
Technical Appendix to: A New Model of
Trend In�ation�

Joshua C.C. Chan
Australian National University

Gary Koop
University of Strathclyde

Simon M. Potter
Federal Reserve Bank of New York

September 2012

Appendix A: MCMC Algorithm

This appendix develops a posterior simulation algorithm for AR-trend-
bound: the bounded in�ation model given in (5). The other models are
restricted special cases of this model and, thus, the MCMC algorithm is re-
stricted in the obvious manner in each case. The one exception of this is
the UC-SV model of Stock and Watson (2007), which we label Trend-SV in
the paper. This involves one extra state equation for the stochastic volatility
in the in�ation de�ning trend in�ation. This is drawn using the stochastic
volatility described in this appendix.
Except for the parameters a and b, the prior is described in Section 3.2.

The priors for a and b are assumed to be uniform on the intervals (a; a) and
(b; b) respectively, where a = 0, a = 1:5, b = 3:5 and b = 5.
The MCMC algorithm sequentially draw from (we suppress the depen-

dence on y0):

1. p(� j y; �; h; �);

2. p(� j y; � ; h; �);
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3. p(h j y; � ; �; �);

4. p(a j y; � ; �; h; �2� ; �2�; �2h; b);

5. p(b j y; � ; �; h; �2� ; �2�; �2h; a);

6. p(�2� ; �
2
�; �

2
h j y; � ; �; h; a; b) =

p(�2� j y; � ; �; h; a; b)p(�2� j y; � ; �; h; a; b)p(�2h j y; � ; �; h; a; b):

In order to derive the above conditional densities, we �rst rewrite the
measurement equation in (5) as

Ky = �0 +K� + "; " � N(0;
y);

where 
y = diag(eh1 ; : : : ; ehT ) and

�0 =

0BBBBB@
�1y0
0
0
...
0

1CCCCCA ; K =

0BBBBB@
1 0 0 � � � 0
��2 1 0 � � � 0
0 ��3 1 � � � 0
...

. . .
...

0 0 � � � ��T 1

1CCCCCA :
Since jKj = 1 for any �, K is invertible. Therefore, we have

(y j �; h; y0) � N(K�1�0 + � ; (K
0
�1y K)

�1);

i.e.,

log p(y j �; h; y0) / �
1

2
�0Th�

1

2
(y�K�1�0� �)0K 0
�1y K(y�K�1�0� �); (1)

where �T is a T � 1 column of ones. It is important to note that both K and

�1y are sparse, i.e., they contain only a small number of non-zero elements.
As such, computational bene�ts of working with sparse matrix algorithms can
be exploited in this setting. In fact, (??) can be evaluated quickly without
the need of inverting any large matrices (i.e., one needs not compute K�1).
We refer the readers to Chan and Jeliazkov (2009) for details. Similarly, we
can write

H� = "� ;

where

H =

0BBBBB@
1 0 0 � � � 0
�1 1 0 � � � 0
0 �1 1 � � � 0
...

. . .
...

0 0 � � � �1 1

1CCCCCA :
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That is, the prior density for � is given by

log p(� j�2� ; a; b) / �
1

2
� 0H 0
�1� H� + g� (� ; a; b; �

2
� ); (2)

where a < � t < b for t = 1; : : : ; T , 
� = diag(!2� ; �
2
� ; : : : ; �

2
� ) and

g� (� ; a; b; �
2
� ) =� log

�
�

�
b

!�

�
� �

�
a

!�

��
�

TX
t=2

log

�
�

�
b� � t�1
��

�
� �

�
a� � t�1
��

��
:

Combining the previous prior and likelihood for � , we obtain the log
conditional density log p(� j y; �; h; �) as follows:

log p(� j y; �; h; �) /� 1
2
(y �K�1�0 � �)0K 0
�1y K(y �K�1�0 � �)

� 1
2
� 0H 0
�1� H� + g� (� ; a; b; �

2
� )

/� 1
2
(� � �̂)0D�1

� (� � �̂) + g� (� ; a; b; �2� );

where a < � t < b for t = 1; : : : ; T , and

D� =
�
H 0
�1� H +K

0
�1y K
��1

; �̂ = D�K
0
�1y K(y �K�1�0):

Since the conditional density is non-standard, we sample � via an
independence-chain Metropolis-Hasting (MH) step. Speci�cally, candidate
draws are �rst obtained from the N(�̂ ; D� ) distribution with the precision-
based algorithm in Chan and Jeliazkov (2009), and they are accepted or
rejected via an acceptance-rejection Metropolis-Hasting (ARMH) step.
To draw from p(� j y; � ; h; �), rewrite the measurement equation as

y� = X�+ ";

where X = diag(y�0; : : : ; y
�
T�1), y

� = (y�1; : : : ; y
�
T )
0 and y�t = yt � � t. From the

state equation we also have
H� = "�:

Therefore, the log conditional density log p(� j y; � ; h; �) is given by:

log p(� j y; �; h; �) / �1
2
(�� �̂)0D�1

� (�� �̂) + g�(�; �2�);
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where 0 < �t < 1 for t = 1; : : : ; T , and

g�(�; �
2
�) = �

TX
t=2

log

�
�

�
1� �t�1
��

�
� �

�
��t�1
��

��
;

D� =
�
H 0
�1� H +X

0
�1y X
��1

; �̂ = D�X
0
�1y y

�; 
� = diag(!2�; �
2
�; : : : ; �

2
�):

As before, we implement an ARMH step with approximating density
N(�̂; D�). For p(h j y; � ; �; �), we directly use the algorithm in Chan and
Strachan (2012).
To draw from the bounds of the interval trend in�ation is restricted to lie

in, note that the log conditional densities for a and b are given by

log p(a j y; � ; �; h; �2� ; �2�; �2h; b) / g� (� ; a; b; �2� )
log p(b j y; � ; �; h; �2� ; �2�; �2h; a) / g� (� ; a; b; �2� )

with supports a < a < minfa;minf� tgg and maxfb;maxf� tgg < b < b,
respectively. Since each conditional density is one-dimensional with bounded
support, draws from each density can be obtained via a Griddy-Gibbs step
(using a uniform grid with 300 grid points, accurate up to at least 2 decimal
places).
To draw from the error variances, note that p(�2� ; �

2
�; �

2
h j y; � ; �; h; a; b) is

the product of three densities. Hence, we can sample �2� , �
2
� and �

2
h sequen-

tially without a¤ecting the e¢ ciency of the sampler. The log conditional
density log p(�2� j y; � ; �; h; a; b) is given by

log p(�2� j y; � ; �; h; a; b) /� (�� + 1) log �2� �
S�
�2�
� T � 1

2
log �2�

� 1

2�2�

TX
t=2

(� t � � t�1)2 + g� (� ; a; b; �2� );

which is a non-standard density. We therefore implement an MH step with
the proposal density

IG

 
�� +

T � 1
2

; S� +
1

2

TX
t=2

(� t � � t�1)2
!
:

Similarly, the log conditional density log p(�2� j y; � ; �; h; a; b) is given by

log p(�2� j y; � ; �; h; a; b) /� (�� + 1) log �2� �
S�
�2�
� T � 1

2
log �2�

� 1

2�2�

TX
t=2

(�t � �t�1)2 + g�(�; �2�):
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Again, a draw from p(�2� j y; � ; �; h; a; b) is obtained via an MH step with the
proposal density

IG

 
�� +

T � 1
2

; S� +
1

2

TX
t=2

(�t � �t�1)2
!
:

Finally, p(�2h j y; � ; �; h; a; b) is a standard inverse-Gamma density

IG

 
�h +

T � 1
2

; Sh +
1

2

TX
t=2

(ht � ht�1)2
!
:
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Appendix B: Prior Sensitivity Analysis

This appendix presents results from a small prior sensitivity analysis where
we estimate the AR-trend-bound model with the following three sets of
priors:

� P1: a � U(0; 1:5) and b � U(3:5; 5);

� P2: a � U(0; 2:5) and b � U(2:5; 10);

� P3: a � TN(0; 2:5; 1; 1) and b � TN(2:5; 10; 3:5; 1).

The �rst of these is the benchmark prior used in the paper. The second
is a much more noninformative priors which allow for the bounds on trend
in�ation to be very wide. The third investigates sensitivity to choice of
functional form. It can be seen that estimates of trend in�ation change only
slightly, and estimates of the other latent states are virtually the same for
the three priors.
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Figure 1: Estimates for � t, �t and ht under various priors.
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