Online Appendix to "Reducing the State Space Dimension in a Large TVP-VAR"

Joshua C.C. Chan	Eric Eisenstat	Rodney W. Strachan [*]
Purdue University and UTS	University of Queensland	University of Queensland

November 4, 2019

1 Obtaining the mode and Hessian for the ARMH step

We use a scoring algorithm to find \hat{f}_{θ} numerically. To this end, the gradient and Hessian of the log of the conditional posterior of f_{θ} , $\ln p(f_{\theta}|, y)$, are given by:

$$d \equiv \frac{d \ln p (f_{\theta}|, y)}{(df_{\theta})'} = -H'Hf_{\theta} - \frac{1}{2} (I_r \otimes A'_h) \iota_{rT} + \frac{1}{2} (Z + W)' \Sigma^{-1} (y - X\alpha - Wf_{\theta}), D \equiv \frac{d^2 \ln p (f_{\theta}|, y)}{(df_{\theta}) (df_{\theta})'} = D_1 + D_2 D_1 = -H'H - \frac{1}{2}Z'\Sigma^{-1}Z - \frac{1}{2}W'\Sigma^{-1}W, D_2 = -\frac{1}{2} (Z - W)' \Sigma^{-1}W - \frac{1}{2}W'\Sigma^{-1} (Z - W), Z = Y (I_{rT} \otimes A_h) + W,$$

where $Y = diag((y_1 - x_1\alpha_1)', ..., (y_T - x_T\alpha_T)'), \Sigma = diag(h'_1, ..., h'_T),$

$$W = \begin{bmatrix} x_1 A_\theta & & \\ & \ddots & \\ & & x_T A_\theta \end{bmatrix}, \quad H = \begin{bmatrix} I_r & & \\ -I_r & I_r & & \\ & \ddots & \ddots & \\ & & -I_r & I_r \end{bmatrix},$$

Observe that given this, a standard Newton-Raphson algorithm could be constructed by updating

$$\widehat{f}_{\theta}^{(j+1)} = \widehat{f}_{\theta}^{(j)} - D^{-1}d$$

However, -D is not guaranteed to be positive definite for all f_{θ} , and in fact, will only be positive definite in a very small neighborhood around \hat{f}_{θ} in many applications. Thus, using the standard

^{*}Corresponding author: School of Economics, University of Queensland, r.strachan@uq.edu.au. Rodney Strachan is a Fellow of the Rimini Centre for Economic Analysis and the Centre for Applied Macroeconomic Analysis.

[†]This research was supported by funding from the Australian Research Council project DP180102373.

Newton-Raphson scoring algorithm will not work well in practice. Nevertheless, we can construct a similar algorithm by replacing D with D_1 .

The advantage of this approach is that D_1 is guaranteed to be positive definite for all f_{θ} , and therefore, an update from any f_{θ} will always be an ascent direction. The disadvantage, of course, is that in the neighborhood around the mode where D is positive definite, the convergence may be theoretically slower than what is achieved by standard Newton-Raphson. However, even this drawback may be small to the extent that $E_y(D_2) = 0$. In fact, D_1 is closely related to the Fisher information matrix

$$F = -H'H - \frac{1}{2}\left(I_{rT} \otimes A'_h A_h\right) - W' \Sigma^{-1} W,$$

which is sometimes used to construct scoring algorithms. Using either F or D will guarantee positive ascent for any value of f_{θ} ; we prefer D_1 as it appears to yield faster convergence in practice. Finally, note that D, D_1 and F are all sparse, banded matrices which results in fast computation of updates even in large dimensions.

2 Derivation of posterior terms

In this appendix we define the terms in the conditional posteriors presented in Section 3 for a_{α} and a_{h} in both specifications and f_{h} and f_{α} in Specification 2. Each of these parameters has a normal prior of the form $a_{\alpha} \sim \mathcal{N}(0, \underline{V}_{\alpha}), f_{\alpha} \sim \mathcal{N}(0, \underline{V}_{f,\alpha}), a_{h} \sim \mathcal{N}(0, \underline{V}_{h}), \text{ and } f_{h} \sim \mathcal{N}(0, \underline{V}_{h,\alpha}), a_{h} \sim \mathcal{N}(0, \underline{V}_{h}), a_{h} \sim \mathcal{N}$

For Specification 2, recall the model specification in (??) and (??) reproduced here:

$$y_t = x_t \alpha + x_t A_\alpha f_{\alpha,t} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \Sigma_t),$$

$$f_{\alpha t} = f_{\alpha,t-1} + z_{\alpha,t}, \quad z_{\alpha,t} \sim N(0, I_{r_\alpha}), \quad f_{\alpha,0} = 0,$$

$$\Sigma_t = diag \left(e^{h_{1,t}}, \dots, e^{h_{n,t}} \right) \qquad h_t = (h_{1,t}, \dots, h_{n,t})'$$

$$h_t = h + A_h f_{h,t},$$

$$f_{h,t} = f_{h,t-1} + z_{h,t} \quad z_{h,t} \sim N(0, I_{r_h}), \quad f_{h,0} = 0,$$

To obtain a simple form for the posterior for $a_{\alpha} = (\alpha', vec (A_{\alpha})')'$ we use

$$y_t = x_t \alpha + (f'_{\alpha,t} \otimes x_t) \operatorname{vec} (A_\alpha) + \varepsilon_t \\ = [x_t \quad (f'_{\alpha,t} \otimes x_t)] a_\alpha + \varepsilon_t$$

Stack y_t over time to form the $Tn \times 1$ vector y, stack the matrices $\begin{bmatrix} x_t & (f'_{\alpha,t} \otimes x_t) \end{bmatrix}$ into the $Tn \times kr_{\alpha}$ matrix X, and similarly stack ε_t into the $Tn \times 1$ vector ε . We can now write the measurement equation as

$$y = Xa_{\alpha} + \varepsilon$$
 where $\varepsilon \sim N(0, \Sigma)$. (1)

 Σ is the diagonal matrix in which the $(t + i, t + i)^{th}$ element is the variance of the i^{th} element of ε_t where $i \in \{1, \ldots, n\}$. With a prior of the form $\mathcal{N}(0, \underline{V}_{\alpha})$, the posterior has the form $\mathcal{N}(\overline{a}_{\alpha}, \overline{V}_{\alpha})$ where $\overline{V}_{\alpha} = [X' \Sigma^{-1} X + \underline{V}_{\alpha}^{-1}]^{-1}$ and $\overline{a}_{\alpha} = \overline{V}_{\alpha} X' \Sigma^{-1} y$.

To define the terms in the posterior for the factors $f_{\alpha,t}$ and $f_{h,t}$, we first define the form of the prior covariance matrices $\underline{V}_{f,\alpha}$ and $\underline{V}_{f,h}$. Let the $(r \times 1)$ vector f_t be either $f_{\alpha,t}$ or $f_{h,t}$ such that $r = r_{\alpha}$ or $r = r_h$ respectively. In generic form then, the state equation for the factors can be written as

$$f_t = f_{t-1} + z_t, \quad z_t \sim N(0, I_r), \quad f_0 = 0.$$

Stack the f_t into the $Tr \times 1$ vector f, similarly stack the z_t into z, and let R be the $(Tr \times Tr)$ differencing matrix,

$$R_r = \begin{bmatrix} I_r & 0 & 0 & 0 \\ -I_r & I_r & 0 & 0 \\ 0 & -I_r & I_r & 0 \\ 0 & 0 & 0 & I_r \end{bmatrix}.$$

We can now write

$$R_r f = z \quad z \sim \mathcal{N}(0, I_{Tr}) \text{ and so } f = R_r^{-1} z \sim \mathcal{N}\left(0, \left(R_r' R_r\right)^{-1}\right).$$

This shows that the priors covariance matrices for $f_{\alpha,t}$ and $f_{h,t}$ are $\underline{V}_{f,\alpha} = (R'_{r_{\alpha}}R_{r_{\alpha}})^{-1}$ and $\underline{V}_{f,h} = (R'_{r_{h}}R_{r_{h}})^{-1}$ respectively.

To define the terms in the posterior for the $f_{\alpha,t}$, $\mathcal{N}(\overline{f}_{\alpha}, \overline{V}_{f,\alpha})$, we write the measurement equation as

$$y_t - x_t \alpha = x_t A_\alpha f_{\alpha,t} + \varepsilon_t$$

= $\overline{x}_t a_\alpha + \varepsilon_t$ where $\overline{x}_t = \begin{bmatrix} x_t & (f'_{\alpha,t} \otimes x_t) \end{bmatrix}$.

Stacking $y_t^f = y_t - x_t \alpha$ over time to form the $Tn \times 1$ vector y^f and defining

	$\int x_1 A_{\alpha}$	0		0]
v f	0	$x_2 A_{\alpha}$	•••	0
$X^{j} =$:	۰.	
	0	0		$x_T A_{\alpha}$

we can write $\overline{V}_{f,\alpha} = \left[X' \Sigma^{-1} X + R'_{r_{\alpha}} R_{r_{\alpha}} \right]^{-1}$ and $\overline{f}_{\alpha} = \overline{V}_{f,\alpha} X^{f'} \Sigma^{-1} y^{f}$.

For the vector $a_h = (h' \quad vec (A_h)')'$ with posterior $\mathcal{N}(\overline{a}_h, \overline{V}_h)$, we apply the transformation from Kim, Shephard and Chib (1998) and condition upon the states s_h to obtain the measurement equation as

$$y_t^* = \ln \left(\varepsilon_t^2 + \overline{c}\right) - m_t = h + A_h f_{h,t} + \varepsilon_t^*$$

= $x_t^* a_h + \varepsilon_t^*$ where $x_t^* = \left[I_n \quad \left(f_{h,t}' \otimes I_n\right)\right]$.

The term $\varepsilon_t^* + m_t$ is normal with mean vector m_t .¹ Let $y^* = \{y_t^*\}$ be the $Tn \times 1$ vector of stacked y_t^* , X^* be the $Tn \times nr_h$ matrix of stacked x_t^* . Finally, let Σ_h be the diagonal matrix in which the $(t+i,t+i)^{th}$ element is the variance of the i^{th} element of ε_t^* where $i \in \{1,\ldots,n\}$. Combining the likelihood with the prior $\mathcal{N}(0, \underline{V}_{a_h})$ we can write $\overline{V}_h = [X^* \Sigma_h^{-1} X^* + \underline{V}_{a_h}^{-1}]^{-1}$ and $\overline{a}_h = \underline{V}_h X^* \Sigma_h^{-1} y^*$.

Finally we define the terms in the conditional posterior for $f_{h,t}$, $\mathcal{N}(\overline{f}_h, \overline{V}_{f,h})$. Again conditional upon the states identified in s_h , the measurement equation can be written

$$y_t^{**} = \ln\left(\varepsilon_t^2 + \overline{c}\right) - m_t - h = A_h f_{h,t} + \varepsilon_t^*.$$

Let y^{**} be the $Tn \times 1$ vector of stacked y_t^{**} , X^{**} be the $Tn \times Tr_h$ matrix $(I_T \otimes A_h)$. Finally, let Σ_h be the diagonal matrix in which the $(t+i,t+i)^{th}$ element is the variance of the i^{th} element of ε_t^* ; $i = 1, \ldots, n$. Combining the likelihood with the prior $\mathcal{N}\left(0, (R'_{r_h}R_{r_h})^{-1}\right)$ we can write $\overline{V}_{f,h} = \left[X^{**'}\Sigma_h^{-1}X^{**} + R'_{r_h}R_{r_h}\right]^{-1}$ and $\overline{f}_h = \underline{V}_{f,h}X^{**'}\Sigma_h^{-1}y^{**}$.

In Specification 1, the conditional posteriors for a_{α} and a_h have the same form as that in Specification 2 except with $f_{\alpha,t}$ and $f_{h,t}$ replaced by $f_{\theta,t}$.

¹The means and variances of the elements of $\varepsilon_t^* + m_t$ depend upon the states in s_h and are presented in Table 4 of Kim, Shephard and Chib (1998).

3 Tables and Figures

In this section we present a complete set of results obtained for the macroeconomic application discussed in Section 4 of the main text.

3 states		l e	5 states		7 states			10 states			12 states			
r_{α}	r_h	DIC	r_{lpha}	r_h	DIC	r_{lpha}	r_h	DIC	r_{α}	r_h	DIC	r_{α}	r_h	DIC
3	0	-402	5	0	-422	7	0	-351	10	0	-102	12	0	88
2	1	-443	4	1	-452	6	1	-349	8	2	-269	8	4	-200
1	2	-414	3	2	-486	4	3	-478	6	4	-358	7	5	-333
0	3	-334	2	3	-490	3	4	-475	5	5	-446	6	6	-360
			1	4	-408	1	6	-410	4	6	-483	5	7	-384
			0	5	-338	0	$\overline{7}$	-336	2	8	-463	4	8	-442
sha	ared	-263	sha	red	-68	sha	red	199	sha	red	441	sha	red	769

Table 1: DICs for models specified with n = 8 and various combinations of r_{α} and r_h . All values are relative to the DIC of the constant coefficient model (i.e. $r_{\alpha} = r_h = 0$).

Table 2: DICs for models specified with n = 15 and various combinations of r_{α} and r_h . All values are relative to the DIC of the constant coefficient model (i.e. $r_{\alpha} = r_h = 0$).

3 states		5 states			7 states			10 states			12 states			
r_{α}	r_h	DIC	r_{α}	r_h	DIC	r_{α}	r_h	DIC	r_{α}	r_h	DIC	r_{α}	r_h	DIC
3	0	-764	5	0	-766	7	0	-742	10	0	-366	12	0	-140
2	1	-771	4	1	-816	6	1	-688	8	2	-486	8	4	-573
1	2	-711	3	2	-887	4	3	-892	6	4	-697	7	5	-655
0	3	-562	2	3	-851	3	4	-888	5	5	-854	6	6	-800
			1	4	-756	1	6	-698	4	6	-876	5	7	-792
			0	5	-583	0	7	-565	2	8	-800	4	8	-840
									0	10	-545	0	12	-577
sha	red	-770	sha	red	-835	sha	red	-719	sha	red	-418	sha	red	199

Figure 1: Impulse-response functions to non-news shocks in 1963Q4, 1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for the n = 8 variables model.

Figure 2: Impulse-response functions to news shocks in 1963Q4, 1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for the n = 8 variables model.

Figure 4: Time-varying responses to non-news and news shocks at 40 quarters after impact (mean, and 16-84 percentiles of the posterior distribution) for the n = 8 variables model.

Figure 5: Fractions of forecast error variance explained by non-news shocks in 1963Q4, 1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for the n = 8 variables model.

Figure 6: Fractions of forecast error variance explained by news shocks in 1963Q4, 1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for the n = 8 variables model.

Figure 8: Time-varying fractions of forecast error variance explained by non-news and news shocks at 40 quarters after impact (mean,

Figure 9: Impulse-response functions to non-news shocks in 1963Q4, 1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for the n = 15 variables model.

Figure 10: Impulse-response functions to news shocks in 1963Q4, 1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for the n = 15 variables model.

1960 1980 2000

1960 1980 2000

1960 1980 2000

1960 1980 2000

1960 1980 2000

1960 1980 2000

1960 1980 2000

1960 1980 2000

0

Time

Time

Time

Time

Time

-0.4

-0.2

-0.5

-0.2

0

0

-0.1

-0.2

-0.5

-0.3

Ţ

0.5

-

Time

Time

-0.2

.

Ņ

-0.4

Time

Figure 12: Time-varying responses to non-news and news shocks at 40 quarters after impact (mean, and 16-84 percentiles of the posterior distribution) for the n = 15 variables model.

Figure 13: Fractions of forecast error variance explained by non-news shocks in 1963Q4, 1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for the n = 15 variables model.

Figure 14: Fractions of forecast error variance explained by news shocks in 1963Q4, 1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for the n = 15 variables model.

Figure 15: Time-varying fractions of forecast error variance explained by non-news and news shocks on impact (mean, and 16-84 percentiles

Figure 16: Time-varying fractions of forecast error variance explained by non-news and news shocks at 40 quarters after impact (mean,