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1 Overview

This appendix is divided into seven sections labelled A through G. Almost all details of
the prior are specified in the paper itself, but the few remaining details about the prior are
given in Appendix A. An outline of the MCMC algorithm was provided in the paper, but
complete details and formulae are provided in Appendix B. Appendix C describes how we
calculate the DIC which is one of the methods of model comparison used in our empirical
section. Appendix D provides details about the transformation of the expanded form
VARMA parameters to other ways of parameterizing the VARMA. Appendix E presents
results on the performance of our algorithms in a variety of artificial data sets. Appendix
F presents additional empirical results for our macroeconomic application.

2 Appendix A: Priors

The empirical work in this paper uses relatively noninformative priors. The hierarchical
SSVS priors for the VARMA coefficients are described in Section 3 of the paper. Recall
that in terms of these, we specify uniform priors on the Kronecker indices κ. Moreover, for
both the hard and soft SSVS priors, we set τ 21,j,ik = 1; for soft SSVS we set τ 20,j,ik = 0.01.

The remaining parameters are assigned the following priors:

Λii ∼ IG(νλ,0, Sλ,0),

Ωii ∼ IG(νω,0, Sω,0).

We set νλ,0 = 0, Sλ,0 = 0.1, which implies an improper prior on Λii, and νω,0 = 5,
Sω,0 = 0.4, resulting in a weakly informative prior on Ωii.

∗Gary Koop is a Senior Fellow at the Rimini Center for Economic Analysis. Emails:
joshuacc.chan@gmail.com, eric.eisenstat@gmail.com and gary.koop@strath.ac.uk
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3 Appendix B: MCMC Algorithm

We write the model as
yt = BXt +ΦFt + ηt, (1)

where B = (In − B0,B1, . . . ,Bp), Φ = (Φ0, . . . ,Φp), Xt = (y′
t, . . . ,y

′
t−p)

′ and Ft =
(f ′t, . . . , f

′
t−p)

′. Note that this nests both the expanded and echelon form VARMAs. For
notational convenience, define the vector of row degrees p = (p1, . . . , pn)

′. The model
parameters are sampled using a Gibbs sampler consisting of the following steps:

1. Sample
(
p |γS, f ,Λ

)
marginal of B,Φ and compute γR as γB,R

j,ik = γΦ,R
j,ik = 1 iff

0 < j ≤ pi or j = 0, i < k. This is done with a multi-move sampler that draws(
pi |p−i,γ

S, f ,Λ
)
for each i = 1, . . . , n. For the exact echelon algorithm set κi = pi.

To sample pi, we compute the weights P(pi = l | · ) using the conditional collapsed
likelihood p(yi |p

l,γS, f ,Λii) where pl = (p1, . . . , l, . . . , pn).

To evaluate each conditional likelihood, observe that conditional on f , the model
maybe written as n independent regressions. LetX = (X1, . . . ,XT )

′, F = (F1, . . . ,FT )
′

and set W = (X,F). Then,

yi = Wδi + ηi, ηi ∼ N (0,ΛiiIT ), (2)

where yi = (yi,1, . . . , yi,T )
′ and δi is the i-th column of (B,Φ)′.

Now, a given set of indicators γR,l = {γB,R,l
j,ik , γΦ,R,l

j,ik } = R(p1, . . . , l, . . . , pn) will force
certain elements in δi to be zero. Define δ⋆

i to be the vector containing only the free
elements of δi and W⋆

i the matrix W with column Wk removed for any δi,k = 0.
Clearly, Wδ = W⋆

i δ
⋆
i and

(
δ⋆
i |γ

S
)
∼ N (0,V⋆

δi,0
),

if “soft” SSVS priors are specified on Bj,ik,Φj,ik. In this case, V⋆
δi,0

is a diagonal
matrix with element V ⋆

δi,0,ll
= τ 20,j,ik (i.e. the “small” variance) if δ⋆i,l corresponds to

either Bj,ik with γB,S
j,ik = 0 or to Φj,ik with γΦ,S

j,ik = 0. Otherwise, V ⋆
δi,0,ll

= τ 21,j,ik (i.e.
the “large” variance).

It is straightforward to show in this case that

(yi |p
l,γS, f ,Λii) ∼ N (0, V̂yi),

V̂yi =
(
Λ−1

ii IT − Λ−2
ii W

⋆
i ∆̂

−1

i W⋆
i
′
)−1

,

∆̂i = V⋆−1
δi,0

+ Λ−1
ii W

⋆
i
′
W⋆

i . (3)

The quadratic term y′
iV̂

−1
yi
yi is easy to evaluate (i.e. without the need to separately

compute the inverse of V̂yi), as well as the determinant |V̂yi | = ΛT
ii|V

⋆
δi,0

||∆̂i|.
Therefore, computing the likelihood ratio in (3) entails little computation difficulty.

To evaluate the likelihood ratio under the “hard” SSVS prior, define W◦
i as the

matrix W⋆
i with the l-th column removed for every δ⋆i,l that corresponds to either
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Bj,ik with γB,S
j,ik = 0 or to Φj,ik with γΦ,S

j,ik = 0. Also, let V◦
δi,0

be the prior covariance
for the unrestricted elements in δi. The conditional likelihood is now

(yi |p
l,γS, f ,Λii) ∼ N (0, V̂yi),

V̂yi =
(
Λ−1

ii IT − Λ−2
ii W

◦
i ∆̂

−1

i W◦
i
′
)−1

,

∆̂i = V◦−1
δi,0

+ Λ−1
ii W

◦
i
′
W◦

i , (4)

and computation is similarly straightforward.

Now, to enforce the echelon form in an exact manner, we need to take into account
the prior in (7) in the main text. Practically, this means computing the indicators
γE,l = {γB,E,l

j,ik , γΦ,E,l
j,ik } = E(p1, . . . , l, . . . , pn) and setting the weights:

P(pi = l | · ) ∝

{
0 if γB,E,l

j,ik = 0, γB,R,l
j,ik 6= 0, γB,S

j,ik 6= 0 for any i, j, k

p(yi |p
l,γS, f ,Λii) otherwise

. (5)

For the approximate row degree algorithm, however, the above step is skipped and
we simply set:

P(pi = l | · ) ∝ p(yi |p
l,γS, f ,Λii). (6)

Observe that in this case, not only do we circumvent the need to compute echelon
form indicators and check them against the row degree and SSVS indicators, but
also pi is conditionally independent of the other row degrees p−i. This algorithm,
therefore, is both computationally simpler and more efficient (albeit at the cost of
loosing the exact canonical form).

2. Sample
(
γS
i ,Bi,Φi |p, f ,Λii,yi

)
for each i = 1, . . . , n, where Bi denotes the i-th row

of B, Φi the i-th row of Φ, and γS
i is the set of all SSVS indicators pertaining to

Bi,Φi. Under the “hard” SSVS prior, this is done by first sampling
(
γS
i , |p, f ,Λii

)

marginal of Bi,Φi using (2). In particular, we sample each γ·,S
j,ik for every i, j, k

conditional on {γ·,S
l,im}l 6=j,m 6=k, using the approach outlined in Step 1 to compute the

likelihood ratio

̺·,Sj,ik =
p(yi |p, γ

·,S
j,ik = 1, {γ·,S

l,im}l 6=j,m 6=k, f ,Λii)

p(yi |p, γ
·,S
j,ik = 0, {γ·,S

l,im}l 6=j,m 6=k, f ,Λii)
. (7)

Given our priors, this implies

P

(
γΦ,S
j,ik = 1 |p, {γΦ,S

l,im}l 6=j,m 6=k, f ,Λii,yi

)
= ̺Φ,S

j,ik/
(
1 + ̺Φ,S

j,ik

)
, (8)

for both the exact echelon form algorithm and the approximate row degrees algo-
rithm. For the indicators on Bi, however, imposing the echelon form once again
requires that the relationship between γ

B,S
i and p1, . . . , pn established in (7) in the
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main text be respected. In consequence, the correct conditional distribution is given
by

P

(
γB,S
j,ik = 1 |p, {γB,S

l,im}l 6=j,m 6=k, f ,Λii,yi

)

=

{
0 if γB,E

j,ik = 0, γB,R
j,ik 6= 0

̺B,S
j,ik /

(
1 + ̺B,S

j,ik

)
otherwise

,
(9)

where γB,E
j,ik is computed from E(p1, . . . , pn) using previous draws of p1, . . . , pn. For

the approximate row degrees algorithm, however, we simply draw from

P

(
γB,S
j,ik = 1 |p, {γB,S

l,im}l 6=j,m 6=k, f ,Λii,yi

)
= ̺B,S

j,ik /
(
1 + ̺B,S

j,ik

)
. (10)

For sake of efficient computation, we note that whenever γ·,R
j,ik = 0, we always obtain

̺·,Sj,ik = 1, and therefore, the conditional likelihoods need not be computed. Instead,

γ·,S
j,ik in this case is sampled from the prior.

When using the “soft” SSVS prior, the indicators are sampled conditional on Bi,Φi.

For γB,S
j,ik , if the echelon form is imposed, then P

(
γB,S
j,ik = 1 |Bj,ik

)
= 0 when γ

B,E
j,ik =

0 and γ
B,R
j,ik 6= 0; otherwise

P

(
γB,S
j,ik = 1 |Bj,ik

)
=

1
τ1,j,ik

exp
(
−

B2

j,ik

2τ2
1,j,ik

)

1
τ1,j,ik

exp
(
−

B2

j,ik

2τ2
1,j,ik

)
+ 1

τ0,j,ik
exp

(
−

B2

j,ik

2τ2
0,j,ik

) . (11)

If the row degree algorithm is used, we sample γB,S
j,ik using only (11).

For γΦ,S
j,ik , the success probabilities are

P

(
γΦ,S
j,ik = 1 |Φj,ik,γ

Φ,R
j,ik 6= 0

)
=

1
τ1,j,ik

exp
(
−

Φ2

j,ik

2τ2
1,j,ik

)

1
τ1,j,ik

exp
(
−

Φ2

j,ik

2τ2
1,j,ik

)
+ 1

τ0,j,ik
exp

(
−

Φ2

j,ik

2τ2
0,j,ik

) .

Once again, γ·,S
j,ik is drawn from the prior P(γ·,S

j,ik = 1 | γ·,R
j,ik = 0) = 0.5 whenever

γ·,R
j,ik = 0 and hence the corresponding coefficient is excluded by the row degrees.

Given a draw of γS
i , the coefficients Bi,Φi are sampled jointly in standard way for

both of the SSVS specifications. In particular, letting once again W⋆
i = (X⋆,F⋆)

be the reduced regressors and factors matrix corresponding to the unrestricted
coefficients δ⋆

i in δi, textbook regression analysis dictates
(
δ⋆
i |γ

S
i , pi, f ,Λii,yi

)
∼ N (δ̂i, ∆̂i),

δ̂i = ∆̂i

(
Λ−1

ii W
⋆
i
′(yi − fi)

)
,

∆̂i =
(
V⋆

δi,0
+ Λ−1

ii W
⋆
i

′
W⋆

i

)−1

, (12)

where fi = (fi,1, . . . , fi,T )
′. The remaining elements in δi (and therefore Bi,Φi) are

set to zero.
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3. Sample

(
Λii |Bi,Φi, pi,γ

S
i , f ,yi

)
∼

IG

(
νλ,0 +

T

2
, Sλ,0 +

1

2

T∑

t=1

(yi,t −BiXt −ΦiFt)
2

)

for each i = 1, . . . , n.

4. Sample (Ωii | fi) or
(
hi,0, . . . , hi,T , σ

2
h,i | fi

)
—depending on whether stochastic volatil-

ity is specified—for each i = 1, . . . , n. In either case, standard methods are used.

5. Sample
(
f |B,Φ, Ω̃,Λ,p,γS,y

)
, where Ω̃ = IT ⊗Ω for the constant variance case

and
Ω̃ = diag(exph1,1, . . . , exphn,1, . . . , exph1,T , . . . , exphn,T )

for stochastic volatility. An efficient sampler for this purpose is constructed by first
rewriting the working model (1) in stacked form as

y∗ = Ψf + η, (13)

where y∗ = ((y1 −BX1)
′, . . . , (yT −BXT )

′)′ and Ψ is a Tn× Tn lower triangular
matrix with Φ0 on the main diagonal block, Φ1 on first lower diagonal block, Φ2

on second lower diagonal block, and so forth. For example, for q = 2, we have

Ψ =




Φ0 0 0 0 · · · 0

Φ1 Φ0 0 0 · · · 0

Φ2 Φ1 Φ0 0 · · · 0

0 Φ2 Φ1 Φ0 · · · 0
...

. . . . . . . . .
...

0 0 · · · Φ2 Φ1 Φ0




.

It is important to note that in general Ψ is a sparse Tn× Tn matrix that contains
at most

n2

(
(q + 1)T −

q(q + 1)

2

)
< n2(q + 1)T

non-zero elements, which grows linearly in T and is substantially less than the total
(Tn)2 elements for typical applications where T ≫ q.

Now, the vector of factors is sampled jointly as
(
f |B,Φ,Ω(t),Λ,p,γS,y

)
∼ N (f̂ , V̂f ),

f̂ = V̂f

(
Ψ′
(
IT ⊗Λ−1

)
y∗
)
,

V̂f =
(
Ω̃

−1
+Ψ′

(
IT ⊗Λ−1

)
Ψ
)−1

, (14)

which is once again efficiently implemented using sparse matrix routines.
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4 Appendix C: Deviance Information Criterion

The Deviance Information Criterion (DIC) was introduced in Spiegelhalter, Best, Carlin,
and van der Linde (2002). For latent variable models there are numerous definitions
(Celeux, Forbes, Robert, and Titterington, 2006) depending on the exact notion of the
likelihood. Given a likelihood function f(y |θ), the DIC is defined as:

DIC = D(θ) + pD,

where
D(θ) = −2Eθ[log f(y |θ) |y]

is the posterior mean deviance and pD is the effective number of parameters. That is, the
DIC is the sum of the posterior mean deviance, which can be used as a Bayesian measure
of model fit or adequacy, and the effective number of parameters that measures model
complexity. The effective number of parameters is in turn defined as

pD = D(θ)−D(θ̃),

where D(θ) = −2 log f(y |θ) and θ̃ is an estimate of θ, which is typically taken as the
posterior mean.

Our VARMA model has a few equivalent latent variable representations. Hence,
in principle we can use any of the representations and compute the DIC based on the
conditional likelihood (i.e., the likelihood given the latent variables). However, as pointed
out in Chan and Grant (2014), conditional DICs tend to be numerically unstable. Instead,
we use the likelihood implied by the system

yt =

p∑

j=1

Ajyt−j +

q∑

j=1

Θjǫt−j + ǫt, ǫt ∼ N (0,Σ), (15)

where all the parameters are identified and can be recovered from the main sampling
algorithm.

To derive this density, we stack (15) over t and obtain:

y = a+Θǫ,

where ǫ = (ǫ′1, . . . , ǫ
′
T )

′ ∼ N (0, IT ⊗Σ), a = ((
∑p

j=1 Ajy1−j)
′, . . . , (

∑p

j=1AjyT−j)
′)′ and

Θ is a Tn×Tn lower triangular matrix with the identity matrix In on the main diagonal
block, Θ1 on first lower diagonal block, Θ2 on second lower diagonal block, and so forth.
Hence, we have

(y |A1, . . . ,Ap,Θ1, . . . ,Θq,Σ) ∼ N (a,Θ(IT ⊗Σ)Θ′).

Since the covariance matrix Θ(IT ⊗Σ)Θ′ is a band matrix, this Normal density can be
evaluated quickly using the band matrix algorithms discussed in Chan and Grant (2014).
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5 Appendix D: Recovering VARMA Parameters from

the Expanded Form

In this appendix we describe how to recover the VARMA parameters Θ1, . . . ,Θq,Σ
(which appear in the semi-structural VARMA and in the echelon form) from the ex-
panded form parameters Φ0, ..,Φp,Ω,Λ. The procedure was introduced in Chan and
Eisenstat (2015). We reproduce it for convenience here and refer the interested reader to
the aforementioned paper for further details.

Recall that B0, . . . ,Bp are the same in expanded and echelon forms. Consequently,
the ensuing procedure assumes these coefficients are given. With this in mind, let

ut ≡ B0yt −B1yt−1 − · · · −Bpyt−p,

ut = Θ0ǫt +Θ1ǫt−1 + · · ·+Θpǫt−p, ǫt ∼ N (0,Σ), (16)

= Φ0ft +Φ1ft−1 + · · ·+Φpft−p + ηt, ft ∼ N (0,Ω), ηt ∼ N (0,Λ). (17)

For what follows, it is important to emphasize that in the algorithms developed in this
paper, Θ0 is always either estimated or fixed a priori—i.e., Θ0 = B0 or Θ0 = I. Define
further the quantities:

Γj =

p∑

l=j

ΘlΣΘ′
l−j, j = 0, . . . , p, (18)

Γ̊j =

p∑

l=j

ΦlΩΦ′
l−j + 1l(j = 0)Λ, j = 0, . . . , p. (19)

The mapping between (Θ1, . . . ,Θp, Σ) and (Φ0, . . . ,Φp, Ω, Λ) is established by equating

Γj = Γ̊j (≡ E(utu
′
t−j)).

We will start with the simplest case of p = 1, where a draw of Θ1,Σ can be easily
recovered given a draw of Φ0,Φ1,Ω,Λ as follows. Proceed by first constructing Γ0 ≡ Γ̊0

and Γ1 ≡ Γ̊1 according to (19). Next, for Θ⋆
1 = Θ1Θ

−1
0 and Σ⋆ = Θ0ΣΘ′

0, solve the
quadratic matrix equation

Θ⋆2
1 Γ′

1 −Θ⋆
1Γ0 + Γ1 = 0.

Solving this equation is straightforward:

1. Solve the generalized eigenvalue problem

(
Γ0 −Γ′

1

In 0

)(
X11 X12

X21 X22

)
=

(
Γ1 0

0 In

)(
X11 X12

X21 X22

)(
D1 0

0 D2

)
.

A solution to this will consist of 2n eigenvalues and the associated 2n eigenvectors.1

Moreover, the matrices involving eigenvalues and eigenvectors can be rotated freely.

1In our empirical work, we use theMatlab command eig to efficiently solve the generalized eigenvalue
problem.
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2. Choose D1 to contain n of the generated eigenvalues and (X′
11,X

′
21)

′ to contain the
corresponding eigenvectors. Note that by construction, exactly n of the eigenvalues
will be less than one in modulus, so selecting the n smallest (in modulus) eigenvalues
corresponds to enforcing invertibility (e.g., ex-post).

3. Compute

Θ⋆
1
′ = X11X

−1
21 , Θ1 = Θ⋆

1Θ0

Σ⋆ = Γ0 − Γ1Θ
⋆
1
′

Σ = Θ−1
0 Σ⋆

(
Θ−1

0

)′
.

To generalize this procedure for any p, it is useful to consider the VMA(1) represen-
tation of the VMA(p), defined as




ut

ut−1
...

ut−p+1




︸ ︷︷ ︸
ũτ

=




Θ0 Θ1 · · · Θp−1

. . . . . .
...

. . . Θ1

Θ0




︸ ︷︷ ︸
Θ̃0




ǫt
ǫt−1
...

ǫt−p+1




︸ ︷︷ ︸
ǫ̃τ

+




Θp

Θp−1
. . .

...
. . . . . .

Θ1 · · · Θp−1 Θp




︸ ︷︷ ︸
Θ̃1




ǫt−p

ǫt−p−1
...

ǫt−2p+1




︸ ︷︷ ︸
ǫ̃τ−1

(20)
with ǫ̃τ ∼ N (0, Ip ⊗Σ). In this form, the corresponding autovariances may be denoted
by

Γ̃0 =




Γ0 Γ1 · · · Γp−1

Γ′
1

. . . . . .
...

...
. . . . . . Γ1

Γ′
p−1 · · · Γ′

1 Γ0


 and Γ̃1 =




Γp

Γp−1
. . .

...
. . . . . .

Γ1 · · · Γp−1 Γp


 . (21)

The algorithm used to recover Θ1, . . . ,Θp,Σ becomes the following.

1. Compute Γ0, . . . ,Γp from draws of Φ0, . . . ,Φp,Ω,Λ.

2. Construct Γ̃0, Γ̃1 according to (21).

3. Use the p = 1 procedure described above to compute Θ̃
⋆

1, Σ̃
⋆
, where Θ̃

⋆

1 = Θ̃1Θ̃
−1

0 ,

Σ̃
⋆
= Θ̃0(Ip ⊗Σ)Θ̃

′

0 and Θ̃0, Θ̃1 are defined in (20).

4. Recover Θ⋆
1, . . . ,Θ

⋆
p from the first n columns of Θ̃

⋆

1 and Σ⋆ from the bottom-right

n× n block of Σ̃
⋆
; set Θj = Θ⋆

jΘ0 and Σ = Θ−1
0 Σ⋆

(
Θ−1

0

)′
.

Note again that solving the generalized eigenvalue problem in Step 3 above leads to
2np eigenvalues, of which np are less than one in modulus and correspond an invertible
VMA(p) system. Thus, the idea that invertibility can be enforced ex-post extends to the
general case as well.
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6 Appendix E: Results using Artificial Data

In this appendix, we carry out a brief exercise with artificial data to investigate the
performance of our algorithm. We focus on the identification issue and present results
relating to κ for various versions of our algorithm. All the results in this section involve
drawing 10 artificial data sets, each of T = 100 observations. Each data set is normalized
to have mean zero and unit standard deviation. For each data set, 11,000 MCMC draws
are taken and the first 1,000 of these discarded. All results are based on the benchmark
prior described in Appendix A. We present results for the algorithm which imposes the
echelon form exactly (labelled “echelon” in the tables below) versus the approximate
algorithm which works with the row degrees (labelled “row degree” in the tables below).
We also investigate the difference between the two different implementations of SSVS
methods (labelled “hard SSVS” and “soft SSVS” in the tables) discussed in Section 3 of
the paper.

The first set of artificial data exercises uses bivariate VARMAs based on the example
in equation (3) of the paper. Our first data generating process (DGP) is a standard
identified VARMA(1,1) with κ1 = κ2 = 1. The second DGP is also a VARMA(1,1) but
with κ1 = 1, κ2 = 0. In both cases, our estimating model is an VARMA(4, 4). The
starting value for κ in the MCMC algorithm is, throughout this section, always set so as
to choose the VARMA(4,4). We are interested in investigating whether our algorithm can,
in the context of a greatly over-parameterized model, uncover the parsimonious identified
model in each case and, thus, initialize the algorithm at the over-parameterized extreme.

Precise values of the parameters used in the DGPs are:
DGP1: B1,11 = 0.7, B1,21 = 0.4, B1,12 = 0.2, B1,22 = 0.5,Θ1,11 = 0.1,Θ1,12 = 0,Θ1,21 =

0.5,Θ1,22 = 0.1,Σ =

[
0.9 0
0 0.1

]
.

DGP2: B1,11 = 0.7, B1,21 = 0, B1,12 = 0.2, B1,22 = 0,Θ1,11 = 0.1,Θ1,12 = 0,Θ1,21 =

0,Θ1,22 = 0.0,Σ =

[
0.9 0
0 0.1

]
.

Table 1 presents summary statistics of the various estimates of κ for the two DGPs.
It can be seen that, despite working with the over-parameterized VARMA(4,4), our algo-
rithm is accurately choosing the identified VARMAE (1, 1) and VARMAE (1, 0) for DGP1

and DGP2, respectively. The cross-data-set averages of κ do tend to be slightly above
the true values used in the DGP. In the case of κ2 in DGP2, this is of necessity (since
the true value of κ2 = 0 and κ2 cannot be negative). For other cases, this is likely due to
excessively large lag length used in the estimating model. With regards to the different
variants of our algorithms, there seems little difference. In particular, the approximate
row degree algorithm is yielding results which are very similar to the exact algorithm
which imposes the echelon form at every draw. Overall, though, the results indicate
that our algorithms are working well in identifying small VARMAs. The estimates of
the parameters (not reported here) are similar to the true values used in the DGPs and
the inefficiency factors for the MCMC algorithm (also not reported here) indicate the
algorithms are mixing well.

9



Table 1: Averages across Data Sets of Posterior Mean of κ. Standard Deviation, Mini-
mum and Maximum in Parentheses.

DGP1 DGP2

Algorithm details κ1 κ2 κ3 κ4

True value 1 1 1 0
echelon, 1.35 1.11 1.29 0.48
hard SSVS (0.19) (0.11) (0.06) (0.21)

(1.14, 1.68) (1.02, 1.40) (1.21, 1.36) (0.31, 0.99)
row degree, 1.28 1.24 1.59 0.49
hard SSVS (0.13) (0.15) (0.38) (0.21)

(1.18, 1.63) (1.14, 1.63) (1.31, 2.54) (0.32, 0.91)
echelon, 1.28 1.09 1.30 0.49
soft SSVS (0.25) (0.05) (0.21) (0.25)

(1.13, 1.93) (1.02, 1.17) (1.11, 1.85) (0.23, 1.05)
row degree, 1.23 1.20 1.32 0.42
soft SSVS (0.13) (0.14) (0.21) (0.30)

(1.12, 1.47) (1.12, 1.59) (1.14, 1.86) (0.25, 1.15)

But will our algorithms be as capable of uncovering identification restrictions in larger
VARMAs? And will they be computationally efficient? These are the questions we address
in Tables 2 through 5. Tables 2 and 4 contain results relating to κ comparable to those
in Table 1 for larger 7-variate and 12-variate VARMAs. Tables 3 and 5 contain results
relating to the efficiency of the MCMC algorithm. For the sake of brevity, inefficiency
factors are presented for the impulse responses of the first and second variables to a shock
in the third variable four periods in the future. These are labelled “IR1” and “IR2” in
Tables 3 and 5.

The data generating process for the 7-variate VAR is a VARMA(1,1) with the following
parameter values:

DGP3: B0 = Θ0 = I and B1,ii = 0.1 × i, Θ1,ii = 0.1 × (7 − i), B1,12 = B1,23 =
−0.4, Θ1,56 = Θ1,67 = −0.4 where B1,ik and Θ1,ik are the (i, k) elements of B1 and Θ1,
respectively. Letting [σik] be the elements of Σ, we set σii = 0.1 × i, σ57 = σ67 = −0.3.
All elements of B1, Θ1 and Σ not specified are set to zero.

Note that DGP3 has κi = 1 for i = 1, . . . , 7 and should be well-identified in the sense
that each row of the VARMA has either an AR or an MA coefficient which is substantively
different from zero.

The data generating process from the 12-variate VAR is also a VARMA(1,1) with
parameter values:

DGP4: B0 = Θ0 = I and B1,ii = 0.1 × i for i = 1, . . . , 8, Θ1,ii = 0.1 × (12 − i) for
i = 1, . . . , 10, B1,12 = B1,23 = −0.4, Θ1,56 = Θ1,67 = −0.4 where B1,ik and Θ1,ik are the
(i, k) elements of B1 and Θ1, respectively. Letting [σik] be the elements of Σ, we set
σii = 0.1 × i, σ57 = σ67 = −0.3. All elements of B1, Θ1 and Σ not specified are set to
zero.

Note that DGP4 has κi = 1 for i = 1, . . . , 10, with κ11 = κ12 = 0. However, for
equations 9 and 10 in the VARMA the identification is quite weak in the sense that both
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of these equations have no AR lags and the coefficient on the MA lag is quite small (i.e.
Θ1,99 = 0.3 and Θ1,10,10 = 0.2). Hence, even through the true value κ9 = κ10 = 1, the
DGP is quite close to the κ9 = κ10 = 0 case.

Results for the medium-sized 7-variate VARMA are similar to those for the bivariate
VARMA. Table 2 indicates the variants of our algorithm are all successfully producing
an estimate of κ near its true value. For none of the data sets do any of our algorithms
go far wrong. Table 3 indicates that the efficiency of our algorithm is fairly good, pro-
ducing inefficiency factors that are around 10 or 20. However, the inefficiency factors
for the echelon form algorithm with hard SSVS are somewhat higher than this. One of
the artificial data sets leads to an inefficiency factor of over 300 for one of the impulse
responses. Hence, the researcher using our algorithm in VARMAs of this size should take
care with MCMC convergence issues and would probably be required to take hundreds
of thousands of draws,2 but MCMC convergence is unlikely to be a major worry. Indeed
even the 10,000 draws (plus 1000 burn-in draws) used to produce the results in Table 2
appear to be enough to produce an accurate estimate of the true DGP in our artificial
data exercise, despite the fact that the initial conditions used in our MCMC algorithm
(based on the VARMA(4,4)) are far from the true VARMA(1,1).

Table 2: Averages across Data Sets of Posterior Mean of κ for DGP3. Standard Deviations
in Parentheses.

Algorithm details κ1 κ2 κ3 κ4 κ5 κ6 κ7

True value 1 1 1 1 1 1 1
echelon, 1.05 1.01 1.01 1.04 1.07 1.00 0.90
hard SSVS (0.10) (0.01) (0.01) (0.09) (0.13) (0.01) (0.32)
row degree, 1.07 1.04 1.02 1.05 1.03 1.03 0.80
hard SSVS (0.10) (0.05) (0.03) (0.13) (0.03) (0.04) (0.34)
echelon, 1.01 1.02 1.01 0.99 1.03 1.01 0.80
soft SSVS (0.02) (0.05) (0.01) (0.08) (0.06) (0.01) (0.42)
row degree, 1.04 1.04 1.00 0.99 1.04 1.02 0.73
soft SSVS (0.05) (0.06) (0.03) (0.08) (0.05) (0.02) (0.43)

Table 3: Inefficiency Factors for Impulse Responses for DGP3.

Algorithm details IR1 IR1 IR1 IR2 IR2 IR2

ave st dev max ave st dev max
echelon, hard SSVS 56.38 100.12 339.57 20.71 13.74 53.76
row degree, hard SSVS 23.34 6.82 38.31 20.29 7.50 30.07
echelon, soft SSVS 13.95 6.15 25.35 15.68 9.27 33.57
row degree, soft SSVS 13.31 5.74 25.09 12.55 4.11 22.41

2This statement and others which follow are based on the premise that 10,000 independent draws
from a posterior would produce estimates with sufficient accuracy for the researcher’s purposes.
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Results for the 12-variate VARMA are also quite encouraging. In Table 4, the es-
timates for κ1, . . . , κn are almost always very close to the true values in the DGP. The
only exception is for κ9 and κ10. But for the reasons noted previously, these are not
surprising. The four variants of the algorithm are producing similar results, although it
is worth noting that the approximate row degree algorithms are producing estimates for
κ7 which are somewhat below those for the exact echelon algorithms.

Table 4: Averages across Data Sets of Posterior Mean of κ for DGP4. Standard Deviations
in Parentheses.

Algorithm details κ1 κ2 κ3 κ4 κ5 κ6

True value 1 1 1 1 1 1
echelon, 1.05 1.09 0.91 0.99 1.24 1.24
hard SSVS (0.11) (0.18) (0.23) (0.01) (0.31) (0.41)
row degree, 1.02 1.00 0.71 0.98 0.94 1.00
hard SSVS (0.06) (0.01) (0.42) (0.04) (0.23) (0.00)
echelon, 0.99 1.00 0.79 0.95 1.18 1.02
soft SSVS (0.01) (0.00) (0.36) (0.14) (0.39) (0.03)
row degree, 0.99 1.00 0.67 0.96 0.92 1.00
soft SSVS (0.01) (0.00) (0.44) (0.11) (0.23) (0.00)

κ7 κ8 κ9 κ10 κ11 κ12

True value 1 1 1 1 0 0
echelon, 1.00 0.96 0.04 0.02 0.00 0.00
hard SSVS (0.00) (0.12) (0.01) (0.03) (0.00) (0.00)
row degree, 0.33 0.98 0.03 0.02 0.00 0.00
hard SSVS (0.39) (0.05) (0.06) (0.02) (0.00) (0.00)
echelon, 0.81 0.93 0.01 0.01 0.01 0.00
soft SSVS (0.41) (0.16) (0.01) (0.01) (0.00) (0.00)
row degree, 0.21 0.94 0.01 0.01 0.00 0.00
soft SSVS (0.39) (0.16) (0.02) (0.02) (0.00) (0.00)

Table 5: Inefficiency Factors for Impulse Responses for DGP4.

Algorithm details IR1 IR1 IR1 IR2 IR2 IR2

ave st dev max ave st dev max
echelon, hard SSVS 152.98 274.74 766.9 234.73 411.56 1169.9
row degree, hard SSVS 17.44 9.49 28.57 24.31 25.77 88.91
echelon, soft SSVS 36.02 58.27 179.48 31.26 54.74 178.57
row degree, soft SSVS 10.12 3.13 16.80 10.54 4.51 20.42

Table 5 presents evidence on MCMC efficiency. As expected, MCMC efficiency de-
teriorates somewhat in this larger VARMA, but the row degree algorithm mixes much
better than the echelon form algorithm. Of course, an exact algorithm is always to be
preferred to an approximate one and, hence, where computationally possible we would
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recommend using the echelon form algorithm. However, Table 5 indicates that in larger
VARMAs, the echelon form algorithm might be excessively computationally daunting or
even infeasible in a reasonable amount of time. For instance, when using the echelon form
algorithm with hard SSVS, one of our artificial data sets produces an inefficiency factor
of over 1000 for estimation of one of the impulse responses suggesting that millions of
draws may be required in some applications with larger VARMAs. In such applications,
our approximate row degree algorithm, which is quite efficient even in the 12-variate
VARMA, may be a good alternative.

It is also worth noting that MCMC algorithms using soft SSVS are much more efficient
than hard SSVS. Even in the 12-variate VARMA, the echelon form algorithm with soft
SSVS is producing inefficiency factors that are consistent with the researcher using tens
(or at most a few hundred) of thousands of draws.

7 Appendix F: Additional Empirical Results from

Macroeconomic Application

Tables 6–8 present the estimates of the VARMA coefficients referred to in sub-section
4.0.1 of the paper. We also present results from a VAR. Details of both specifications
are given in the paper. For ease of comparison, we transform our echelon-form VARMA
coefficients into the following standard VARMA specification:

yt =

p∑

j=1

Ajyt−j +

q∑

j=1

Θjǫt−j + ǫt.

Next we present results for the VARMA with n = 12 model using the row degree
algorithm. We use 250, 000 MCMC draws after 25, 000 burn-in draws. Total computation
time was 6.5 hours. For ease of comparison, some results from the same model but using
the echelon form algorithm are also provided. Table 9 presents all values of κ which
receive greater than 1% posterior probability using the echelon form algorithm. Table 10
repeats the analysis using the row degree algorithm, presenting all values of p which
receive greater than 1% posterior probability. It can be seen that the two algorithms are
choosing similar, but not identical, row degrees for each equation.

Remember that the row degree and echelon algorithm differ in that the latter imposes
all identifying restrictions (row degree restrictions plus the additional ones) whereas the
row degree algorithm does not necessarily impose these additional ones. Figure 1 sheds
light on whether these additional restrictions are being picked up by the other part of
the SSVS prior (i.e. γS) when using the row degree algorithm. At each MCMC draw
of p from this algorithm, we can count how may of the additional restrictions required
to produce a valid echelon form are captured and how many are missed. Figure 1 plots
histograms of the resulting draws. It can be seen that, although a large majority of the
additional restrictions are captured, quite a few are not.

We also include plots of some key impulse responses, comparing the echelon and
row degree algorithms. Although there are some slight differences, overall these two
algorithms are producing very similar impulse responses.
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Table 6: Posterior estimates of the moving average coefficients matrices Θ1, . . . ,Θ4 in a
VARMAE(κ). Note: * denotes that either Pr(θl,ij ≤ 0 |y) ≤ 0.1 or Pr(θl,ij > 0 |y) ≤ 0.1; § denotes

that either Pr(θl,ij ≤ 0 |y) ≤ 0.05 or Pr(θl,ij > 0 |y) ≤ 0.05; † denotes that either Pr(θl,ij ≤ 0 |y) ≤ 0.01

or Pr(θl,ij > 0 |y) ≤ 0.01.

1 2 3 4 5 6 7 8 9 10 11 12

1 -0.19* -0.01 0.06 0.47§ -0.01 -0.04 0.20* 0.12 -0.02 0.06 0.00 -0.03
2 -0.06 -0.08 0.07 0.03 0.01 -0.12 0.05 0.23§ 0.03 0.01 0.01 0.04
3 -0.09 -0.15 0.02 0.53§ 0.00 0.04 -0.07 -0.12 -0.08 0.04 -0.03 -0.07
4 -0.02 -0.01 0.01 0.08§ 0.00 0.00 0.01 -0.01 -0.01 0.01 0.00 -0.01
5 0.00 0.04 -0.05 0.17 0.01 -0.03 -0.03 0.05 -0.01 0.01 0.00 -0.01

Θ1 6 -0.20* 0.06 0.01 0.66† -0.03 -0.08 0.38† 0.20* 0.02 0.03 0.03 0.00
7 -0.08 -0.01 0.02 0.25§ -0.02 -0.04 0.03 0.13§ -0.01 0.02 0.00 -0.01
8 -0.07 -0.02 0.00 0.30† -0.01 -0.03 0.06 0.11* -0.02 0.02 0.01 -0.01
9 -0.05 -0.02 0.01 0.15§ -0.01 -0.04 0.05 0.11§ 0.00 0.01 0.01 0.00
10 -0.03 -0.03 0.01 0.26* 0.00 0.00 -0.07 -0.01 -0.04 0.06 0.01 -0.02
11 0.07 -0.02 0.00 -0.15 0.04 0.05 -0.12 -0.26§ -0.03 0.01 -0.09 -0.01
12 -0.01 0.01 0.03 -0.11 0.00 -0.04 0.01 0.13* 0.01 0.01 0.02 0.03
1 -0.03 -0.03 -0.01 0.11 -0.01 -0.02 0.12 0.02 -0.04 -0.01 0.00 -0.01
2 0.04 -0.14 -0.02 -0.04 0.04 -0.01 -0.05 -0.11 -0.02 -0.02 -0.03 -0.09
3 -0.02 -0.02 0.00 0.07 -0.01 -0.01 0.08 0.01 -0.03 -0.01 0.00 -0.01
4 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
5 0.12 -0.05 -0.13* -0.01 -0.04 -0.11 0.24§ 0.04 0.00 -0.01 0.00 0.00

Θ2 6 -0.01 -0.02 -0.01 0.07 -0.01 -0.02 0.10 0.02 -0.03 -0.01 0.00 -0.01
7 0.00 -0.02 -0.01 0.03 0.00 -0.02 0.05 0.00 -0.01 -0.01 0.00 -0.01
8 0.01 -0.02 -0.02 0.02 -0.01 -0.02 0.06* 0.00 -0.01 0.00 0.00 -0.01
9 0.01 -0.03 -0.01 0.01 0.00 -0.01 0.01 -0.02 -0.01 -0.01 -0.01 -0.02
10 -0.02 0.00 0.01 0.03 0.00 0.00 0.01 0.00 -0.01 0.00 0.00 0.00
11 -0.02 0.07 0.01 0.01 -0.01 0.01 0.00 0.04 0.01 0.01 0.02 0.04
12 0.02 -0.03 0.00 -0.02 0.01 0.00 -0.03 -0.04 0.00 -0.01 -0.01 -0.02
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 -0.02 0.00 0.02 -0.05 -0.01 0.00 -0.02 0.08 0.00 0.01 0.01 0.01

Θ3 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Θ4 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 7: Posterior estimates of the autoregressive coefficients matrices A1, . . . ,A4 in a
VARMAE(κ). Note: * denotes that either Pr(θl,ij ≤ 0 |y) ≤ 0.1 or Pr(θl,ij > 0 |y) ≤ 0.1; § denotes

that either Pr(θl,ij ≤ 0 |y) ≤ 0.05 or Pr(θl,ij > 0 |y) ≤ 0.05; † denotes that either Pr(θl,ij ≤ 0 |y) ≤ 0.01

or Pr(θl,ij > 0 |y) ≤ 0.01.

1 2 3 4 5 6 7 8 9 10 11 12
1 0.01 -0.01 0.12* 0.08 0.06 0.01 0.07 0.09 -0.01 0.11* -0.02 -0.05
2 0.03 -0.54† 0.04 0.01 0.01 0.00 0.01 0.12* 0.15§ -0.02 0.02 0.08
3 0.05 -0.05 0.03 0.12* 0.00 0.10 0.09 0.05 -0.15§ 0.12* -0.07 0.00
4 -0.04 0.03 0.04* 0.97† -0.01 0.06§ 0.01 -0.05§ -0.07† 0.04* 0.01 0.00
5 -0.01 0.03 -0.06 0.05 -0.80† -0.03 0.03 0.03 -0.02 0.03 0.01 0.02

A1 6 -0.08 -0.02 0.29† -0.03 0.06 0.07 -0.07 0.12* 0.08 0.16§ -0.01 -0.03
7 -0.02 -0.08§ 0.11§ 0.03 -0.02 0.02 0.67† 0.11§ -0.02 0.12† -0.03 0.03
8 0.11* -0.02 0.07 0.05 -0.05* -0.03 -0.15§ 0.83† -0.10§ 0.10§ -0.07* -0.01
9 0.04 -0.10§ 0.06* 0.05 0.00 -0.01 0.02 0.33† -0.01 0.05§ -0.02 0.01
10 0.06 0.05 0.00 -0.01 0.10* 0.04 0.04 -0.28§ -0.05 0.19§ -0.03 -0.02
11 -0.09 -0.06 0.03 -0.02 -0.09 -0.10 0.04 0.03 -0.07 0.04 -0.15* 0.01
12 0.01 -0.05 -0.03 0.05 0.00 0.00 -0.02 0.09 0.02 0.00 -0.01 0.05

1 0.04 0.02 0.12* 0.00 -0.01 0.07 -0.06 0.01 -0.17† 0.05 0.03 -0.04
2 0.02 -0.22§ 0.09 0.00 -0.01 -0.14§ -0.02 0.05 0.02 -0.03 0.05 -0.10
3 0.03 0.02 0.08* 0.00 -0.01 0.05 -0.04 0.00 -0.12† 0.04 0.02 -0.02
4 0.00 0.00 0.01* 0.00 0.00 0.01 -0.01 0.00 -0.02§ 0.00 0.00 -0.01
5 0.04 0.04 -0.04 0.02 -0.70† -0.02 0.07 0.01 -0.04 -0.03 -0.02 0.01

A2 6 0.03 0.03 0.08* 0.00 -0.06 0.05 -0.04 0.00 -0.12† 0.04 0.02 -0.02
7 0.02 0.00 0.04* 0.00 -0.06§ 0.01 -0.02 0.01 -0.06§ 0.01 0.01 -0.02
8 0.02 0.00 0.03 0.00 -0.09† 0.01 -0.01 0.01 -0.05§ 0.01 0.01 -0.01
9 0.01 -0.03* 0.03* 0.00 -0.03 -0.02 -0.01 0.01 -0.02 0.00 0.01 -0.02
10 0.01 0.00 0.03* 0.00 0.05 0.02 -0.02 0.00 -0.04* 0.01 0.01 -0.01
11 -0.01 0.08§ -0.05 0.00 0.01 0.05* 0.01 -0.02 0.01 0.01 -0.03 0.04
12 0.00 -0.08§ 0.01 0.00 0.01 -0.05* 0.00 0.02 0.03 -0.02 0.01 -0.04
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 -0.03 -0.08 0.01 -0.53† 0.07 -0.01 -0.01 -0.07 0.05 0.09* 0.09*

A3 6 0.00 0.00 -0.01 0.00 -0.04§ 0.01 0.00 0.00 -0.01 0.00 0.01* 0.01*
7 0.00 0.00 -0.01 0.00 -0.04† 0.01 0.00 0.00 -0.01 0.00 0.01* 0.01*
8 0.00 0.00 -0.01 0.00 -0.07† 0.01 0.00 0.00 -0.01 0.01 0.01* 0.01*
9 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.01 0.00 0.04 -0.01 0.00 0.00 0.01 0.00 -0.01 -0.01
11 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A4 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 8: Posterior estimates of the autoregressive coefficients matrices A1, . . . ,A4 in a
VAR(4). Note: * denotes that either Pr(θl,ij ≤ 0 |y) ≤ 0.1 or Pr(θl,ij > 0 |y) ≤ 0.1; § denotes that

either Pr(θl,ij ≤ 0 |y) ≤ 0.05 or Pr(θl,ij > 0 |y) ≤ 0.05; † denotes that either Pr(θl,ij ≤ 0 |y) ≤ 0.01 or

Pr(θl,ij > 0 |y) ≤ 0.01.

1 2 3 4 5 6 7 8 9 10 11 12

1 -0.10 -0.03 0.12* 0.63† 0.05 -0.12 0.31§ 0.15* 0.00 0.16† -0.02 -0.06
2 0.00 -0.64† 0.09 0.04 0.01 -0.10 0.01 0.31§ 0.19† 0.02 0.02 0.17†

3 -0.03 -0.20† 0.00 0.57† -0.03 0.05 0.15 -0.02 -0.22† 0.17† -0.06 -0.05
4 -0.05 0.00 0.03 1.10† -0.01 0.06* 0.02 -0.06* -0.09† 0.05§ 0.00 0.00
5 -0.04 0.07 -0.09* 0.12 -0.79† -0.05 0.05 0.10 -0.06 0.04 0.03 0.01

A1 6 -0.14* 0.03 0.20† 0.86† 0.05 -0.18§ 0.28§ 0.22§ 0.12§ 0.14† 0.01 -0.01
7 -0.06 -0.09§ 0.11§ 0.37† -0.06* -0.05 0.63† 0.30† -0.03 0.11† -0.02 0.04
8 0.03 -0.06 0.04 0.33† -0.06 -0.12§ 0.02 0.91† -0.10§ 0.14† -0.03 0.00
9 0.02 -0.19† 0.01 0.33§ -0.03 -0.06 0.05 0.58† 0.08 0.06 0.06 0.11§

10 0.05 -0.03 0.01 0.30* 0.08 0.02 0.00 -0.35§ -0.04 0.29† 0.01 0.00
11 -0.07 -0.02 0.07 -0.14 0.01 -0.05 -0.06 -0.30† -0.16§ 0.06 -0.33† -0.07
12 -0.01 0.02 0.02 -0.04 -0.02 -0.01 -0.01 0.22* 0.01 0.07 -0.03 0.15§

1 -0.01 -0.02 0.07 -0.27 -0.02 -0.05 0.07 0.03 -0.16§ 0.00 0.04 -0.05
2 -0.02 -0.42† 0.05 -0.03 0.04 -0.20§ -0.04 -0.12 0.10* -0.08* 0.05 -0.18†

3 0.00 -0.09 0.10 -0.22 -0.06 -0.02 0.08 0.14 -0.15§ 0.03 0.02 0.01
4 -0.05 -0.04 0.05* 0.00 -0.02 0.03 -0.03 0.08* -0.01 -0.02 -0.02 -0.01
5 0.06 0.00 -0.11§ -0.02 -0.76† -0.04 0.25§ 0.03 -0.04 -0.03 -0.01 0.00

A2 6 -0.02 0.01 0.01 -0.38* -0.06 -0.02 -0.06 -0.04 -0.04 0.02 0.04 -0.02
7 0.05 -0.02 -0.02 -0.17 -0.08* -0.08 0.03 -0.17§ 0.02 0.05* 0.05 -0.02
8 0.05 -0.03 -0.07* -0.18 -0.11§ -0.11§ 0.07 -0.01 0.00 -0.02 0.01 -0.04
9 0.04 -0.06 -0.23† -0.16 0.00 -0.09 0.25* -0.21 -0.17§ -0.01 0.06 -0.04
10 -0.05 -0.08 0.02 -0.19 0.06 0.00 0.04 0.01 0.11* 0.00 0.04 -0.02
11 -0.03 0.07 0.09 0.30 0.05 0.14* -0.09 0.27§ 0.02 0.07 -0.30† 0.12§

12 -0.10 -0.12 -0.06 0.12 0.03 -0.05 -0.01 -0.10 0.17§ -0.05 0.06 -0.13*

1 -0.01 -0.01 0.00 -0.07 0.01 0.00 -0.31§ 0.01 0.06 0.02 0.00 -0.02
2 0.01 -0.05 -0.02 0.01 0.08 0.01 -0.07 0.13 -0.01 0.12§ -0.03 -0.10*
3 0.00 -0.08 0.09 -0.11 0.05 0.03 -0.13 0.03 -0.02 -0.04 0.02 -0.10*
4 -0.07* -0.05* 0.03 -0.13* 0.01 0.03 0.02 -0.07* 0.00 0.00 -0.02 0.02
5 -0.04 -0.05 -0.05 -0.02 -0.60† 0.07 -0.08 0.03 -0.10§ 0.04 0.11§ 0.09§

A3 6 -0.02 0.01 -0.04 -0.37* -0.07 -0.01 -0.27§ 0.07 0.06 0.02 0.04 0.05
7 0.06 -0.01 -0.02 -0.09 -0.07* -0.01 -0.05 0.08 -0.01 0.05 0.01 -0.04
8 0.09 -0.07* -0.01 0.00 -0.06 -0.06 -0.19§ 0.04 -0.03 0.00 0.00 -0.03
9 -0.04 -0.01 -0.02 -0.05 -0.01 -0.10 0.01 0.23* 0.05 0.06 0.08 -0.08
10 0.03 -0.11* 0.11* -0.05 -0.07 -0.05 -0.07 0.01 0.12* -0.04 -0.05 -0.09*
11 0.03 0.00 0.02 -0.13 0.02 0.05 0.00 -0.08 0.00 0.01 -0.09 0.04
12 -0.01 0.04 -0.03 0.02 0.07 -0.06 -0.08 0.09 0.02 0.03 -0.05 -0.02
1 0.07 -0.04 0.03 -0.19 0.01 -0.04 0.03 0.02 -0.05 0.01 -0.01 -0.02
2 0.02 -0.12§ -0.03 0.03 -0.02 0.06 0.03 0.04 -0.04 -0.02 0.03 -0.09*
3 -0.01 -0.03 -0.01 -0.10 -0.01 0.03 -0.01 0.01 -0.09 0.04 -0.05 0.03
4 0.01 0.00 0.03 -0.01 0.03* -0.01 0.00 0.04 0.00 -0.02 0.00 -0.02
5 -0.02 0.01 0.00 0.00 -0.01 -0.16§ 0.03 -0.04 0.05 -0.02 0.03 0.02

A4 6 0.07 0.00 0.14§ -0.13 -0.03 -0.02 -0.05 -0.12 0.06 0.01 0.03 -0.07*
7 0.00 -0.02 0.05 -0.09 -0.05 -0.04 0.05 0.01 -0.04 0.01 -0.05* -0.02
8 -0.04 -0.02 0.12§ -0.10 -0.02 -0.04 0.00 -0.04 -0.02 0.00 -0.04 0.00
9 -0.06 -0.02 -0.04 -0.02 -0.03 -0.03 0.00 -0.13 0.04 -0.06 0.00 -0.01
10 0.02 -0.05 -0.02 -0.08 -0.05 -0.04 -0.01 0.08 -0.07 0.04 -0.02 -0.07
11 -0.09 -0.03 -0.02 -0.08 0.07 -0.01 0.05 0.08 0.11* -0.04 -0.16† 0.05
12 0.01 -0.05 0.02 0.02 -0.02 -0.01 -0.06 0.10 0.05 0.04 0.04 -0.10*
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Table 9: Posterior distribution over echelon form structures. Each column represents
a particular vector κ of Kronecker indices. The last row is a posterior estimate of the
probability mass function Pr(κ |y) obtained with the echelon algorithm; only κ with
estimated mass greater than 1% are shown.

κ1 2 2 2 2 2 2
κ2 2 2 2 2 2 2
κ3 1 1 1 1 1 1
κ4 1 1 1 1 1 1
κ5 3 3 3 3 3 3
κ6 1 1 1 1 1 1
κ7 1 1 1 1 1 1
κ8 1 1 1 1 1 1
κ9 0 0 0 0 0 0
κ10 0 0 1 1 1 1
κ11 1 1 0 0 1 1
κ12 0 1 0 1 0 1
Posterior Weight 12.71% 3.00% 1.56% 1.46% 44.59% 34.48%

Table 10: Posterior distribution over equation lag structures. Each column represents a
particular vector p of row degrees. The last row is a posterior estimate of the probability
mass function Pr(p |y) obtained with the row degree algorithm; only p with estimated
mass greater than 1% are shown.

p1 1 1 1 1 1 1 2 2
p2 2 2 2 2 2 2 2 2
p3 1 1 1 1 1 1 1 1
p4 1 1 1 1 1 1 1 1
p5 3 3 3 3 3 3 3 3
p6 1 1 1 1 1 1 1 1
p7 1 1 1 1 1 1 1 1
p8 1 1 1 1 1 1 1 1
p9 0 0 0 0 0 0 0 0
p10 0 0 0 1 1 1 0 1
p11 0 1 1 0 1 1 1 1
p12 0 0 1 0 0 1 0 0
Posterior Weight 1.8% 52.8% 3.4% 1.0% 28.3% 4.0% 3.5% 3.1%
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Table 11: Inefficiency factors for impulse responses generated by the row degree algorithm
(n = 12); note that the reported inefficiency factors are computed on thinned draws.

IF avg IF st dev IF max
2.24 3.39 22.99
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Figure 1: Effect of not enforcing the echelon form to hold at every iteration. The first
column depicts the distribution of the number of echelon restrictions missed by the SSVS
restrictions in the row degree algorithm; the second column depicts the distribution of
the number of echelon restrictions correctly captured by the SSVS restrictions in the row
degree algorithm.
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Figure 2: Comparison of impulse responses to a shock in the interest rate generated by
the echelon vs. row degree algorithms (n = 12). The first row contains responses of GDP
to a shock in the interest rate; the second row contains responses of inflation to a shock
in the interest rate; the third row contains responses the interest rate to its own shock.
The dotted lines depict the (10%, 90%) HPD intervals.
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Figure 3: Comparison of impulse responses of the housing start and interest rate to
shocks generated by the echelon vs. row degree algorithms (n = 12). The first row
contains responses of the interest rate to a shock in the housing start; the second row
contains responses of the housing start to its own shock; the third row contains responses
of the housing start to a shock in the interest rate. The dotted lines depict the (10%, 90%)
HPD intervals.
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