and substituting (11)
into (10) yields the matrix quadratic equation

Θ̂
2

1Γ̃
′

1 − Θ̂1Γ̃0 + Γ̃1 = 0. (12)

In Appendix A.1 we provide the computational details of solving the matrix quadratic
equation (12). To summarize, the algorithm to obtain draws of Θ1, . . . ,Θq,Σ (given Θ0)
from draws of Φ0, . . .Φq,Ω, and Λ consists of the following four steps:

1. Compute Γ0, . . . ,Γq from draws of Φ0, . . . ,Φq,Ω,Λ.

2. Construct Γ̃0 and Γ̃1 according to (3).

3. Compute Θ̂1, the solution of (12), and the corresponding Σ̂ = Γ̃0 − Θ̂1Γ̃
′

1. The
roots ofΘ(L) are selected as a byproduct of this step (see Appendix A.1 for details).

3Lippi and Reichlin (1994) define basic non-fundamental representations as all non-fundamental rep-
resentations that are obtained from the fundamental one by “flipping” one or more of its MA roots. An
important aspect of this classification is that while in a general VARMA(p, q) other non-fundamental rep-
resentations are possible, Lippi and Reichlin (1994) show that only basic non-fundamental representations
preserve the AR and MA orders (p and q). Based on this, they argue that only basic non-fundamental
representations should be considered in empirical work.

4In practice, some restrictions are needed on Θ0, . . .Θq,Σ, to achieve identification. Typical applica-
tions employ the restriction Θ0 = In. In VARMAs specified with the echelon form or scalar component
models (Athanasopoulos, Poskitt, and Vahid, 2012), the restriction Θ0 = B0 is used, where B0 are
coefficients in the conditional mean. Our approach readily accommodates these cases as well any other
specification where Θ0 is determined outside of the moving average expansion and does not rely explicitly
on expanded form parameters.
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4. Recover Θ1, . . . ,Θq from the first n columns of Θ̂1 and Σ from the bottom-right

n× n block of Σ̂.

Once the VMA parameters (Θ0, . . . ,Θq, Σ) are recovered, the reduced-formed errors {εt}
in the original parameterization can be computed from (1).

2.4 Extension to the VARMA

It is straightforward to generalize the above setup to VARMAs. Specifically we add p
autoregressive components to ut in (1) to obtain

yt =

p∑

j=1

Ajyt−j +

q∑

j=1

Θjεt−j + εt, εt ∼ WN (0,Σ), (13)

where the intercept is suppressed for notational convenience. Following the same proce-
dure as before, we derive the expanded VARMA form by reparameterizing ut such that

yt =

p∑

j=1

Ajyt−j +

q∑

j=0

Φjft−j + ηt,

(
ft
ηt

)
∼ WN

((
0

0

)
,

(
Ω 0

0 Λ

))
. (14)

Since we can easily recoverΘ1, . . . ,Θq,Σ fromΦ0, . . . ,Φq,Ω,Λ, it is clear that estimating
(14) is sufficient to estimate (13).

It is important to point out, however, that introducing autoregressive components in this
context leads to new complications. Specifically, it is well known that a VARMA(p, q)
specified as in (13) may not be identified (see, for example, Lütkepohl, 2005). A number
of ways have been proposed in the literature to deal with this. For example, one may
impose the canonical echelon form by reformulating (13) as

B0yt =

p∑

j=1

Bjyt−j +

p∑

j=1

Θ∗
jεt−j +B0εt, εt ∼ WN (0,Σ), (15)

where B0 is lower-triangular with ones on the diagonal, Bj = B0Aj and Θ∗
j = B0Θj.

Conditional on the system’s Kronecker indices κ1, . . . , κn, with 0 ≤ κi ≤ p, (15) can be
estimated by imposing exclusion restrictions on the coefficients in B0, {Bj} and {Θ∗

j}.

Observe that conditional on the Kronecker indices, it is straightforward to impose echelon
form restrictions on the expanded VARMA as well, by rewriting (14) as

B0yt =

p∑

j=1

Bjyt−j +

p∑

j=0

Φjft−j + ηt,

(
ft
ηt

)
∼ WN

((
0

0

)
,

(
Ω 0

0 Λ

))
. (16)

Clearly, exclusion restrictions can be easily imposed on the elements of B0, {Bj} and
{Φj} for sampling purposes (see Appendix A.3 for more details). More importantly,
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the echelon form requires that only full-row restrictions are imposed on {Θ∗
j}. Because

restricting any row of Φj to zero will correspond to restricting the same row of Θ∗
j to

zero under (6), we can once again work directly with (16) and recover the parameters of
(15) ex post.

In practice, of course, Kronecker indices will be unknown, and in our related paper
(Chan, Eisenstat, and Koop, 2016), we specify priors for Kronecker indices and construct
efficient sampling procedures—based on the expanded VARMA form developed in the
present paper—to jointly estimate Kronecker indices and model parameters.5 For the
remainder of the present paper, however, we will rely on the identifying assumption that
the concatenated matrix [Ap : Θq] has full rank n (e.g., Hannan, 1976).

This assumption will generally hold when q and n are relatively small, and has the ad-
vantage of being much simpler than specifying the Echelon form. The drawback of this
approach is that the resulting representation is not canonical in the sense that not all
VARMA processes satisfy this assumption (Lütkepohl and Poskitt, 1996). In our appli-
cation, however, the main interest is to assess whether adding moving average terms to
a time-varying parameter VAR with stochastic volatility improves forecasts of macroe-
conomic variables. In the time-varying parameter context, where typically only small
systems are considered, we find the above identification strategy to be suitable, and as
further discussed in Section 4, adding even a small number of moving average components
may lead to substantial gains in forecast accuracy.

Identification based on the full rank of [Ap : Θq] assumption also becomes more difficult
to justify as as n increases. Therefore, for larger systems one may wish to consider
canonical specifications and follow the approach in Chan, Eisenstat, and Koop (2016). A
key point is that regardless of the scheme used to uniquely identify A(L) and Θ(L), the
expanded form representation provides a convenient framework for developing sampling
algorithms in VARMA specifications.

3 Estimation of VARMA with TVP and SV

In this section, we first consider a general VARMA with time-varying coefficients and
stochastic volatility. We then introduce the conjugate priors for the model parameters,
followed by a discussion of an efficient Gibbs sampler. We note that throughout, the
analysis is performed conditional on the initial observations y0, . . . ,y1−p and assuming
the initial factors f1−q = · · · = f0 = 0. One can extend the posterior sampler to the case
where the initial observations or factors are modeled explicitly. Moreover, we will assume
that the VARMA is specified with an intercept term µ. Again, the ensuing algorithm is
easily extended to include additional exogenous variables.

As highlighted previously, the key advantage of working directly with the expanded

5Note that in Chan, Eisenstat, and Koop (2016), the focus is on large, constant parameter VARMAs,
whereas the main concern of this paper is small, time-varying parameter VARMAs.
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VARMA form is that it is conditionally linear, and therefore, leads to straightforward
computation. This in turn opens the door to a wealth of extensions that have already been
well developed for linear models, but have thus far been inaccessible for even the simplest
of VMA specifications. Our particular interest is to enhance the basic VARMA(p, q) with
two extensions particularly relevant for empirical macroeconomic applications: stochastic
volatility and time-varying parameters.

To that end, we extend (14) to allow the VMA coefficients Φ0, . . . ,Φq to be time-varying:

yt = Xtβ +Φ0,tft +Φ1,tft−1 + · · ·+Φq,tft−q + ηt, (17)

where Xt = In ⊗ (1,y′
t−1, . . . ,y

′
t−p), β = vec((µ,A1, . . . ,Ap)

′), ηt ∼ N (0,Λ), and Λ is a
diagonal matrix.

Let φi,t denote the vector of free parameters in the i-th row of (Φ0,t,Φ1,t, . . . ,Φq,t). Note
that the dimension of φi,t is ki with ki = i−1+nq. Then, consider the transition equation

φi,t = φi,t−1 + ξi,t, (18)

where ξi,t ∼ N (0,Ψφi) for i = 1, . . . , n, t = 2, . . . , T with Ψφi = diag(ψ2
φ,i,1, . . . , ψ

2
φ,i,ki

).

For later reference, stack ψ2

φ = (ψ2
φ,1,1, . . . , ψ

2
φ,n,kn

)′. The initial conditions are specified
as φi,1 ∼ N (φi,0,Ψφ0), where φi,0 and Ψφ0 are known constant matrices.

Next, we incorporate stochastic volatility into the model by allowing the latent factors
to have time-varying volatilities ft ∼ N (0,Ωt), where Ωt = diag(eh1,t , . . . , ehn,t). Then,
each of the log-volatility follows an independent random walk:

hi,t = hi,t−1 + ζi,t, (19)

where ζi,t ∼ N (0, ψ2
h,i) for i = 1, . . . , n, t = 2, . . . , T . The log-volatilities are initialized

with hi,1 ∼ N (hi,0, Vhi,0), where hi,0 and Vhi,0 are known constants. For notational con-

venience, let ht = (h1,t, . . . , hn,t)
′, h = (h′

1, . . . ,hT )
′ and ψ2

h = (ψ2
h,1, . . . , ψ

2
h,n)

′. Note
that allowing for both time-varying Φ0,t, . . . ,Φq,t and Ωt will correspond to fully time-
varying Θ1,t, . . . ,Θj,t and Σt, while normal distributions assigned to ft and ηt imply εt
is distributed conditionally normal as well.

To facilitate estimation, stack the observations in (17) over t:

y = Xβ +Φf + η, (20)

where

X =



X1

...
XT


 , f =



f1
...
fT


 , η =



η1

...
ηT


 ,

and Φ is a a Tn× Tn lower triangular matrix with Φ0,1, . . . ,Φ0,T on the main diagonal
block, Φ1,2, . . . ,Φ1,T on first lower diagonal block, Φ2,3, . . . ,Φ2,T on second lower diagonal
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block, and so forth. For example, for q = 2, we have

Φ =




Φ0,1 0 0 0 · · · 0

Φ1,2 Φ0,2 0 0 · · · 0

Φ2,3 Φ1,3 Φ0,3 0 · · · 0

0 Φ2,4 Φ1,4 Φ0,4 · · · 0
...

. . . . . . . . .
...

0 0 · · · Φ2,T Φ1,T Φ0,T




.

Note that in general Φ is a band Tn×Tn matrix—i.e., its nonzero elements are confined
in a narrow band along the main diagonal—that contains at most

n2

(
(q + 1)T −

q(q + 1)

2

)
< n2(q + 1)T

nonzero elements, which grows linearly in T and is substantially less than the total (Tn)2

elements for typical applications where T ≫ q. This special structure can be exploited
to speed up computation, e.g., by using block-banded or sparse matrix algorithms (see,
e.g., Kroese, Taimre, and Botev, 2011, p. 220).

To complete the model specification, we assume independent priors for β, Λ, ψ2

φ and ψ2

h

as follows. For β, we consider the multivariate normal prior N (β0,Vβ). For ψ
2

φ, ψ
2

h and
the diagonal elements of Λ = diag(λ21, . . . , λ

2
n), we assume the following priors:

λ2i ∼ IG(νλ,0, Sλ,0), ψ2

φ,i,j ∼ G

(
1

2
,

1

2Sφ,0

)
, ψ2

h,i ∼ G

(
1

2
,

1

2Sh,0

)
,

where G and IG denote the gamma and the inverse-gamma distributions respectively.
Recall that the parameters λ21, . . . , λ

2
n are introduced to facilitate computation—for that

purpose we will set the degree of freedom parameter νλ,0 to be small. Following Frühwirth-
Schnatter and Wagner (2010), we assume gamma priors on the error variances of the time-
varying parameters for two reasons. First, compared to the conventional inverse-gamma
prior, a gamma prior has more mass concentrated around small values. Hence, this prior
provides shrinkage—a priori it favors the more parsimonious constant-coefficient model.
Second, as shown in Frühwirth-Schnatter and Wagner (2010), the posterior results under
this prior are insensitive to the values of the hyperparameters. In our application, this
gamma prior works well. Alternatively, hierarchical priors such as those in Korobilis
(2014) can also be considered.

Our approach to constructing the sampling algorithm is based on treating (20) as a latent
factor model. Specifically, the Gibbs sampler proceeds by sequentially drawing from

1. p(β, f |y,φ,h,ψ2

φ,ψ
2

h,Λ) = p(β |y,φ,h,Λ)p(f |y,β,φ,h,Λ);

2. p(φ |y,β, f ,h,ψ2

φ,ψ
2

h,Λ);

3. p(h |y,β, f ,φ,ψ2

φ,ψ
2

h,Λ);
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4. p(Λ,ψ2

φ,ψ
2

h |y,β, f ,h,φ) = p(Λ |y,β, f ,φ)p(ψ2

h |h)p(ψ
2

φ |φ).

We initialize the model parameters using values that are consistent with a constant co-
efficients VAR. Specifically, let b̂ and Ŝ = (ŝij) be the least squares estimates of the
VAR coefficients and the covariance matrix from a VAR(p). The Gibbs sampler is then

initialized by setting β = b̂, φ = 0, hi,1 = · · · = hi,T = log ŝii, for i = 1, . . . , n, and
f ∼ N (0,Oh), where Oh = diag(eh1,1 , . . . , ehn,1 , . . . , eh1,T , . . . , ehn,T ). Finally, Λ, ψ2

φ, and

ψ2

h are initialized by implementing Step 4 of the Gibbs sampler.

Next, we give some details of the implementation of the Gibbs sampler above. We focus
on Step 1; Step 2 to Step 4 are standard, and we leave the details to the Appendix.
Although it might be straightforward to sample β and f separately by simulating β
given f followed by drawing f given β, such an approach would potentially induce high
autocorrelation and slow mixing in the constructed Markov chain as β and f enter (20)
additively. Instead, we aim to sample β and f jointly—by first drawing β marginally of
f , followed by drawing f given β and other model parameters.

To implement the first part, recall that f ∼ N (0,Oh). By integrating out f , the joint
density of y marginal of f is given by

(y |β,φ,h,Λ) ∼ N (Xβ,Sy),

where Sy = IT ⊗ Λ + ΦOhΦ
′. Using standard results from linear regression (see, e.g.,

Kroese and Chan, 2014, p. 239-240), we have

(β |y,φ,h,Λ) ∼ N (β̂,Dβ),

where
Dβ =

(
V−1

β +X′S−1

y X
)−1

, β̂ = Dβ

(
V−1

β β0 +X′S−1

y y
)
.

Since both Λ and Oh are diagonal matrices and Φ is a lower triangular matrix, the
covariance matrix Sy is a band matrix. Consequently, we can exploit this feature to
speed up computations. Specifically, to compute X′S−1

y X or X′S−1
y y, one needs not

obtain the Tn × Tn matrix S−1
y —this would involve O(T 3) operations. Instead, we

obtain X′S−1
y y by first solving the system Syz = y for z, which can be done in O(T )

operations. The solution is z = S−1
y y and we return X′z = X′S−1

y y, which is the desired
quantity. Similarly, X′S−1

y X can be computed quickly without inverting any big matrices.

Next, we sample all the latent factors f jointly. Note that even though a priori the latent
factors are independent, they are no longer independent given y. As such, sampling
each ft sequentially would potentially induce high autocorrelation and slow mixing in the
Markov chain. One could sample f using Kalman filter-based algorithms, but they would
involve redefining the states so that only the state at time t enters the measurement
equation at time t. As such, each (new) state vector would be of much higher dimension,
which in turn results in slower algorithms. Instead, we avoid the Kalman filter and instead
implement the precision-based sampler developed in Chan and Jeliazkov (2009) to sample
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the latent factors jointly. To that end, recall that a priori f ∼ N (0,Oh). Using (20) and
standard linear regression results again, we have

(f |y,β,φ,h,Λ) ∼ N (f̂ ,K−1

f ),

where
Kf = O−1

h +Φ′(IT ⊗Λ−1)Φ, f̂ = K−1

f Φ′(IT ⊗Λ−1)(y −Xβ).

The challenge, of course, is that the covariance matrix K−1

f is a Tn×Tn full matrix, and
sampling (f |y,β,φ,h,Λ) using brute force is time-consuming. However, the precision
matrixKf is banded (recall that both Λ−1 andO−1

h are diagonal, andΦ is a band matrix).
Again, this feature can be exploited to speed up computation. As before, we first obtain
f̂ by solving

Kfz = Φ′(IT ⊗Λ−1)(y −Xβ)

for z. Next, obtain the Cholesky decomposition of Kf such that CfC
′
f = Kf . Solve

C′
fz = u for z, where u ∼ N (0, ITn). Finally, return f = f̂ + z, which follows the desired

distribution. We refer the readers to Chan and Jeliazkov (2009) for details. The details
of Step 2 to Step 4 are given in the appendix.

To give a sense of the speed of the algorithm, we implement it using Matlab on a
desktop with an Intel Core i7-870 @2.93 GHz processor on the dataset in the application
with n = 2 variables, T = 215 observations and p = 2 lags. It takes 48 seconds to obtain
10000 posterior draws.

4 Empirical Application

In this section we illustrate the proposed approach and estimation methods with a recur-
sive forecasting exercise that involves US CPI inflation and real GDP growth. These two
variables are commonly used in forecasting (e.g., Banbura, Giannone, and Reichlin, 2010;
Koop, 2011) and small DSGE models (e.g., An and Schorfheide, 2007). We first outline
the set of competing models in Section 4.1, followed by a brief description of the data
and the priors. The results of the density forecasting exercise are reported in Section 4.2.

4.1 Competing Models, Data and Prior

The main goal of this forecasting exercise is to illustrate the methodology and investi-
gate how VARMAs and the variants with stochastic volatility compare with standard
VARs. We consider four sets of VARMAs: VARMA(p, 1), two versions with different
time-varying VMA coefficients and volatility but constant VAR coefficients, and the most
flexible version where the VAR coefficients are also time-varying.

More specifically, the VARMA(p, 1) is the same as given in (14). In the first version
with time-varying volatility, we allow the latent factors in (14) to have a stochastic
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volatility component: ft ∼ N (0,Ωt), where Ωt = diag(eh1,t , . . . , ehn,t), and each of the
log-volatilities follows an independent random walk as in (19). We call this version
VARMA(p, 1)-SV1. In the second version, we also allow the matrices Φ0, . . . ,Φq to be
time-varying as specified in (17). This more general version is denoted as VARMA(p, 1)-
SV2. Finally, we further allow the VAR coefficients β = vec((µ,A1, . . . ,Ap)

′) in (17) to
be time-varying according to the random walk:

βt = βt−1 + ut, ut ∼ N (0,Ψβ),

where Ψβ = diag(ψ2
β,1, . . . , ψ

2
β,k) is diagonal with k = n(p + 1). This version is denoted

as TVP-VARMA(p, 1)-SV2. For comparison we also include standard VAR(p), VAR(p)
with stochastic volatility and time-varying parameter VAR(p) with stochastic volatility.
These are denoted respectively as VAR(p), VAR(p)-SV, and TVP-VAR(p)-SV.

The data consist of US quarterly CPI inflation and real GDP growth from 1959:Q1 to
2011:Q4. More specifically, given the quarterly real GDP series w1t, we transform it via
y1t = 400 log(w1t/w1,t−1) to obtain the growth rate. We perform a similar transformation
to the CPI index to get the inflation rate. For easy comparison, we choose broadly
similar priors across models. For instance, the priors for the VAR coefficients in VARMA
specifications are exactly the same as those of the corresponding VAR.

As discussed in Section 3, we assume the following independent priors: β ∼ N (β0,Vβ),
φi ∼ N (φ0i,Vφi

), ω2
i ∼ IG(νω0, Sω0) and λ

2
i ∼ IG(νλ0, Sλ0), i = 1, . . . , n.

There is a lot of empirical work that shows using Minnesota-type priors of Doan, Lit-
terman, and Sims (1984); Litterman (1986) for the VAR coefficients improves forecast
performance. This suggests that priors that induce shrinkage are crucial in our context.
Following this tradition, we set β0 = 0 and set the prior covariance Vβ to be diagonal,
where the variances associated with the intercepts are 100 and those corresponding to
the VAR coefficients are 1. In other words, this prior induces some shrinkage on the VAR
coefficients but not the intercepts.

For the prior on φi, we set φ0i = 0 andVφi
to be the identity matrix. By setting the prior

mean of φ to be zero, we effectively shrink a VARMA to a VAR. We choose relatively
small values for the degrees of freedom and scale hyperparameters for ω2

i , which imply
large prior variances: νω0 = 3, Sω0 = 2. These values imply Eω2

i = 1, i = 1, . . . , n.
Finally, for each λ2i , we specify the noninformative prior νλ0 = 0, Sλ0 = 0.1.

For VARMAs with stochastic volatility, we need to specify priors on ψ2
h,i and ψ

2
φ,i,j . As

discussed in Section 3, we assume gamma priors ψ2
h,i ∼ G(0.5, 0.5/Sh,0) and ψ2

φ,i,j ∼
G(0.5, 0.5/Sφ,0), where Sh,0 = 0.01 and Sφ,0 = 0.001. These hyperparameters imply
Eψ2

h,i = 0.01 and Eψ2
φ,i,j = 0.001. For models with time-varying VAR coefficients,

we again consider gamma priors for the error variances: ψ2
β,i ∼ G(0.5, 0.5/Sβ,0) with

Sβ,0 = 0.001, which implies Eψ2
β,i = 0.001.
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4.2 Forecasting Results

To compare the performance of the competing models in producing density forecasts,
we consider a recursive out-of-sample forecasting exercise at various forecast horizons as
follows. At the t-th iteration, for each of the model we use data up to time t, denoted
as y1:t, to construct the joint predictive density p(yt+k |y1:t) under the model, and use
it as the k-step-ahead density forecast for yt+k. We then expand the sample using data
up to time t + 1, and repeat the whole exercise. We continue this procedure until time
T − k. At the end of the iterations, we obtain density forecasts under the competing
models from 1975Q1 till the end of the sample.

The joint predictive density p(yt+k |y1:t) is not available analytically, but it can be es-
timated using MCMC methods. For VARs and VARMAs, the conditional density of
yt+k given the data and the model parameters—denoted as p(yt+k |y1:t,θ)—is Gaussian
with known mean vector and covariance matrix. Hence, the predictive density can be
estimated by averaging p(yt+k |y1:t,θ) over the MCMC draws of θ. For VARMAs with
stochastic volatility, at every MCMC iteration given the model parameters and all the
states up to time t, we simulate future log-volatilities from time t + 1 to t + k using
the transition equation. Given these draws, yt+k has a Gaussian density. Finally, these
Gaussian densities are averaged over the MCMC iterations to obtain the joint predictive
density p(yt+k |y1:t).

To evaluate the quality of the joint density forecast, consider the predictive likelihood
p(yt+k = yo

t+k |y1:t), i.e., the joint predictive density of yt+k evaluated at the observed
value yo

t+k. Intuitively, if the actual outcome yo
t+k is unlikely under the density forecast,

the value of the predictive likelihood will be small, and vise versa. We then evaluate the
joint density forecasts using the sum of log predictive likelihoods, which is a standard
metric in the literature (see, e.g., Clark, 2011; Chan, Koop, Leon-Gonzalez, and Strachan,
2012; Belmonte, Koop, and Korobilis, 2014):

T−k∑

t=t0

log p(yt+k = yo

t+k |y1:t).

This measure can also be viewed as an approximation of the log marginal likelihood;
see, e.g., Geweke and Amisano (2011) for a more detailed discussion. In addition to
assessing the joint density forecasts, we also evaluate the performance of the models in
terms of the forecasts of each individual series. For example, to evaluate the performance
for forecasting the i-th component of yt+k, we simply replace the joint density p(yt+k =
yo
t+k |y1:t) by the marginal density p(yi,t+k = yoi,t+k |y1:t), and report the corresponding

sum.

In our forecasting exercise, we present results from the individual models listed in Sec-
tion 4.1. In addition, we also use a model selection strategy based on the predictive
likelihood. To be precise, at each period we compare the individual models based on
their predictive likelihoods over the past eight quarters and choose the best forecasting
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model. The results from this model selection strategy is denoted as BMS.6

For each MCMC run, 20000 posterior draws are obtained after a burn-in period of length
5000. Geweke’s diagnostic is used to check the convergence of the samplers. Table 1
reports the performance of the competing models for producing 1-quarter-ahead joint
density forecasts, as well as the marginal density forecasts for the two components. These
values are presented relative to those of the random walk benchmark: yt = yt−1 + εt,
where εt ∼ N (0,Σ). Hence, any positive values indicate better forecast performance
than the benchmark and vice versa.

A few broad conclusions can be drawn from the results.7 For joint density forecasts,
adding a moving average component improves the forecast performance of standard VARs
for all lag lengths considered. For example, the difference between the log predictive
likelihoods of VAR(3) and VARMA(3,1) is 2.8, which may be interpreted as a Bayes
factor of about 16 in favor of the VARMA(3,1) model.

Table 1: Relative log predictive likelihoods for 1-quarter-ahead density forecasts (com-
pared to the random walk model).

Inflation GDP Joint
VAR(1) 73.7 24.6 99.9
VARMA(1,1) 86.7 23.1 109.2
VAR(2) 89.2 24.7 114.5
VAR(2)-SV 116.6 24.6 144.3
TVP-VAR(2)-SV 124.6 34.7 157.5
VARMA(2,1) 90.5 22.1 114.7
VARMA(2,1)-SV1 124.8 34.6 161.3
VARMA(2,1)-SV2 125.2 34.2 161.9
TVP-VARMA(2,1)-SV2 122.7 32.1 158.6
VAR(3) 86.0 22.3 111.0
VAR(3)-SV 115.4 23.5 142.6
TVP-VAR(3)-SV 122.2 34.4 161.1
VARMA(3,1) 89.0 21.7 113.8
VARMA(3,1)-SV1 121.7 33.6 159.0
VARMA(3,1)-SV2 122.5 32.6 159.3
TVP-VARMA(3,1)-SV2 119.6 28.4 152.7
BMS 119.8 35.9 149.0

In addition, adding stochastic volatility to the VARMAs substantially improves their
forecast performance. This is in line with the large literature on inflation forecasting that
shows the considerable benefits of allowing for stochastic volatility for both point and

6We thank an anonymous referee for this suggestion.
7The point forecast performance of the VARMAs is similar to their VAR counterparts. This might

not be surprising as each pair of VARMA and VAR differs only in the autocovariance structure, which
has a larger impact on the density forecasts than on the point forecasts.
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density forecasts (see, e.g., Stock and Watson, 2007; Chan, Koop, Leon-Gonzalez, and
Strachan, 2012; Clark and Doh, 2014). It is also interesting to note that VARMA(p,1)-SV1
and the more general VARMA(p,1)-SV2 perform very similarly, indicating that allowing
for time-variation in Ωt is mostly sufficient. Overall, VARMA(2,1)-SV2 forecasts better
than all other models.

Consistent with the results in D’Agostino, Gambetti, and Giannone (2013), allowing the
VAR coefficients to be time-varying further improves the forecast performance of VAR(p)-
SV. Interestingly, this does not hold for VARMAs: adding time-varying VAR coefficients
slightly worsens the forecast performance of VARMA(p,1)-SV2. One possible explanation
is that given the VMA coefficients are time-varying, ignoring this time-variation results
in nonlinearities in the VAR coefficients. By explicitly modeling time-variation in the
VMA coefficients, we can keep the VAR coefficients to be constant.

Next, to investigate the source of differences in forecast performance, we look at the log
predictive likelihoods for each series. The results suggest that the gain in adding the mov-
ing average and stochastic volatility components comes mainly from forecasting inflation
better, although adding stochastic volatility also improves forecasting GDP growth to
some extent. Finally, the model selection strategy based on past forecast performance is
highly competitive—it gives the best forecasts for GDP growth. Even when it is not the
best performing model, its performance is comparable to the best.

Table 2 and Table 3 present the results for 2- and 3-quarter-ahead density forecasts, re-
spectively. For longer horizons, the advantage of VARMAs over VARs is less substantial—
it is perhaps not surprising as the VMA has only one lag. What remains to be important
is allowing for stochastic volatility. In particular, both VAR(p)-SV and VARMA(p,1)-
SV1 substantially outperform their counterparts without stochastic volatility. Among
the two, the former models perform slightly better for 2-quarter-ahead forecasts, whereas
the latter are better for 3-quarter-ahead forecasts.

Similar to 1-quarter-ahead results, allowing the VAR coefficients to be time-varying fur-
ther improves the forecast performance of VAR(p)-SV, but this is not true for VARMAs.
Again, the model selection strategy based on past forecast performance forecasts remark-
ably well. It often has the best forecasting performance.
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Table 2: Relative log predictive likelihoods for 2-quarter-ahead density forecasts (com-
pared to the random walk model).

Inflation GDP Joint
VAR(1) 48.0 52.1 101.2
VARMA(1,1) 57.4 52.2 110.3
VAR(2) 63.8 53.1 117.7
VAR(2)-SV 84.2 54.7 142.3
TVP-VAR(2)-SV 89.6 63.8 151.7
VARMA(2,1) 65.8 51.0 118.4
VARMA(2,1)-SV1 83.3 54.6 142.0
VARMA(2,1)-SV2 83.1 55.2 141.7
TVP-VARMA(2,1)-SV2 80.6 55.2 137.3
VAR(3) 60.1 52.2 114.6
VAR(3)-SV 83.8 53.7 141.3
TVP-VAR(3)-SV 86.8 65.7 155.8
VARMA(3,1) 62.7 51.1 116.6
VARMA(3,1)-SV1 81.7 53.3 137.3
VARMA(3,1)-SV2 82.0 50.9 137.1
TVP-VARMA(3,1)-SV2 78.9 53.1 136.6
BMS 90.8 62.0 154.4

Table 3: Relative log predictive likelihoods for 3-quarter-ahead density forecasts (com-
pared to the random walk model).

Inflation GDP Joint
VAR(1) 43.1 75.0 117.9
VARMA(1,1) 42.7 75.1 118.3
VAR(2) 43.5 74.7 118.0
VAR(2)-SV 68.7 74.0 144.2
TVP-VAR(2)-SV 74.1 81.1 158.6
VARMA(2,1) 46.7 72.7 119.7
VARMA(2,1)-SV1 74.3 77.3 153.9
VARMA(2,1)-SV2 73.3 77.4 154.4
TVP-VARMA(2,1)-SV2 73.0 75.4 151.2
VAR(3) 41.6 73.5 115.0
VAR(3)-SV 69.6 72.5 144.1
TVP-VAR(3)-SV 70.6 82.0 154.2
VARMA(3,1) 49.6 70.5 120.7
VARMA(3,1)-SV1 74.1 72.0 146.7
VARMA(3,1)-SV2 73.6 70.0 145.4
TVP-VARMA(3,1)-SV2 72.9 68.4 144.2
BMS 71.8 80.8 158.9
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To investigate the forecast performance of various competing models in more detail,
we plot in Figure 1 the cumulative sums of log predictive likelihoods over the whole
evaluation period (relative to the random walk model) for 1-quarter-ahead forecasts. It
is clear from the figure that overall VARMAs—with or without stochastic volatility—
consistently perform better than VARs.

The figure also reveals some interesting patterns over time. For example, during the
Great Recession, the performance of both VARs and VARMAs with constant volatility
deteriorates against the random walk model, whereas models with stochastic volatil-
ity perform substantially better. This again highlights the importance of allowing for
stochastic volatility, especially during turbulent times.
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Figure 1: Cumulative sums of log predictive likelihoods for jointly forecasting inflation
and GDP growth relative to the random walk model; one-quarter-ahead forecasts.

5 Concluding Remarks and Future Research

We build on a recently introduced latent factors representation of the VARMA model
and derive some theoretical properties of the expanded VARMA form that justify its use
in a Bayesian framework. On this foundation, we have developed a straightforward Gibbs
sampler for the model and discussed how this algorithm can be extended to models with
time-varying VMA coefficients and stochastic volatility. The proposed methodology was
demonstrated using a density forecasting exercise, in which we also showed that VARMAs
with stochastic volatility forecast better standard VARs with stochastic volatility.

The methodology developed in this article leads to a few lines of inquiry in the future.
In Chan, Eisenstat, and Koop (2016), we develop algorithms that facilitate exact infer-
ence from echelon form VARMA specifications (with unknown Kronecker indices) and
demonstrate that these can be readily used to estimate systems with as many as twelve
equations. An interesting result we obtain is that moving average components and the
canonical form gain in importance as the system size increases, even when compared to
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parsimonious Bayesian VARs with shrinkage priors. However, in that work we do not
consider extensions such as stochastic volatility, and this would be one point of interest
for further research.

In addition, empirical investigation of alternative flexible specifications such as regime-
switching VARMAs also seems beneficial. Moreover, it is worthwhile to further explore
the relationship of the expanded form to dynamic factor models discussed in Section
2. Specifically, it can be shown that reducing the number of “factors” in this VARMA
representation together with a particular set of restriction on the model parameters leads
to exactly the FAVAR specification. It would therefore be of interest to further investigate
how this relates to the recent work of Dufour and Stevanović (2013), as well as how
alternative identification restrictions compare to the standard ones used in the literature.
Lastly, we have focused on forecasting in this paper. Since flexible VARs are now routinely
used for structural analysis, an interesting line of research is to perform similar analysis
using VARMAs with time-varying parameters and stochastic volatility. We leave this for
further research.
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A Online Appendix

A.1 Solving the Matrix Quadratic Equation

Following Higham and Kim (2002), solutions to (12) are straightforward to obtain using
generalized Schur decompositions. Specifically, define the 2n× 2n matrices

F =

(
0 In

−Γ̃
′

1 Γ̃0

)
, G =

(
In 0

0 Γ̃1

)
,

and compute the decomposition F = QSZ∗,G = QTZ∗, whereQ and Z are orthonormal,
S and T are upper-triangular, and ∗ denotes the conjugate transpose.8 Next partition

Q =

(
Q11 Q12

Q21 Q22

)
, Z =

(
Z11 Z12

Z21 Z22

)
, S =

(
S11 S12

0 S22

)
T =

(
T11 T12

0 T22

)
.

Theorem 3 in Higham and Kim (2002) states that every solution to (12) has the form

Θ̂
′

1 = Z21Z
−1

11 = Q11S11T
−1

11 Q
−1

11 . (21)

An important feature of the generalized Schur decomposition is that δi = si/ti (where si
and ti are the i-th diagonal elements of S and T, respectively) is a generalized eigenvalue

of the pair (F,G), and if 1 ≤ i ≤ n, it is also an eigenvalue of Θ̂1. Since

det (F− δG) = det
(
δ2Γ̃1 − δΓ̃0 + Γ̃

′

1

)
= δ2 det

((
1

δ

)2

Γ̃1 −
1

δ
Γ̃0 + Γ̃

′

1

)
, (22)

all generalized eigenvalues come in pairs (δ, 1/δ), including the pairs (0,∞). Therefore,
there will be exactly n generalized eigenvalues |δi| < 1 and exactly n generalized eigen-
values |δi| > 1.

Note that we are free to rotate the rows and columns of Q, Z, S, T in forming the
solution for Θ̂1, and so we may choose any rotation that retains a desired subset of n
generalized eigenvalues of (F,G) to be the eigenvalues of Θ̂1. For example, to obtain
the fundamental representation, we would choose the rotation that yields S11T

−1

11 with
all diagonal elements |si/ti| < 1.

A.2 Proofs of Theorems

Proof of Theorem 1. Let ut = Θ(L)εt be a VMA(q) process with ε being weak white
noise and no roots of detΘ(L) lying on the unit circle. Then {ut} is a purely non-
deterministic process in a Hilbert space spanned by εt, εt−1, . . . , i.e., ut ∈ L2(ε; t), and
εt, εt−1, . . . is a purely non-deterministic process, i.e., limt→−∞ L2(ε; t) = {0}.

8Many modern statistical packages have built-in functions for computing generalized Schur
decompositions—in our empirical work, we use the command qz in Matlab.
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We decompose L2(ε; t) by an orthogonal projection such that L2(ε; t) = L2(ν; t)
⊕

L2(ζ; t),
and for every ut ∈ L2(ε; t) we can write

ut = Υ(L)νt +Ξ(L)ζt, (23)

where νt and ζt are n × 1, E(νt) = E(ζt) = 0, E(νtν
′
t) = E(ζtζ

′
t) = In, E(νtν

′
t−s) =

E(ζtζ
′
t−s) = 0 for all s ≥ 1, and E(νtζ

′
t−s) = 0 for all s ≥ 0. Υ(L) and Ξ(L) are

some finite-order n × n polynomial matrices in the lag operator satisfying rankΥ(L) +
rankΞ(L) > n. The latter follows from the fact that any univariate MA with no roots on
the unit circle can be obviously decomposed this way, and any n× n polynomial matrix
Θ(L) can be written as the product E(L)Θ†(L), where E(L) is a product of elementary
matrices such that det E(L) is constant (i.e., E(L) is unimodular) and Θ†(L) is upper-
triangular.

Without loss of generality, assume Ξ0 ≡ Ξ(0) is invertible. In particular, if neither Ξ0

nor Υ0 are invertible, we can always construct a 2n × 2n Blaschke matrix C(L) (with
C(L−1)′C(L) = I2n) such that

(
ν̃t

ζ̃t

)
=

(
C11(L) C12(L)
C21(L) C22(L)

)(
νt
ζt

)
,

Υ̃(L) = Υ(L)C11(L
−1)′ +Ξ(L)C12(L

−1)′,

Ξ̃(L) = Υ(L)C21(L
−1)′ +Ξ(L)C22(L

−1)′,

yields an equivalent representation

ut = Υ̃(L)ν̃t + Ξ̃(L)ζ̃t, (24)

but with Ξ̃0 ≡ Ξ̃(0) invertible (and Υ̃(L) 6= 0).9

Proceeding under the assumption that Ξ0 is invertible, further decompose Ξ0ζt = Kξt+
ηt, where ξt and ηt are n×1, E(ξt) = E(ηt) = 0, E(ξtξ

′
t) = In, E(ηtη

′
t) = Λ, E(ξtξ

′
t−s) =

E(ηtη
′
t−s) = 0 for all s ≥ 1, and E(ξtη

′
t−s) = 0 for all s ≥ 0. Λ is diagonal with elements

λ2i > 0.

Let ût =
∑qν

j=0
Υjνt−j +

∑qζ
j=1Ξjζt−j +Kξt, such that ut = ût + ηt. Observe that {ût}

is a purely non-deterministic, stationary process with the properties E(ûtû
′
t−s) = 0 for

all s > max{qν , qζ} and E(ûtη
′
t−s) = 0 for all s ≥ 0. Therefore, employing the Wold

decomposition yields

ût =

q̂∑

j=0

Πjgt, (25)

where gt is n× 1, E(gt) = 0, E(gtg
′
t) = Ψ, E(gtg

′
t−s) = 0 for all s ≥ 1 and E(gtηt−s) = 0

for all s ≥ 0. Π0 = In and Ψ is positive semi-definite (p.s.d.).

9Recall that applying a Blaschke transformation to any orthonormal white noise vector wt, via the
transformation w̃t = C(L)wt, results in an orthonormal white nose vector w̃t (see Lippi and Reichlin,
1994, for further details).
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Take the LDU decomposition of Ψ = Φ0ΩΦ′
0 and set Φj = ΠjΦ0 for j = 0, . . . , q̂,

ft = Φ−1

0 gt. Since
E(utu

′
t−s) = E((ût + ηt)(ût−s + ηt−s)

′)

for all s ≥ 0 is a necessary condition, it must be that q̂ = q and we obtain the represen-
tation (4), which satisfies (6).

Proof of Theorem 2. Similar to the VMA(1) representation (2) of a VMA(q), define the
companion representation of the expanded form by




ut
ut−1

...
ut−q+1




︸ ︷︷ ︸
ũτ

=




Φ0 Φ1 · · · Φq−1

. . . . . .
...

. . . Φ1

Φ0




︸ ︷︷ ︸
Φ̃0




ft
ft−1

...
ft−q+1




︸ ︷︷ ︸
f̃τ

+




Φq

Φq−1

. . .
...

. . . . . .

Φ1 · · · Φq−1 Φq




︸ ︷︷ ︸
Φ̃1




ft−q
ft−q−1

...
ft−2q+1




︸ ︷︷ ︸
f̃τ−1

+




ηt
ηt−1

...
ηt−q+1




︸ ︷︷ ︸
η̃τ

(26)

with (
f̃τ
η̃τ

)
∼ WN

((
0
0

)
,

(
Iq ⊗Ω 0

0 Iq ⊗Λ

))
. (27)

Accordingly, the mapping in (6) can be written as:

Θ̃0(Iq ⊗Σ)Θ̃
′

0 + Θ̃1(Iq ⊗Σ)Θ̃
′

1 = Φ̃0(Iq ⊗Ω)Φ̃
′

0 + Φ̃1(Iq ⊗Ω)Φ̃
′

1 + Λ̃, (28)

Θ̃1(Iq ⊗Σ)Θ̃
′

0 = Φ̃1(Iq ⊗Ω)Φ̃
′

0. (29)

Let Ψ = Φ̃0(Iq ⊗Ω)Φ̃
′

0. Then,

Φ0ΩΦ′
0 =

(
0 · · · 0 In

)
Ψ




0
...
0

In


 , (30)



Φq

...
Φ1


 = Θ̃1(Iq ⊗Σ)Θ̃

′

0Ψ
−1




Φ−1

0

0
...
0


 . (31)

Since Φ0 and Ω are obtained uniquely from (30) via the LDU decomposition, we see
that there is a unique mapping from Ψ to Φ0, . . . ,Φq,Ω. In other words, all information
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about Φ0, . . . ,Φq,Ω is contained in Ψ, so it suffices to analyze the mapping between
Θ0, . . . ,Θq,Σ and Ψ,Λ.

To this end, substituting (29) into (28) leads to

Γ̃1Ψ
−1Γ̃

′

1 +Ψ = Γ̃0 − Iq ⊗Λ, (32)

where Γ̃0, Γ̃1 are computed from Θ̃0, Θ̃1,Σ as in (3). By definition of P, the set of
permissible expanded form parameters can be cast as all real positive definite Ψ and Λ

that solve (32). More specifically, Mλ corresponds to the set of all real positive definite
solutions Ψ for a given λ, and L is the set of all λ for which a positive definite solution
Ψ to (32) exists.

Engwerda, Ran, and Rijkeboer (1993) demonstrate that a necessary condition for the

existence of a positive definite solution is Γ̃0 + ρΓ̃1 + ρ−1Γ̃
′

1 − Iq ⊗ Λ must be positive
semi-definite for all |ρ| = 1, which is equivalent to requiring Hρ − Iq ⊗ Λ to be p.s.d.
for all |ρ| = 1. Part 1 of the theorem then follows directly from applying Theorem 1 of
Fisk (1997) to the sum −Hρ+ Iq ⊗Λ. Moreover, Proposition 8.2 of Engwerda, Ran, and
Rijkeboer (1993) states that whenever a solution exists, there are at most a finite number
of real-valued Ψ that solve (32), which proves part 2 of the theorem. Finally, part 1 and
part 2 together imply that the set P is bounded.

To prove the corollary, note that if z∗ is a root of Θ(z) on the unit circle, then z∗ and z̄∗

are eigenvalues of Θ̃1Θ̃
−1

0 . Hence, for ρ = −z̄∗, the matrix Hρ is singular, and there exists
a qn×1 vector π—e.g., the eigenvector of Hρ associated with the 0 eigenvalue—such that
π′Hρπ = 0 and the necessary condition for the existence of a positive definite solution
to (32) reduces to

−π′(Iq ⊗Λ)π ≥ 0,

which has the form

∑

i=1

λ2i

q∑

j=1

π2

i,j = 0,

where πi,j is an element of π. Since at least one πi,j 6= 0, there must be at least one
λ2i = 0. If π does not contain any 0 elements, then λ2i = 0 for all i = 1, . . . , n.

A.3 Details of Sampling Algorithm

In this appendix we discuss the details of Step 2 to Step 4 in the Gibbs sampler for
the VARMA(p, q) model with time-varying parameters and stochastic volatilities in the
expanded form given by (17).

To sample (φ |y,β, f ,h,ψ2

φ,ψ
2

h,Λ) in Step 2, note that the innovation ηt has a diagonal
covariance matrix Λ. Hence, we can estimate Φ0,t, . . . ,Φq,t equation by equation. To
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that end, define y∗
t = yt−µ−A1yt−1−· · ·−Apyt−p, and let y∗i,t denote the i-th element

of y∗
t .

As discussed in Section 2, we need to impose linear restrictions on the elements ofΦ0,t—in
particular Φ0,t is a lower triangular matrix with ones on the main diagonal—and it will
often be of interest to further impose exclusion restrictions on A1, . . . ,Ap (alternatively,
B0, . . . ,Bp for the echelon form) and Φ1,t, . . . ,Φq,t as well. To economize on space, we
explicitly discuss implementing such restrictions on Φ0,t, . . . ,Φq,t; sampling A1, . . . ,Ap

subject to similar restrictions follows analogously. Let φ⋆j,t,i denote the i-th row of Φj,t

and let φj,t,i be the free elements in φ⋆j,t,i, such that

φ⋆0,t,i = R0,iφ0,t,i + ιi,

φ⋆j,t,i = Rj,iφj,t,i, for j > 1,

where ιi is an n × 1 vector with the i-th element ιii = 1 and all others set to zero.
Rj,i in this context is a pre-determined selection matrix of appropriate dimensions. For
example, our assumption that Φ0,t is a lower triangular matrix with ones on the main
diagonal corresponds to R0,i = (Ii−1,0)

′ for i > 1. For i = 1, φ0,1 = ι1 and there
are no free elements. If there are no restrictions imposed on Φ1,t, . . . ,Φq,t, then R1,i =
· · · = Rq,i = Inq. Using this formulation, define Ri = diag(R0,1,R1,1, . . . ,Rq,i) and
φi,t = (φ′

0,t,i,φ
′
1,t,i . . . ,φ

′
q,t,i)

′, such that

φ⋆i,t = Riφi,t +

(
ιi
0

)

forms the i-th row of (Φ0,Φ1, . . . ,Φq).

Then, the i-th equation in (17) can be written as

y∗i,t = fi,t + w̃tRiφi,t + ηi,t, (33)

where w̃t = (f ′t, f
′
t−1, . . . , f

′
t−q), fi,t is the i-th element of ft, and ηi,t is the i-th element of

ηt. Hence, (18) and (33) define a linear Gaussian state space model for φi,t, and standard
algorithms can be applied. Here we use the algorithm in Chan and Jeliazkov (2009) to
jointly sample φi,1, . . . ,φi,T .

To implement Step 3, one can directly apply the algorithm in Del Negro and Primiceri
(2015) that is based on the auxiliary mixture sampler of Kim, Shepherd, and Chib (1998)
to draw the log-volatilities.

Lastly, Step 4 involves drawing from p(Λ |y,β, f ,φ), p(ψ2

h |h) and p(ψ2

φ |φ). The first
density is a product of inverse-gamma densities, and can therefore be sampled from using
standard methods:

(λ2i |y,β, f ,φ) ∼ IG

(
νλ,0 + T/2, Sλ,0 +

T∑

t=1

(y∗i,t − fi,t − w̃tRiφi,t)
2/2

)
.

The last two densities are nonstandard, but we can sample from them using a Metropolis-
Hastings step with a tailored proposal density. For example, to sample ψ2

h,i, we first obtain
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a candidate draw ψ2∗
h,i from the proposal IG((T − 3)/2,

∑T

t=2
(hi,t− hi,t−1)

2/2). Given the
current draw ψ2

h,i, the candidate ψ2∗
h,i is accepted with probability

min



1,

(ψ2∗
h,i)

− 1

2 e
− 1

2Sh,0
ψ2∗

h,i

(ψ2
h,i)

− 1

2 e
− 1

2Sh,0
ψ2

h,i



 ;

otherwise we keep the current draw ψ2
h,i. We sample ψ2

φ,i,j similarly.
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