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1 Introduction

Empirical macroeconomists increasingly use Vector Autoregressions (VARs) with

datasets involving a hundred or more variables. However, in many applications, there

is strong evidence for stochastic volatility. Adding multivariate stochastic volatility

to large VARs has proved challenging. With small data sets, popular specifications

for VARs with stochastic volatility (VAR-SV) exist but Bayesian estimation and fore-

casting with these VAR-SVs is not computationally feasible with large data sets. This

paper develops a computationally feasible approach which uses all the data available

and allows for stochastic volatility. The idea of our approach is to work with many

small VAR-SVs. Each of these contains only a few of the large number of variables

available, but every one of the variables appears in one or more of the small models.

Forecasts from the many small models are then combined to produce forecasts which

reflect all the data available. We use composite likelihood methods to theoretically

justify and implement such a strategy.

The fact that large VARs are being found increasingly useful in an era of Big

Data needs little justification. The large VAR literature began with the US macroe-

conomic application of Bańbura, Giannone and Reichlin (2010) but large VARs are

now used with a variety of macroeconomic and financial data (see, among others,

Bloor and Matheson, 2010, Carriero, Kapetanios and Marcellino, 2010, 2012, Gian-

none, Lenza, Momferatou and Onorante, 2014, Bańbura, Giannone and Lenza, 2015,

Koop and Korobilis, 2016, McCracken, Owyang and Sekhposyan, 2016, Jarociński and

Maćkowiak, 2017, and Kastner and Huber, 2017). Similarly, the facts that macroeco-

nomic variables often exhibit structural instabilities and have variances that change

over time is increasingly accepted. Papers such as Clark (2011) highlight the partic-

ular importance in macroeconomic applications of allowing for time-variation in the

error covariance matrix. Hence, this is what we focus on in this paper (although the

econometric methods we develop could also be used with the time-varying parameter

VAR).

These arguments justify why there is a desire to work with large VAR-SVs. But

Bayesian methods, requiring the use of Markov Chain Monte Carlo (MCMC) meth-

ods, quickly become computationally infeasible as the number of variables in the VAR

increases. Bayesian methods are typically used with large VARs since they allow for

prior shrinkage which is of great use with over-parameterized models. For instance,
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when working with a large VAR with N = 100 variables and a lag length of p = 13

(as might be required with monthly data), the researcher will have over 100, 000 VAR

coefficients to estimate and 5, 050 free parameters in the error covariance matrix.

Bayesian prior shrinkage, often using natural conjugate or Minnesota priors, is used

to surmount the problems caused by a shortage of data information relative to the

number of coefficients being estimated. Even with these priors, which imply that the

posterior and one-step ahead predictive densities have analytical forms, the researcher

can face a substantial computational burden (see, e.g., Chan, 2020 or Carriero, Clark

and Marcellino, 2016). However, even small departures from the natural conjugate

prior VAR leads to posteriors that require the use of MCMC methods which means

a huge increase in the computational burden. And it is worth emphasizing that de-

parting from the conjugate prior is often desirable with VARs since its assumptions

are very restrictive. These are i) symmetry of the prior across equations, ii) propor-

tionality of the prior covariance to the error variance, and iii) homoskedasticity.

With large VARs this makes many sensible alternative approaches untenable. This

holds true for various global-local shrinkage priors (e.g. the variable selection prior

of George, Sun and Ni, 2008, Koop, 2013 and Korobilis, 2013, or the Lasso prior of

Gefang, 2014). It also holds true for specifications which allow for time-variation in

the error covariance matrix. It is the latter which is the focus of the present paper.

As noted, with large VARs standard approaches (e.g. Primiceri, 2005) which allow

for multivariate stochastic volatility are not computationally feasible. But there are

stochastic volatility specifications that can be used with larger VARs (e.g. Chan,

2020, and Carriero, Clark and Marcellino, 2016, 2019a,b). However, these place

restrictions on the form of time variation that is allowed for. And even these have a

large computational burden which means they cannot be used for forecasting with the

large VARs involving hundreds of dependent variables which are increasingly being

used.1

These considerations motivate the present paper. Working with many small VAR-

SVs is computationally feasible even with very high dimensional data sets and com-

posite likelihood methods can be used to combine forecasts from these many smaller

1Perhaps the best of the current approaches is developed in Carriero, Clark and Marcellino
(2019a). In this paper, impulse responses are presented using a 125 variable VAR, but when fore-
casting only a 20 variable VAR is used. Repeatedly forecasting with this model on an expanding
window of data with the 196 variables used in this paper would take months or more of computing
time on a good PC.
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models. So the methods we develop are practical and can be used with hundreds

of variables. But we also address several other questions to further strengthen the

case for our composite likelihood based methods. The first of these is whether there

is a theoretically strong justification for use of composite likelihood methods in our

context. We discuss relevant econometric theory in the next section of the paper.

The second question is: How should the various small models that arise with com-

posite likelihood methods be combined? To answer this question we discuss various

methods for doing so, drawing on the literature on opinion pools. The third ques-

tion is: How well do these methods work in practice? We answer this using a large

quarterly US macroeconomic data set involving 196 variables. We find our compos-

ite likelihood methods to forecast substantially better than the only computationally

practical competitor: a homoskedastic VAR using a natural conjugate prior. We

would like to compare our methods to other approaches that involve multivariate

stochastic volatility using this large data set, but cannot do it since the computa-

tional burden of popular Bayesian alternatives is too large. Instead, we compare our

methods to a range of different Bayesian VARs with multivariate stochastic volatility

using small data sets involving 7 variables and medium data sets involving 20 vari-

ables. We demonstrate the good, computionally efficient, forecasting performance of

our composite likelihood methods relative to these alternatives.

2 Composite Likelihood Methods for large VARs

with Stochastic Volatility

2.1 Overview

A traditional likelihood function is based on the p.d.f. of the N × 1 vector of de-

pendent variables, yt for t = 1, . . . , T . In many empirical cases, particularly if N is

large, computation involving a likelihood function can be difficult or infeasible. In

such cases, it may be possible to develop statistical methods for estimation of the pa-

rameters or forecasting using the composite likelihood instead of the full likelihood.

The composite likelihood is built up as a weighted average of likelihoods for yi,t for

i = 1, . . . ,M which are sub-vectors of yt. The likelihoods for these sub-vectors are

often called quasi-likelihoods and we will use this terminology. Bayesian methods can

then be used by combining a prior with the composite likelihood in the standard way.
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Thus, if yi,t is of much lower dimension than yt, a computationally difficult problem

of working with a high dimensional likelihood can be turned into a much simpler one

of working with many small quasi-likelihoods.

Composite likelihood methods can also have advantages in terms of parsimony.

That is, high dimensional models like large VARs are hugely over-parameterized.

The correct specification is likely a highly restricted version of the large VAR. The

existing Bayesian large VAR literature tries to overcome this problem through the use

of prior shrinkage or parameter restrictions. But this prior information often has to

be very strong to obtain reasonable forecasts. Using composite likelihood methods,

we are only working with small VARs which can yield good forecasts even in the

absence of strong prior information. Thus, prior elicitation becomes a less important

issue. We do have to make a choice of quasi-likelihoods, but this may be easier to

make (and justify) than choosing a particular prior or parametric restriction. For

instance, in this paper the desire to forecast a core set of variables of interest in the

context of a large data set which includes many other variables motivates our choice

of quasi-likelihoods.

The statistical literature on composite likelihood methods (see, e.g., Varin, Reid

and Firth, 2011, Ribatet, Cooley and Davison, 2012, and Roche, 2016) provides

a theoretical and empirical justification for working with them. They have been

exploited in several fields. For instance, Pakel, Shephard, Sheppard and Engle (2014)

is a financial application involving a large number of stock returns. These methods

have also been used in spatial statistics (e.g. Ribatet, Cooley and Davison, 2012).

But they have been rarely used in macroeconomics.2 To our knowledge, our paper is

the first to use them in the large VAR field.

2.2 The VAR-SV

We begin by defining the VAR-SVs that our quasi-likelihoods are based on. Spec-

ifications identical or similar to this have been used in a huge range of papers, in-

cluding Primiceri (2005), Koop, Leon-Gonzalez and Strachan (2009), Clark (2011),

D’Agostino, Gambetti and Giannone (2013) and Chan and Eisenstat (2018). The

2Two exceptions to this lie in the field of Dynamic Stochastic General Equilibrium (DSGE)
modelling: Canova and Matthes (2018) and Qu (2016).
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VAR-SV model can be written as:

A0tyt = c+ A1yt−1 + · · ·+ Apyt−p + εt,

where c is an N × 1 vector of intercepts, A1, . . . , Ap are N × N matrices of VAR

coefficients, Σt = diag
(
eh1,t , . . . , ehn,t

)
andA0t is a time varyingN×N lower triangular

matrix with ones on the diagonal, to be specific,

A0t =


1 0 · · · 0

a21,t 1 · · · 0
...

...
. . .

...

an1,t an2,t · · · 1

 .

We use notation where ci is intercept in the ith equation and Ai,j is the ith row of Aj

for j = 1, . . . , p. The VAR coefficients in equation i are βi = (ci, Ai,1, . . . , Ai,p).

It is convenient to re-write the VAR-SV as

yt = Xtβ +Wtat + εt, εt ∼ N(0,Σt), (1)

where Xt = In ⊗ (1, y′t−1, . . . , y
′
t−p), β = (β1, . . . , βp)

′, at is an N(N−1)
2
× 1 vector

consisting of the free elements of A0t stacked by rows, and Wt is an N × N(N−1)
2

matrix,

Wt =



0 0 0 · · · · · · · · · 0

−y1,t 0 0 · · · · · · · · · 0

0 −y1,t −y2,t · · · · · · · · · 0
...

...
. . .

... · · · · · · 0

0 · · · · · · −y1,t −y2,t · · · −yN−1,t


.

The log-volatilities ht = (h1,t, . . . , hN,t)
′ and the time-varying parameters at are as-

sumed to follow random walk processes:

ht = ht−1 + εht , εht ∼ N(0,Σh), (2)

at = at−1 + εat , εat ∼ N(0,Σa), (3)

where Σh = diag(σ2
h,1, . . . , σ

2
h,N) and Σa = diag(σ2

a,1, . . . , σ
2

a,
N(N−1)

2

).

It can be seen that the VAR-SV can have an enormous number of parameters
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when N is large. This has led large VAR researchers to work with restricted versions

of the stochastic volatility process. An influential recent model is the common drifting

volatility specification of Carriero, Clark and Marcellino (2016) which we denote by

VAR-CCM1 and use in our empirical work. This is the same as the VAR-SV except

that at = 0 and Σt = ehtΣ, where the Σ is an N ×N positive definite matrix and ht

is a scalar stochastic volatility process:

ht = ρht−1 + εht , εht ∼ N(0, σ2
h).

This much more parsimonious specification has been successfully used with large

VARs. But it does severely restrict the form that the time variation in the error

covariance matrix can take. In our empirical work, we compare our new approach to

the VAR-CCM1. We also use another specification proposed in Carriero, Clark and

Marcellino (2019a) which we label VAR-CCM2. This amounts to the VAR-SV with

at restricted to be time-invariant.

2.3 The Theory of Composite Likelihood Methods

2.3.1 Preliminaries

Assuming serially independent errors, the likelihood function (which, in our VAR

context, will be a one-step ahead forecast density) for y = (y′1, . . . , y
′
T )′ can be written

as:

L (y; θ) =
T∏
t=1

L (yt; θ) , (4)

where L (yt; θ) = p (yt|θ). The composite likelihood is defined as

LC (y; θ) =
T∏
t=1

M∏
i=1

LC (yi,t; θ)
wi , (5)

where LC (yi,t; θ) = p (yi,t|θ) is the quasi-likelihood and wi is the weight attached to

each quasi-likelihood with
∑M

i=1wi = 1. The weights will be discussed in sub-section

2.3.3.

The maximum composite likelihood estimator (MCLE) involves taking the maxi-

mum of LC (y; θ). Bayesian estimation proceeds using a posterior based on the com-

posite likelihood (i.e. the Bayesian composite posterior is pC (θ|y) ∝ LC (y; θ) p (θ)
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where p (θ) is the prior).

In theory, the likelihood components used to build a composite likelihood can be

anything. That is, yi,t for i = 1, . . . ,M can be any sub-sets of yt and, indeed, yi,t

and yj,t can overlap. For computational purposes, the key issue is that yi,t and M

should be small enough to lead to fast estimation. In this paper, all of our likelihood

components are four dimensional VAR-SVs involving three core variables of interest

that we wish to forecast and one additional variable. We partition yt =

(
y∗t

zt

)
where y∗t is N∗-dimensional and contains the core variables of interest, while zt (with

elements denoted by zi,t) is the vector of dimension Nother = N−N∗ that contains the

remaining variables. Then we can let yi,t =

(
y∗t

zi,t

)
for i = 1, . . . , Nother and, hence,

M = Nother in the number of models. Thus, our composite likelihood VAR-SV (VAR-

CL-SV) application will involve quasi-likelihoods which are all (N∗ + 1)-dimensional

VAR-SVs.

2.3.2 Asymptotic Results

The standard frequentist way of investigating the theoretical properties of composite

likelihoods is to assume that L (y; θ) is the true data generating process involving a

true parameter value θ = θ0 and derive the behavior of the MCLE. Results exist in the

literature noting that the MCLE should converge asymptotically to θ0 under certain

assumptions (see, e.g., Varin, Reid and Firth, 2011, or Ribatet, Cooley and Davison,

2012). But such results are limited and model dependent. In this sub-section we

derive some asymptotic results for our choice of quasi-likelihoods.

In (5), we have written the likelihood components as L (yi,t; θ) which all depend

upon a common parameter vector θ. In the VAR-CL-SV this will not be the case.

Some parameters will not appear in any of the likelihood components. For instance,

consider the equations for zi,t and zj,t for i 6= j. A large VAR-SV will contain a time-

varying error covariance between these two equations. However, this error covariance

will not appear in the composite likelihood function and so it will be impossible to

obtain consistent estimates of it using LC (y; θ). In other words, our choice of quasi-

likelihoods means that we can never aim for asymptotic convergence to an unrestricted

large VAR-SV. However, it is interesting to investigate what our methods do converge

to. In this sub-section, we prove asymptotic convergence to a particular restricted
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VAR-SV. We also highlight the connections between this restricted VAR-SV and the

Minnesota prior, but emphasize that our approach allows for stochastic volatility

while the conventional Minnesota prior does not.

For the choice of quasi-likelihoods made in the preceding sub-section, we can prove

asymptotic convergence of the composite likelihood to that of a restricted VAR-SV

of the following form:



Ay,t 0 0 · · · 0 0

−α′z,1,t 1 0 0 · · · 0

−α′z,2,t 0 1 0 · · · 0
...

...
. . . . . .

...

−α′z,M−1,t 0 0 · · · 1 0

−α′z,M,t 0 0 · · · 0 1





y∗t

z1,t

z2,t

...

zM−1,t

zM,t


=



cy

cz,1

cz,2
...

cz,M−1

cz,M


+

p∑
j=1



Byy,j
w1

g(M)
βyz,1,j · · · · · · wM

g(M)
βyz,M,j

β′zy,1,j βzz,1,j 0 · · · 0
...

...
. . . . . .

...

β′zy,M−1,j 0 · · · βzz,M−1,j 0

β′zy,M,j 0 · · · 0 βzz,M,j





y∗t−j

z1,t−j
...

zM−1,t−j

zM,t−j


+



εy,t

εz,1,t
...

εz,M−1,t

εz,M,t


,

with εy,t ∼ N(0,Σy,t), εz,i,t
iid∼N(0, ehN∗+i,t−lnwi) independent of each other and

Ay,t =


1 0 · · · 0

−α21,t 1 · · · 0
...

...
. . .

...

−αN∗1,t −αN∗2,t · · · 1

 ,Σy,t = diag(eh1,t , . . . , ehN∗,t).

Observe that this is a VAR-SV of the form

Ãtyt = c+

p∑
j=1

B̃jyt−j + εt, (6)

with some elements of Ãt and B̃j restricted to zero and some elements of B̃j shrunk

towards zero by factors w1

g(M)
, . . . , wM

g(M)
where g (M) is a function of M . We stress

that the target model is a restricted VAR-SV with random walk laws of motion as in

equations (2) and (3).
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To provide some more insight into this restricted VAR-SV, note that the param-

eters in the VAR can be broken into three groups: those controlling the relationship

between: i) the core variables of interest, ii) the core variables and other variables,

and iii) the other variables. Note that those in the first group (i.e. Ay,t and Byy,j for

j = 1, . . . , p) are left completely unrestricted. These are likely of most importance in

ensuring good forecast performance. The parameters in the second group (i.e. αz,i,t

and βyz,i,j and βzy,i,j for i = 1, . . . ,M and j = 1, . . . , p) are also likely important,

but the restricted VAR only places very mild restrictions on them (i.e. through the

presence of the wi

g(M)
for i = 1, . . . ,M terms). It is only the parameters in the third

group that are highly restricted. But since these control the relationships between

the variables which are of no direct interest in the forecasting exercise, restricting

them is likely to have little impact on forecast performance.

A word of explanation is in order about g(M). A sufficient condition for the

proof of the following proposition requires
√
M

g(M)
to be bounded for all M (e.g. if

g (M) =
√
M our proof follows standard law of large numbers results). But this

condition is exactly what prior shrinkage in VARs usually does. That is, in our

approach as M increases N also increases and the VAR dimension increases. It is

standard for Bayesians working with large VARs to increase prior shrinkage (e.g. using

the Minnesota prior) when VAR dimension increases (see, e.g., Table 1 of Banbura

Giannone and Reichlin, 2010). Hence, the presence (and interpretation) of g(M) is

justified as being comparable to the types of prior shrinkage commonly used in large

Bayesian VARs. Note too that g (M) only applies to other lags in the equations

for the core variables, so the convergence of the composite likelihood to a restricted

VAR-SV only depends on the presence of shrinkage on these coefficients.

It is important to emphasize that LC (y; θ) is not a true likelihood in the sense

that it is not a density in the data (conditional on parameters) that integrates to one.

To compare it to a conventional likelihood for the restricted VAR-SV given in (6),

L (y; θ), we consider the normalized composite likelihood

L̃C(y; θ) =
LC (y; θ)∫

y
LC (y; θ) dy

.

A useful measure of the approximation error associated with using LC(y; θ) instead of

L(y; θ) is the Kulback-Liebler divergence of L(y; θ) from L̃C(y; θ), denotedDKL(L‖L̃C),

which is summarized in the following proposition.
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Proposition 1 Assume max{wi} is decreasing in M and
√
M

g(M)
< ∞ for all M ≥ 1.

Then

lim
M→∞

DKL(L‖L̃C) = 0.

The proof of this proposition is in Section A.1 of the Online Appendix. The

assumption that max{wi} is decreasing in M is innocuous as it implies only that

when we add a new sub-model it has a non-zero weight which will leave less weight

for the other models, including the model with maximum weight. Thus, our composite

likelihood using small VAR-SVs as quasi-likelihoods asymptotically converges to the

likelihood of a particular large VAR-SV under sensible assumptions.

Of course, given the way we have defined our quasi-likelihoods, it is not possible to

asymptotically converge to an unrestricted large VAR-SV since (as noted previously)

some of the unrestricted model’s parameters appear in none of the quasi-likelihoods.

If interest lies in using composite likelihood methods to provide estimates of all the

parameters in a large VAR-SV, then other quasi-likelihoods should be chosen to build

a composite likelihood function (e.g. building a set of quasi-likelihoods involving

all possible bivariate or tri-variate combinations of the variables). Our choice of

quasi-likelihoods is based on our choice of empirical problem. We are interested in

forecasting a small number of variables, using the other variables only to improve

these forecasts. For this, our choice of quasi-likelihoods is a sensible one.

2.3.3 Composite Likelihoods as Opinion Pools

An alternative way of theorizing about composite likelihoods, popular among Bayesians

(see, e.g., Roche, 2016) is to begin by assuming there is some feature of interest, θ

(in our case, the error covariance matrix relating to the core variables). There are

many “agents” each of which uses a (possibly agent-specific) information set to pro-

duce an “opinion” (i.e. a posterior) about θ. The opinions going into the pool can

be obtained from any source. The question arises as to how to pool these opinions?

There is a literature on such opinion or prediction pools. Hall and Mitchell (2007)

and Geweke and Amisano (2011) are influential approaches in econometrics. Genest,

Weerahandi, Zidek (1984) and Genest, McConway and Schervish (1986) are influen-

tial early references which establish or review many theoretical properties of opinion

pools.

If, in our case, we interpret each quasi-likelihood, LC (yi,t; θ), as arising from an
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agent, we can draw on this literature to obtain a theoretical justification for our ap-

proach. Papers such Roche (2016) show that Bayesian inference using the composite

likelihood can be interpreted as arising from a generalized logarithmic opinion pool.

This offers strong theoretical justification for our approach. Genest et al. (1984)

show that such opinion pools have attractive properties including external Bayesian-

ity. External Bayesianity implies that if all agents agree on the same prior, then it

does not matter whether the prior is added before or after the opinions are pooled.

Generalized logarithmic opinion pools are the only class of opinion pools that have

this property.

An alternative approach is to use linear opinion pools (e.g. Hall and Mitchell, 2007,

and Geweke and Amisano, 2011). The use of linear opinion pools means the resulting

approach does not satisfy external Bayesianity and does not lead to Bayesian inference

based on pC (θ|y) either. However, as discussed in Geweke and Amisano (2011), linear

pools sometimes give results that are comparable to logarithmic opinion pools. Hence,

even though they are not a composite likelihood approach, they are closely related

and we include them in our set of empirical results.

The advantage of drawing on the opinion pool literature is that it offers insights

into how the weights, wi for i = 1, . . . ,M , can be chosen. In our empirical work,

we consider a range of approaches. In the linear opinion pool formulation, Geweke

and Amisano (2011) derive a set of weights which are optimal for the linear pool and

provide a method for calculating them which we follow in this paper.

In the logarithmic opinion pool formulation, a logical thing to do (see Canova

and Matthes, 2018) is to base the weights on some measure of the fit of each quasi-

likelihood. In our application, where each quasi-likelihood is a VAR-SV involving a

set of core variables (y∗t ) and one other variable, it makes sense to use the marginal

likelihood or an approximation to it to calculate the weights. Hence, we consider

weighting schemes based on the Bayesian information criterion (BIC), the Deviance

Information criterion (DIC) and the marginal likelihood (ML). Letting BICi be the

BIC for sub-model i, we have

BICi = −2 logL
(
y∗; θ̂i

)
+ d log(T ),

where θ̂ is the maximum likelihood estimate using sub-model i, y∗ = (y∗′1 , . . . , y
∗′
T )′and

d is the number of free parameters. We stress that, in each quasi-likelihood, we are
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only using the core variables (which are common to all quasi-likelihoods) to define

the BIC. In other words, the likelihood in the BIC (and the posterior in the formula

for the marginal likelihood below) is based on a three-dimensional conditional den-

sity (i.e. the density for the core variables conditional on the other variable). The

maximum likelihood estimate is computed using the integrated likelihood as in Chan

and Eisenstat (2018).

The weight for each sub-model is computed as

wBICi =
e−

1
2

BICi∑M
j=1 e

− 1
2

BICj
, for i = 1, . . . ,M.

Our second set of weights follows the same strategy, but using DIC instead of BIC.

DIC is calculated based on the integrated likelihood for the core variables of interest

(see Chan and Grant, 2016, for details).

The third weighting scheme is based on the marginal likelihood. We use the

following marginal likelihood for sub-model i:

MLi =

∫
pi(y

∗|θ)p(θ)dθ,

where pi(y|θ) =
∏T

t=1 L
C (yi,t; θ) and pi(y

∗|θ) implies evaluating the marginal like-

lihood only using the core variables. The weight for each sub-model is computed

as

wML
i =

MLi∑M
j=1 MLj

, for i = 1, . . . ,M.

We calculate the marginal likelihood using the methods of Chan and Eisenstat (2018).

We use the abbreviations, VAR-CL-BIC, VAR-CL-DIC and VAR-CL-ML for compos-

ite likelihood methods involving these three different weights.

In the linear opinion pool approach we calculate the optimal weights using the

method described in Geweke and Amisano (2011). This involves the following steps.

Let pi(y
∗
t |y1:t−1) be the one-step-ahead predictive density for the core variables for the

ith sub-model and w = (w1, w2, . . . , wM)′. The predictive log score function is given

by

f(w) =
T∑
t=1

log

(
M∑
i=1

wipi(y
∗
t |y1:t−1))

)
.

The optimal weight is obtained by solving the optimization problem ŵ = argmaxwf(w).
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We use VAR-LIN as the abbreviation for this approach. Even though these weights

are calculated to be optimal in the linear opinion pool case, we can also use them as

weights in the composite likelihood. We refer to such an approach as VAR-CL-LIN.

The main research question of interest in this paper is whether composite like-

lihood methods involving many small models can forecast well in the presence of

large data sets. A subsidiary question though, is whether the general idea of com-

bining many small models for forecasting is a good one. This idea is exploited in

many different ways in the econometrics literature (see, e.g., the subset regression

approach of Elliott, Gargano and Timmermann, 2013). Here we focus on logarithmic

and linear opinion pools. By including linear opinion pooling methods we can address

the second question. To preview our empirical findings, we find that all approaches

which combine many small models forecast well. That is, it seems that the empirical

success of our approach is largely due to the choice of quasi-likelihoods as opposed

to the way they are combined. However, it is worth noting that (as detailed in the

computational times comparison provided in Section B.3 of the Online Appendix) the

linear opinion pool has significant computational drawbacks relative to the composite

likelihood approach.

3 Bayesian Analysis Using the Composite Poste-

rior

Our goal is to carry out Bayesian analysis on the composite posterior, pC (θ|y), using

MCMC draws from each of the quasi-posterior distributions. This section develops

an algorithm for doing so.

3.1 Quasi-Posterior Distributions

We first extend our earlier notation to define the quasi-likelihoods. Remember that

each of these is a VAR-SV that combines core variables of interest, y∗t , with an

additional variable, zi,t. Thus, quasi-likelihood i (for i = 1, . . . ,M) can be expressed
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in the form:

Ay,ty
∗
t = Xy,tβy +Xzi,tβyzi + εy,t, εy,t ∼ N(0,Σy,t), (7)

zi,t = y∗tαzi,t +Xtβzi + εzi,t, εzi,t ∼ N
(
0, ehN∗+i,t

)
, (8)

Ay,t =


1 0 · · · 0

α21,t 1 · · · 0
...

...
. . .

...

αN∗1,t αN∗2,t · · · 1

 , Σy,t =


eh1,t

eh2,t

. . .

ehN∗,t

 .

In (7), the matrix Xy,t contains lags of y∗t , and the matrix Xzi,t contains lags of

zi,t. The log-volatilities hi,t and the time-varying parameters αzi,t and αjk,t, i =

1, . . . ,M, j = 2, . . . , N∗, k = 1, . . . , j−1 are assumed to follow random walk processes:

hi,t = hi,t−1 + εhi,t, εhi,t ∼ N(0, σ2
h,i), (9)

αjk,t = αjk,t−1 + εαjk,t, εαjk,t ∼ N(0, σ2
α,jk), (10)

αzi,t = αzi,t−1 + εαi,t, εαi,t ∼ N(0,Σα,i), (11)

where Σα,i is a diagonal matrix.

Let θ = {βy, Ay,1, . . . , Ay,T ,Σy,1, . . . ,Σy,T} be the set of parameters that are com-

mon in all quasi-likelihoods, and denote by

ηi = {βyzi , βzi , αzi,0, . . . , αzi,T , hN∗+i,0, . . . , hN∗+i,T ,Σα,i}

the parameters that appear only in quasi-likelihood i. Each quasi-posterior i is given

by

pi(θ, ηi | y∗, zi) = p(θ, ηi)p(y
∗, zi | θ, ηi)/p(y∗, zi),

where zi = (zi,1, . . . , zi,T )′.

A key feature of our set-up is that the density that defines each quasi-likelihood
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can be conveniently decomposed as:

p(y∗, zi | θ, ηi) =
T∏
t=1

p(y∗t | y∗t−1, . . . , y
∗
t−p, zi,t−1, . . . , zi,t−p, βy, βyzi , Ay,t,Σy,t)

× p(zi,t | y∗t , y∗t−1, . . . , y
∗
t−p, zi,t−1, . . . , zi,t−p, βzi , αzi,t, hN∗+i,t),

=

(
T∏
t=1

p(y∗t | · )

)(
T∏
t=1

p(zi,t | y∗t , · )

)
,

= p(y∗ | z̃i, θ, βyzi)p(zi | y∗, η̃i),

where z̃i = {zi,1, . . . , zi,T−1} and η̃i = {βzi , αzi,0, . . . , αzi,T , hN∗+i,0, . . . , hN∗+i,T ,Σα,i}.
In this decomposition, p(y∗ | z̃i, θ, βyzi) is the density of a multivariate normal dis-

tribution that can be regarded as the likelihood for the model in (7), with zi,1, . . . , zi,T−1

treated as exogenous regressors. Moreover, this density can be integrated analytically

with respect to a prior on βyzi to obtain a density that only contains common pa-

rameters θ, i.e., p(y∗ | z̃i, θ) =
∫
βyzi

p(βyzi)p(y
∗ | z̃i, θ, βyzi)dβyzi . Similarly, p(zi | y∗, η̃i)

can be viewed as the multivariate normal likelihood for a time-varying parameter

autoregressive distributed lag model (TVP-ARDL) with exogenous y∗t defined by (8),

with the important feature that it contains only nuisance parameters.

Consequently, if θ and η̃i are independent in the prior (as we assume in this

paper), then they are also independent in the i-th quasi-posterior. Moreover, this

independence carries over to the composite posterior defined as

pC(θ, η̃1, . . . , η̃M | y∗, z1, . . . , zM) ∝ p(θ)
M∏
i=1

p(η̃i)p(y
∗, zi | θ, η̃i)wi ,

= pC(θ | y∗, z̃1, . . . , z̃M)
M∏
i=1

pC(η̃i | y∗, zi), (12)

where

pC(θ | y∗, z̃1, . . . , z̃M) ∝ p(θ)
M∏
i=1

p(y∗ | z̃i, θ)wi ,

pC(η̃i | y∗, zi) ∝ p(η̃i)p(zi | y∗, η̃i)wi .

The decomposition in (12) is crucial as it allows us to sample the common pa-
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rameters θ and each η̃i, i = 1, . . . ,M independently. Consequently, we can parallelize

the sampling and vastly reduce the computation time. This is taken up in the next

sub-section.

3.2 Simulation from the Composite Posterior

This section describes our computational algorithm to simulate from the compos-

ite posterior pC(θ, η̃1, . . . , η̃M | y∗, z1, . . . , zM). Instead of designing an MCMC al-

gorithm to directly sample from this composite posterior, we develop an accept-

reject algorithm using MCMC draws from the individual quasi-posterior distributions

pi(θ | y∗, zi), i = 1, . . . ,M , as proposals. The key advantage of this approach is that

sampling from each of the quasi-posterior distributions can be done in parallel and

using standard MCMC methods for small VAR-SV models.

Using the decomposition of the composite posterior in (12), we can generate sam-

ples from pC(θ | y∗, z̃1, . . . , z̃M), pC(η̃1 | y∗, z1), . . . , pC(η̃M | y∗, zM) independently. We

start with simulating the common parameters θ from pC(θ | y∗, z̃1, . . . , z̃M) by appro-

priately pooling draws of θ from the quasi-posteriors. We develop an accept-reject

algorithm for this purpose.

Consider the proposal density q(θ) that is a mixture of the M quasi-posteriors,

i.e.,

q(θ) =
M∑
i=1

wipi(θ | y∗, zi) = p(θ)
M∑
i=1

wip(y
∗ | z̃i, θ)

p(y∗ | z̃i)
,

where p(y ∗| z̃i) =
∫
θ
p(θ)p(y∗ | z̃i, θ)dθ can be regarded as the marginal likelihood of

the VAR-SV with exogenous variables defined in (7).

Given draws from the M quasi-posteriors pi(θ | y∗, zi) for i = 1, . . . ,M and a set of

weights wi for i = 1, . . . ,M—which can be any of those described in section 2.3.3—it

is easy to obtain a set of draws from q(θ). Moreover, q(θ) can be readily evaluated:

p(y∗ | z̃i) can be computed using the algorithm of Chan and Eisenstat (2018) that we

use to obtain the marginal likelihood in a VAR-SV (see Section 2.3.3) and p(y∗ | z̃i, θ)
is a multivariate normal density.

To show the latter claim, let βyzi ∼ N(β
yz
, V β,z) denote the prior for βyzi . Let αy,t

represent the free elements in Ay,t stacked by row, and let Wy,t denote the associated

covariate matrix (see the discussion in Section 2.2). Then, p(y∗ | z̃i, θ) has the following
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multivariate normal form:

(y∗ | z̃i, θ) ∼ N
(
Wyαy +Xyβy +Xziβyz, XziV β,zX

′
zi

+ Σy

)
,

where Σy is a block diagonal matrix with diagonal blocks Σy,t, t = 1, . . . , T . Finally,

Xy, Xzi , Wy and αy respectively stack Xy,t, Xzi,t Wy,t and αy,t over t = 1, . . . , T .

To be a valid accept-reject algorithm with proposal density q(θ), we need to show

that the ratio pC(θ | y∗, z̃1, . . . , z̃M)/q(θ) is bounded for all θ in its support. To that

end, observe that

r(θ) =

∏M
i=1 [p(y∗ | z̃i, θ)/p(y∗ | z̃i)]wi∑M
i=1wip(y

∗ | z̃i, θ)/p(y∗ | z̃i)
≤ 1.

This inequality follows from the fact that a geometric average is always less than or

equal to the corresponding arithmetic average. Now, write the target density as

pC(θ | y∗, z̃1, . . . , z̃M) =
p(θ)

∏M
i=1 p(y

∗ | z̃i, θ)wi

Ki

,

where Ki =
∫
p(θ)

∏M
i=1 p(y

∗ | z̃i, θ)widθ is the normalizing constant. If we let K =∏M
i=1 p(y

∗ | z̃i)wi/Ki, then we can show that pC(θ | y∗, z̃1, . . . , z̃M) ≤ Kq(θ) for all θ:

pC(θ | y∗, z̃1, . . . , z̃M)

Kq(θ)
=
p(θ)

∏M
i=1 [p(y∗ | z̃i, θ)p(y∗ | z̃i)]wi

p(θ)
∑M

i=1wip(y
∗ | z̃i, θ)/p(y∗ | z̃i)

= r(θ) ≤ 1.

This suggests an accept-reject sampling approach to pool draws of common param-

eters obtained from individual quasi-posteriors.3 We summarize the algorithm as

follows:

1. obtain a proposal draw θ∗ ∼ q(θ) as follows:

(a) sample from pi(θ | y∗, zi) in parallel for i = 1, . . . ,M , using standards meth-

ods (e.g., the Gibbs sampler of Primiceri, 2005);

(b) for each pi(θ | y∗, zi) compute relevant quantities such as the BIC, DIC

3For a general discussion of the accept-reject method, see, e.g., Section 3.1.5 in Kroese, Taimre
and Botev (2011). Since the proposal draws are obtained from the quasi-posteriors using MCMC,
they are correlated by construction. Consequently, the sample obtained from this accept-reject
algorithm would also be correlated.
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and/or ML (again, using parallel operations and efficient algorithms—e.g.,

those developed in Chan and Eisenstat, 2018);

(c) use the BICs, DICs, and/or MLs to compute the composite likelihood

weights w1, . . . , wM ;

2. accept θ∗ with probability r(θ∗) using the accept-reject algorithm.

Next, we consider obtaining draws from pC(η̃i | y∗, zi) for each i = 1, . . . ,M . The

draws of η̃i are only needed to compute MLs, DICs, and BICs, which are only used

to compute the weights w1, . . . , wM . If the weights are known (e.g. as in the equal

weights case), then there is no need to draw η̃i. Note also that the MLs used to

evaluate r(θ) in implementing the accept-reject algorithm do not require η̃i. Since, in

some cases, there is no need to produce draws of η̃i and the algorithm is only a slight

adaptation of one for the TVP-ARDL model, we relegate technical details to Section

A.2 of the Online Appendix.

Once draws of θ and η̃1, . . . , η̃M are obtained from the quasi-posterior distribution,

it is straightforward to simulate from the joint predictive density of the core variables

as well. The exact procedure is described in detail in Section A.3 of the Online

Appendix. We use this approach in the following section to conduct a comprehensive

pseudo out-of-sample forecasting exercise.

4 Forecasting Results

4.1 Overview

We carry out an empirical investigation of our composite likelihood methods using

a large US quarterly data set involving 196 variables. The data are taken from

the Federal Reserve Bank of St. Louis’ FRED-QD data set and run from 1959Q1-

2015Q3.4 All data are transformed to stationarity following the recommendations in

the FRED-QD data base. We focus on empirical results relating to three variables:

CPI inflation, GDP growth and the Federal Funds rate and refer to these as the core

variables. We also present results using small and medium data sets of 7 and 20

4The data are available through https://research.stlouisfed.org/econ/mccracken/fred-databases/.
See also McCracken and Ng (2016). Complete details of all the variables in the data set are provided
there.
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variables, respectively. Details of which variables are included in which data set are

given in Section B.1 of the Online Appendix. A lag length of four is used for all

models.

We compare our composite Bayesian methods to a range of alternative methods.

Our choice of these is motivated by (and this section organized around) our wish to

answer the following questions.

The first of these is: Do composite likelihood methods forecast well compared

to other scalable high dimensional approaches? To answer this question the key

comparison is with the homoskedastic large VAR with natural conjugate prior as this

is the most popular approach that is computationally feasible in the large data set.

This is labelled ”Large VAR” in the table below. If we find composite likelihood

approaches based on VAR-SVs beat the Large VAR (as we do), then a subsidiary

question arises. Are our composite likelihood methods winning due to the fact that

they allow for stochastic volatility or some other aspect of the composite likelihood

approach itself? To address this question, we also present forecasting results using

our composite likelihood methods on homoskedastic VARs. These are exactly like our

other composite likelihood approaches, but using homoskedastic VARs to define the

quasi-likelihoods. In the interests of brevity, we only present results for the equally-

weighted case and label this approach VAR-HM-CL-EQ.

The second question is: Do our large data methods forecast well relative to simpler

methods using smaller data sets? Other papers working with similar US quarterly

data sets and alternative modelling approaches have tended to find that working with

large VARs does improve forecast performance relative to small VARs. However, the

evidence is often not that strong. For instance, Koop (2013) finds that, compared

to small VARs, moving towards larger VARs does improve forecast performance, but

there comes a point where adding extra variables into the VAR offers only modest

improvements in forecast performance. To address this question, we present results

using the unrestricted VAR-SV using small data sets.

When working with a small data set, the researcher must choose which variables to

include. This can potentially have important consequences for forecast performance.

It is possible that a bad choice will lead to poor forecast performance. An advantage

of our composite Bayesian methods (or any large VAR method) is that such a choice

does not have to be made. All the 196 variables are included and the algorithm

decides which get more weight in the composite posterior. To illustrate the potential
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consequence of making a poor choice in a small data set, we present results from a 7-

variate unrestricted VAR-SV involving the 3 core variables and 4 additional variables

which have been commonly used for forecasting the core variables in other studies.

We refer to these as the four “good” variables. We also present results from this

model except that the 4 “good” variables are replaced by 4 “bad” variables. These

are chosen in an informal manner as being among the ones which have low correlations

with the core variables. Thus we have both a “good” and “bad” VAR-SV with the

small data set. Section B.1 of the Online Appendix provides a list of these “good”

and “bad” variables.

The third question relates to stochastic volatility and asks: How do our methods

compare to other approaches which restrict the form of the multivariate stochastic

volatility process? Several approaches have been suggested which are, to different

extents, scalable. These include the VAR-CCM1 and VAR-CCM2 models described

in Section 2.2. We produce results for these using the “good” small and the medium

data sets. In addition, we include the VAR with multivariate stochastic volatility

modelled using the factor structure of Kastner (2019), estimated with the medium

data set. We present results for two versions of this model, one has a single factor

and the other two factors.

Table 1 provides a list of all these models along with their acronyms.
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Table 1: Models used in Forecasting Exercise

VAR-CL-BIC composite Bayesian VAR-SV with BIC based weights

VAR-CL-DIC composite Bayesian VAR-SV with DIC based weights

VAR-CL-EQ composite Bayesian VAR-SV with equal weights

VAR-CL-ML composite Bayesian VAR-SV with marginal likelihood weights

VAR-CL-LIN composite Bayesian VAR-SV with linear pool weights

VAR-LIN VAR-SV with linear pool weights as in Geweke and Amisano (2011)

VAR-HM-CL-EQ composite Bayesian homoscedastic VAR with equal weights

Large VAR Large Homoskedastic VAR

VAR-SV-3 VAR-SV using core variables only

VAR-SV-g VAR-SV using small data set (“good” variables)

VAR-SV-b VAR-SV using small data set (“bad” variables)

VAR-CCM1 Carriero, Clark and Marcellino (2016) using small data set (“good” variables)

VAR-CCM2 Carriero, Clark and Marcellino (2019a) using small data set (“good” variables)

VAR-CCM1-20 Carriero, Clark and Marcellino (2016) using medium data set

VAR-CCM2-20 Carriero, Clark and Marcellino (2019a) using medium data set

VAR-FSV-1f VAR with factor SV model of Kastner (2019), 1 factor

VAR-FSV-2f VAR with factor SV model of Kastner (2019), 2 factors

Further details about the specification of all models, including prior hyperparameter

choice, are given in Section A.3 of the Online Appendix. For the VAR coefficients

in all models we make standard Minnesota prior choices. Where possible, we make

identical specification and prior hyperparameter choices across models. It is worth

stressing that, in conventional large VAR approaches where the number of parameters

being estimated exceeds the number of observations, prior elicitation is crucial. Priors

must be very informative and results can be sensitive to prior choice. An advantage

of composite likelihood approaches is that, since all sub-models used are small, prior

elicitation is a less important issue. It is possible to use less informative priors and

prior sensitivity concerns are mitigated.

To evaluate forecast performance, we use two point forecast metrics and two den-

sity forecast metrics for the core variables. Let y∗t =
(
y∗t,1, y

∗
t,2, y

∗
t,3

)′
denote the random

variables being forecast and yRt =
(
yRt,1, y

R
t,2, y

R
t,3

)′
be their realizations. For the point

forecast, we report the root mean squared forecast error (RMSFE) and the mean
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absolute forecast error (MAFE),

RMSFEi =

√∑T−h
t=t0

(
yRt+h,i − E(y∗t+h,i|yR1:t)

)2

T − h− t0 + 1
.

MAFEi =

∑T−h
t=t0

∣∣yRt+h,i − ŷt+h,i∣∣
T − h− t0 + 1

,

for i = 1, 2, 3 where E(yt+h|yR1:t) is the mean of the predictive density and ŷMt+h is the

median of the predictive density. For the density forecasts, we report the average

log-predictive likelihoods (ALPL) and the average continuous rank probability score

(ACRPS),

ALPLi =

∑T−h
t=t0

log pt+h(y
∗
t+h,i = yRt+h,i|yR1:t)

T − h− t0 + 1
,

ACRPSi =
1

T − h− t0 + 1

T−h∑
t=t0

CRPSt,i,

for i = 1, 2, 3 where CRPSt,i =
∫∞
−∞

(
Ft+h(z)− 1(yRt+h < z)

)2
dz = Ept+h

|y∗t+h,i −
yRt+h,i| − 0.5Ept+h

|y∗t+h,i − yRt+h,i| and Ft+h(•) is the c.d.f. of the predictive density. A

small value of the ACRPSi indicates a better forecasting performance.

We also present a joint ALPL for the three core variables of interest:

ALPL =

∑T−h
t=t0

log pt+h(y
∗
t+h = yRt+h|yR1:t)

T − h− t0 + 1
.

We present results for a forecast evaluation period beginning in 1970 and running

to the end of the sample.5

We provide forecasts of quarterly variables one quarter (h = 1) and one year in

the future (h = 4). We carry out a one-sided sign test of equal predictive accuracy of

Diebold and Mariano (1995). All tests compare a specific model to the benchmark.

Different tables use different benchmarks depending on which of our three questions is

being addressed. In the tables, ***, ** and * denote findings of statistically significant

forecast improvements relative to the benchmark at the 1%, 5% and 10% level of

5In Section B.4 of the Online Appendix we also present results for a short forecast evaluation
period that begins in 2008Q1 so as to take in only the financial crisis and subsequent period. This
shorter period yields results which are similar, but slightly more favorable to our methods, than
those produced here.

23



significance, respectively.

The methods developed in this paper are of particular use for forecasting. If

estimating large time-varying covariance matrices were the focus, we would choose

the sub-models differently. However, it is worth noting that, in Section B.2 of the

Online Appendix, we present results from a small Monte Carlo study where we use

parameter estimates from the VAR-SV using the small data set to construct a data

generating process (DGP). Then we artificially generate 100 artificial data sets from

this DGP and produce estimates of the time-varying error variances and covariances

for the first three equations (i.e. those for the three core variables). All VAR-CL

specifications produce estimates which are close to those of the VAR-SV.

Section B.3 of the Online Appendix also includes evidence on the computational

burden of various approaches. As expected, this demonstrates the scaleability of the

composite likelihood approaches in that the computational burden increases roughly

linearly in N . The same cannot be said, for instance, for VAR-CCM2 where the com-

putational burden increases at a much faster rate. For VAR-CCM2 the computational

burden is similar to composite Bayesian approaches when N = 20, but is almost 10

times more burdensome for N = 100. It is also worth noting that the linear opinion

pool is much more computationally demanding than composite likelihood methods

since it involves recursive estimation and numerical optimization (see Section B.3 of

the Online Appendix and Geweke and Amisano, 2011).

4.2 Do Our Methods Forecast Better Than the Large VAR?

The large homoskedastic VAR using the Minnesota prior (or similar) can be used in

large data sets involving hundreds of variables and is the most popular VAR approach

at present. The best overall summary of forecast performance involves the entire

joint predictive density for the three core variables. These are presented in Table

2 for h = 1 and h = 4. The evidence in this table is overwhelming. All of our

composite Bayesian methods as well as the linear opinion pool forecast much better

than the large VAR at both forecast horizons. The Diebold-Mariano tests indicate

these improvements are highly statistically significant. Table 3 presents results for

the core variables individually and for a wider variety of forecast metrics. This table

also indicates strong, statistically significant, improvements in forecasting by our

composite likelihood methods for the vast majority of cases. It is instructive to look
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at the few cases where the composite Bayesian methods are not significantly better

than the large VAR. These occur only for h = 1 and for two variables: inflation and

GDP growth. Most noteworthy is the fact that these exceptions are only found when

using MSFEs and MAFEs (measures of point forecasts performance) and never found

when using ACRPSs and ALPLs (measures based on the predictive density). This

highlights the importance of adding stochastic volatility. The homoskedastic large

VAR is not able to model time-varying predictive variances. This inability to do so

means that, even if its point forecasts are reasonable (at least for inflation and GDP

growth for h = 1), its predictive densities are not.

When we use our composite likelihood methods with homoskedastic VARs, we

also find forecast performance to be worse than approaches which allow for stochastic

volatility. This can be seen in the rows of Tables 2 and 3 for VAR-HM-CL-EQ.

This provides additional evidence of the presence of stochastic volatility in this data

set. In addition, it is interesting to note that VAR-HM-CL-EQ is forecasting much

better than the large homoskedastic VAR. This suggests that there are some benefits

from using composite Bayesian methods with VARs apart from their ability to easily

incorporate stochastic volatility. Working with many smaller parsimonious models,

and combining them using composite likelihood methods, is producing better forecasts

than those produced by a single large model which induces parsimony through the

use of the Minnesota prior.

Tables 2 and 3 also allow us to compare the different ways of weighting used with

our composite Bayesian methods. What they show is that the alternative ways of

doing the weighting typically do not make a great deal of difference for forecasting.

There is slight evidence that BIC and DIC based weights are inferior to the other

weights. But marginal likelihood and linear opinion pool weights are roughly the

same and forecast very well. There are even cases where the simplest strategy of using

equal weights forecasts well. And the VAR-LIN of Geweke and Amisano (2011) also is

typically among the top performing approaches, although we remind the reader that

this is computationally much more demanding than our composite Bayesian methods

(see Section B.3 of the Online Appendix). Accordingly, in the remainder of this paper

we will focus on composite likelihood methods using marginal likelihoods as weights.

Results with other weighting schemes are similar and are available in Section B.4 of

the Online Appendix.
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Table 2: Joint average log-predictive likelihoods for 3 core variables under 8 large
models and 2 forecast horizons (h = 1, 4)

Horizon h = 1 h = 4

Large VAR 1.040 −0.570

VAR-LIN 8.645∗∗∗ 6.993∗∗∗

VAR-CL-ML 8.153∗∗∗ 6.455∗∗∗

VAR-CL-DIC 6.281∗∗∗ 5.076∗∗∗

VAR-CL-BIC 5.857∗∗∗ 6.190∗∗∗

VAR-CL-LIN 8.428∗∗∗ 6.416∗∗∗

VAR-CL-EQ 8.440∗∗∗ 6.855∗∗∗

VAR-HM-CL-EQ 6.159∗∗∗ 5.170∗∗∗

Note: DM statistics are based on the large VAR benchmark. ***, ** and * denote

findings of statistically significant forecast improvements relative to the benchmark

at the 1%, 5% and 10% level of significance, respectively.
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Table 3: Individual forecast performance in terms of RMSFE, MAE, ACRPS and
ALPL for the 3 core variables under 8 large models and 2 forecast horizons (h = 1, 4)

Evaluation of GDP Growth Forecasts

Horizon h = 1 h = 4

RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

large VAR 0.850 0.660 4.590 1.234 1.037 0.806 5.868 1.135

VAR-LIN 0.791∗∗ 0.596∗∗∗ 0.462∗∗∗ 4.161∗∗∗ 0.820∗∗ 0.589∗∗ 0.512∗∗∗ 4.093∗∗∗

VAR-CL-ML 0.837∗∗ 0.607∗∗ 0.619∗∗∗ 3.938∗∗∗ 0.810∗∗∗ 0.589∗∗∗ 0.688∗∗∗ 3.806∗∗∗

VAR-CL-DIC 1.054 0.807 2.621∗∗∗ 3.070∗∗∗ 0.951∗∗∗ 0.659∗∗ 1.961∗∗∗ 3.131∗∗∗

VAR-CL-BIC 2.549 1.024 3.721∗∗∗ 3.126∗∗∗ 0.830∗∗∗ 0.618∗∗∗ 0.992∗∗∗ 3.683∗∗∗

VAR-CL-LIN 0.821∗∗ 0.607∗∗ 0.548∗∗∗ 4.077∗∗∗ 0.885∗∗ 0.606∗∗ 0.884∗∗∗ 3.837∗∗∗

VAR-CL-EQ 0.805∗ 0.599∗ 0.540∗∗∗ 4.070∗∗∗ 0.830∗∗∗ 0.599∗∗ 0.573∗∗∗ 4.023∗∗∗

VAR-HM-CL-EQ 0.856 0.646 0.982∗∗∗ 3.322∗∗∗ 0.832∗∗∗ 0.618∗∗∗ 1.009∗∗∗ 3.302∗∗∗

Evaluation of Inflation Forecasts

Horizon h = 1 h = 4

RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

large VAR 0.580 0.430 4.570 1.237 0.959 0.739 5.852 1.137

VAR-LIN 0.576∗ 0.394∗∗ 0.336∗∗∗ 4.362∗∗∗ 0.591∗∗∗ 0.427∗∗∗ 0.458∗∗∗ 4.215∗∗∗

VAR-CL-ML 0.584 0.401 0.463∗∗∗ 4.178∗∗∗ 0.624∗∗∗ 0.454∗∗∗ 0.593∗∗∗ 3.955∗∗∗

VAR-CL-DIC 0.745 0.493 1.743∗∗∗ 3.392∗∗∗ 0.747∗∗∗ 0.518∗∗∗ 1.561∗∗∗ 3.334∗∗∗

VAR-CL-BIC 1.746 0.905 3.102∗∗∗ 3.351∗∗∗ 0.587∗∗∗ 0.439∗∗∗ 0.846∗∗∗ 3.822∗∗∗

VAR-CL-LIN 0.581 0.400 0.418∗∗∗ 4.273∗∗∗ 0.614∗∗∗ 0.442∗∗∗ 0.790∗∗∗ 3.974∗∗∗

VAR-CL-EQ 0.577∗ 0.395∗∗ 0.415∗∗∗ 4.270∗∗∗ 0.581∗∗∗ 0.421∗∗∗ 0.498∗∗∗ 4.152∗∗∗

VAR-HM-CL-EQ 0.633 0.473 0.906∗∗∗ 3.377∗∗∗ 0.654∗∗∗ 0.470∗∗∗ 0.955∗∗∗ 3.336∗∗∗

Evaluation of Interest Rate Forecasts

Horizon h = 1 h = 4

RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

Large VAR 1.091 0.737 0.655 −1.429 3.020 2.087 1.870 −2.821

VAR-LIN 0.971∗∗∗ 0.567∗∗∗ 0.427∗∗∗ 0.117∗∗∗ 1.337∗∗∗ 0.952∗∗∗ 1.294∗∗∗ −1.315∗∗∗

VAR-CL-ML 0.998∗∗∗ 0.603∗∗∗ 0.458∗∗∗ 0.034∗∗∗ 1.314∗∗∗ 0.894∗∗∗ 1.248∗∗∗ −1.309∗∗∗

VAR-CL-DIC 0.983∗∗∗ 0.578∗∗∗ 0.634∗∗∗ −0.184∗∗∗ 1.447∗∗∗ 1.011∗∗∗ 1.377∗∗∗ −1.394∗∗∗

VAR-CL-BIC 1.330∗ 0.877∗ 1.569∗∗ −0.623∗∗∗ 1.321∗∗∗ 0.917∗∗∗ 1.321∗∗∗ −1.315∗∗∗

VAR-CL-LIN 0.980∗∗∗ 0.572∗∗∗ 0.444∗∗∗ 0.074∗∗∗ 1.382∗∗∗ 0.939∗∗∗ 1.558∗∗∗ −1.396∗∗∗

VAR-CL-EQ 0.973∗∗∗ 0.577∗∗∗ 0.440∗∗∗ 0.098∗∗∗ 1.340∗∗∗ 0.950∗∗∗ 1.283∗∗∗ −1.323∗∗∗

VAR-HM-CL-EQ 1.021 0.651 0.534∗∗∗ −0.546∗∗∗ 1.513∗∗∗ 1.116∗∗∗ 1.369∗∗∗ −1.477∗∗∗

Note: DM statistics are based on the large VAR benchmark, and the RMSFEs, MAEs and ACRPSs are multiplied

by 100 for easy comparison. ***, ** and * denote findings of statistically significant forecast improvements relative

to the benchmark at the 1%, 5% and 10% level of significance, respectively.

4.3 Do Our Methods Forecast Well Relative to Simpler Meth-

ods Using Smaller Data Sets?

It is possible that the good forecast performance of our methods found in the preced-

ing sub-section was solely due to the fact that they allowed for stochastic volatility

whereas the large VAR did not and the inclusion of a large data set brought no ad-

ditional benefits. If this were the case, then it is possible that working with a small
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data set suffices, provided stochastic volatility is added to the model. There would

be no need to consider composite Bayesian methods since unrestricted VAR-SVs

could be estimated. In this sub-section, we investigate this possibility by comparing

composite Bayesian methods for unrestricted VAR-SV models using different small

data sets. Table 4 presents the results for this case. In it, the Diebold-Mariano test

is benchmarked against the 7 dimensional VAR-SV using the “good” variables. A

comparison of Table 4 with results in Tables 2 and 3 shows that the small VAR-

SVs produce forecasts which are better than the homoskedastic large VAR forecasts

(and, as documented in Section B.4 the Online Appendix are typically statistically

significant).

In terms of the joint ALPL for the three core variables, we are finding com-

posite Bayesian methods to produce statistically significant forecast improvements

relative to the unrestricted VAR-SVs with small data sets. The magnitude of these

improvements are not as large as those we found in the comparison with the large

homoskedastic VAR, but they are appreciable. If we examine the series individually

and consider a broader range of forecast metrics, then we find a similar pattern as

we did in the preceding sub-section. That is, composite Bayesian methods are found

to perform particularly well when ALPLs and ACRPSs are used as forecast metrics.

If we examine metrics based on point forecasts the benefits of our methods are much

less. Indeed if we consider only RMSFEs and MAEs for h = 1 then our methods

are never better than the 7 dimensional VAR-SV in a statistically significant sense

(although they occasionally are for h = 4). Thus, we are finding that the extra in-

formation in the large data set is helping improve forecasts and that these benefits

occur largely through obtaining better estimates of the dispersion of the predictive

density.

If we compare the three small unrestricted VAR-SVs (i.e. the two 7 variable

models involving “good” and “bad” variables and the 3 variable model involving only

the core variables), we find that including the “good” variables improves forecast

performance slightly. The deterioration in forecast performance that occurs when we

switch from VAR-SV-g to VAR-SV-b may look to be small, but it is often statistically

significant. For instance, the Diebold-Mariano test indicates the joint ALPL of VAR-

SV-g is better than that for VAR-SV-b for h = 1, although it is not for h = 4. This

shows that the choice of variables in a small VAR can be important and that, if the

researcher gets this wrong, it can have consequences. An advantage of our methods
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is that such a choice is not necessary.

Table 4: Individual forecast performance in terms of RMSFE, MAE, ACRPS and
ALPL for the 3 core variables under 4 small models and 2 forecast horizons (h = 1, 4)

Forecasting Evaluation Using Joint ALPL for 3 Core Variables

Horizon h = 1 h = 4

VAR-SV-3 5.651 4.134

VAR-SV-g 5.602 3.998

VAR-SV-b 5.509 3.913

VAR-CL-ML 8.153∗∗∗ 6.455∗∗∗

Evaluation of GDP Growth Forecasts

Horizon h = 1 h = 4

RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

VAR-SV-3 0.800 0.600 0.520∗∗∗ 3.220∗∗∗ 0.850 0.610 0.560∗∗∗ 3.162∗∗∗

VAR-SV-g 0.750 0.580 0.540 3.220 0.870 0.626 0.607 3.120

VAR-SV-b 0.990 0.680 0.640 3.152 0.921 0.652 0.687 3.099

VAR-CL-ML 0.837 0.607 0.619 3.938∗∗∗ 0.810 0.589 0.688 3.806∗∗∗

Evaluation of Inflation Forecasts

Horizon h = 1 h = 4

RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

VAR-SV-3 0.570 0.390 0.390∗∗∗ 3.467∗∗∗ 0.760∗∗ 0.550∗ 0.480∗∗∗ 3.327∗∗∗

VAR-SV-g 0.560 0.380 0.410 3.431 0.811 0.592 0.525 3.282

VAR-SV-b 0.630 0.420 0.460 3.416 0.819∗ 0.585 0.591 3.252

VAR-CL-ML 0.584 0.401 0.463 4.178∗∗∗ 0.624∗∗∗ 0.454∗∗∗ 0.593 3.955∗∗∗

Evaluation of Interest Rate Forecasts

Horizon h = 1 h = 4

RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

VAR-SV-3 1.002 0.602 0.473 −1.062 2.368 1.774 1.331 −2.368

VAR-SV-g 0.971 0.583 0.462 −1.079 2.314 1.723 1.302 −2.355

VAR-SV-b 1.006 0.611 0.483 −1.087 2.364 1.773 1.338 −2.375

VAR-CL-ML 0.998 0.603 0.458∗∗ 0.034∗∗∗ 1.314∗∗∗ 0.894∗∗∗ 1.248∗∗ −1.309∗∗∗

Note: DM statistics are based on the VAR-SV-g benchmark, and the RMSFE, MAE and ACRPS are multiplied by

100 for easy comparison. ***, ** and * denote findings of statistically significant forecast improvements relative to

the benchmark at the 1%, 5% and 10% level of significance, respectively.

4.4 How Do Our Methods Compare to Approaches Which

Have Restricted Forms of Stochastic Volatility?

Table 5 has the same format as Table 4, but provides a comparison with various meth-

ods which do have stochastic volatility, but of restricted forms. We are again find-

ing that composite likelihood methods are forecasting better than other approaches.

VAR-CL-ML has the highest joint ALPL for the three core variables of any of the

approaches in Table 5 for both forecast horizons. The differences between it and

the VAR-CCM2 benchmark are statistically significant. The fact that VAR-CL-ML
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(which allows for time variation in at) is forecasting better than VAR-CCM2 and

VAR-CCM2-20 (which assume at to be constant) suggests that there is some time

variation in at. Although there are other potential reasons for this finding. It is

possible that the parsimony of the individual sub-models which enter VAR-CL-ML

is an advantage relative to VAR-CCM2 and VAR-CCM2-20 which have to estimate

high dimensional matrices of VAR coefficients. Or it is possible that the 196 variables

used with VAR-CL-ML are providing more information than is available with the 20

or 7 variables data sets used with the VAR-CCM2 models.
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Table 5: Joint and individual forecast performance under models with various re-
stricted types of stochastic volatilities.

Forecasting Evaluation Using Joint ALPL for 3 Core Variables

Horizon h = 1 h = 4

VAR-CCM1 6.079∗∗∗ 4.456∗∗∗

VAR-CCM2 5.805 4.089

VAR-CCM1-20 5.328 3.500

VAR-CCM2-20 5.804 4.577∗∗∗

VAR-FSV-1f 3.106 2.486

VAR-FSV-2f 2.820 2.510

VAR-CL-ML 8.153∗∗∗ 6.455∗∗∗

Evaluation of GDP Growth Forecasts

Horizon h = 1 h = 4

RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

VAR-CCM1 0.790 0.610 0.480∗∗∗ 3.405∗∗∗ 0.924 0.664 0.551∗∗∗ 3.242∗∗∗

VAR-CCM2 0.750 0.580 0.550 3.213 0.870 0.622 0.608 3.122

VAR-CCM1-20 0.830 0.620 0.780 3.113 0.950 0.710 1.060 2.847

VAR-CCM2-20 0.700∗∗∗ 0.530∗∗∗ 0.530 3.230 0.870 0.650 0.580 3.148∗

VAR-FSV-1f 1.180 0.920 0.940 2.859 1.240 1.000 1.010 2.818

VAR-FSV-2f 1.180 0.970 0.960 2.829 1.240 1.030 1.010 2.808

VAR-CL-ML 0.837 0.607 0.619 3.938∗∗∗ 0.810 0.589 0.688 3.806∗∗∗

Evaluation of Inflation Forecasts

Horizon h = 1 h = 4

RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

VAR-CCM1 0.720 0.480 0.380∗∗∗ 3.711∗∗∗ 0.900 0.614 0.489∗∗∗ 3.441∗∗∗

VAR-CCM2 0.570 0.380 0.420 3.411 0.810 0.588 0.529 3.274

VAR-CCM1-20 0.710 0.490 0.700 3.246 1.000 0.710 1.010 2.963

VAR-CCM2-20 0.530 0.380 0.410 3.434 0.760∗∗ 0.530∗∗ 0.450∗∗∗ 3.352∗∗∗

VAR-FSV-1f 1.260 1.160 0.950 2.819 1.470 1.330 1.100 2.717

VAR-FSV-2f 1.400 1.260 1.010 2.776 1.440 1.300 1.080 2.733

VAR-CL-ML 0.584 0.401 0.463 4.178∗∗∗ 0.624∗∗∗ 0.454∗∗∗ 0.593 3.955∗∗∗

Evaluation of Interest Rate Forecasts

Horizon h = 1 h = 4

RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

VAR-CCM1 1.000 0.577 0.465 −1.100 2.347 1.776 1.361 −2.350

VAR-CCM2 0.946 0.559 0.435 −0.876 2.240 1.674 1.266 −2.260

VAR-CCM1-20 0.967∗ 0.581 0.495 −1.057 2.509∗ 1.685 1.442 −2.384∗∗

VAR-CCM2-20 0.965∗ 0.551∗ 0.484 −0.888∗∗ 2.733 2.061 1.161 −1.950∗∗∗

VAR-FSV-1f 4.942 4.743 3.028 −3.056 5.070 4.605 3.300 −3.425

VAR-FSV-2f 5.965 5.586 3.615 −3.226 5.321 4.752 3.358 −3.328

VAR-CL-ML 0.998 0.603 0.458 0.034∗∗∗ 1.314∗∗∗ 0.894∗∗∗ 1.248 −1.309∗∗∗

Note: DM statistics are based on the VAR-CCM2 benchmark, and the RMSFEs, MAEs and ACRPSs are multiplied

by 100 for easy comparison. ***, ** and * denote findings of statistically significant forecast improvements relative

to the benchmark at the 1%, 5% and 10% level of significance, respectively.
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5 Summary and Conclusions

Large VARs are emerging as a popular tool in modern macroeconomics. Adding mul-

tivariate stochastic volatility to them has emerged as one of the unresolved challenges

in the field. It arises since it is not computationally practical to carry out Bayesian

estimation in large VARs with multivariate stochastic volatility. Even if computa-

tion were possible, conventional approaches can be over-parameterized when working

with large data sets leading to problems with over-fitting, imprecise estimation and

the need for strong prior information. In this paper, we propose the use of composite

likelihood methods for meeting this challenge. These involve averaging over many

smaller models. In our context, we use many small VAR-SVs thus enabling compu-

tation to be feasible even in data sets involving hundreds of variables. By working

with smaller models, concerns with over-parameterization and the need for careful

prior elicitation are lessened. We explore these themes in the paper. In addition, we

discuss the econometric theory of composite likelihood methods drawing on conven-

tional asymptotic results as well as the literature on prediction pools. All in all, there

are strong theoretical reasons for thinking composite likelihood methods may be an

attractive way of adding stochastic volatility to large VARs.

The issue of how well composite likelihood methods work in practice is explored

in our empirical work. Working with a large US quarterly macroeconomic data set

involving 196 variables, we find encouraging results. When we use all 196 variables

and compare the forecast performance of our composite likelihood methods against

the main practical alternative (a large homoskedastic VAR with natural conjugate

prior), we find strong evidence of the superiority of our methods. Clearly, stochastic

volatility is an important feature of this data set and our VAR-CL-SV methods allow

for this.

We also compare our methods to a range of existing methods which include

stochastic volatility in various ways in data sets of various dimensions. In this com-

parison, our composite likelihood methods also come out well. With few exceptions,

they produce the best forecasts and in some cases the improvements over alternative

specifications is statistically significant. Overall, we conclude that the strategy of

combining forecasts from many small models is computationally feasible even with

large VARs and leads to forecast performance that is better than other computation-

ally feasible approaches.
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