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Abstract Bayesian vector autoregressions are widely used for macroeconomic fore-
casting and structural analysis. Until recently, however, most empirical work had
considered only small systems with a few variables due to parameter proliferation
concern and computational limitations. We first review a variety of shrinkage pri-
ors that are useful for tackling the parameter proliferation problem in large Bayesian
VARs, followed by a detailed discussion of efficient sampling methods for overcom-
ing the computational problem. We then give an overview of some recent models
that incorporate various important model features into conventional large Bayesian
VARs, including stochastic volatility, non-Gaussian and serially correlated errors.
Efficient estimation methods for fitting these more flexible models are also dis-
cussed. These models and methods are illustrated using a forecasting exercise that
involves a real-time macroeconomic dataset. The corresponding MATLAB code is
also provided.1

1 Introduction

Vector autoregressions (VARs) are the workhorse models for empirical macroeco-
nomics. They were introduced to economics by Sims (1980), and have since been
widely adopted for macroeconomic forecasting and structural analysis. Despite their
simple formulation, VARs tend to forecast well, and are used as the benchmark for
comparing forecast performance of new models and methods. They are also used to
better understand the impacts of structural shocks on key macroeconomic variables
through the estimation of impulse response functions.

VARs tend to have a lot of parameters. Early work by Doan, Litterman, and
Sims (1984) and Litterman (1986) on Bayesian methods that formally incorporate
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1



2 Joshua C. C. Chan

non-data information into informative priors are often found to greatly improve fore-
cast performance. However, until recently, most empirical work had considered only
small systems that rarely include more than a few dependent variables.

This has changed since the seminal work of Banbura, Giannone, and Reichlin
(2010), who find that large Bayesian VARs with more than two dozens dependent
variables forecast better than small VARs. This has generated a rapidly expanding
literature on using large Bayesian VARs for forecasting and structural analysis; re-
cent papers include Carriero, Kapetanios, and Marcellino (2009), Koop (2013) and
Carriero, Clark, and Marcellino (2015a). Large Bayesian VARs thus provide an al-
ternative to factor models that are traditionally used to handle large datasets (e.g.,
Stock and Watson, 2002; Forni, Hallin, Lippi, and Reichlin, 2003).

There are by now many extensions of small VARs that take into account salient
features of macroeconomic data, the most important of which being time-varying
volatility (Cogley and Sargent, 2005; Primiceri, 2005). How best to construct large
VARs with time-varying volatility is an active research area, and has generated
many new approaches, such as Koop and Korobilis (2013), Carriero, Clark, and
Marcellino (2015b, 2016) and Chan (2018).

There are two key challenges in estimating large VARs. First, large VARs typi-
cally have far more parameters than observations. Without appropriate shrinkage or
regularization, parameter uncertainty would make forecasts or any analysis unreli-
able. Second, estimation of large VARs involves manipulating large matrices and is
typically computationally intensive. These two challenges are exacerbated when we
extend large VARs to allow for more flexible error covariance structures, such as
time-varying volatility.

In what follows, we first study methods to tackle these two challenges in the
context of large homoscedastic VARs. We will then discuss a few recent models
that incorporate stochastic volatility into large VARs and the associated estimation
methods.

1.1 Vector Autoregressions

We first consider a standard homoscedastic VAR of order p. Let yt = (y1t , . . . ,ynt)
′

denote the n×1 vector of dependent variables at time t. Then, the basic VAR(p) is
given by:

yt = b+A1yt−1 + · · ·+Apyt−p + ε t , (1)

where b is an n× 1 vector of intercepts, A1, . . . ,Ap are n× n coefficient matrices
and ε t ∼ N (0,Σ). In other words, the VAR(p) is simply a multiple-equation re-
gression where the regressors are the lagged dependent variables. Specifically, there
are n equations and each equation has k = np+ 1 regressors—so there are a total
of nk = n2 p+n VAR coefficients. With typical quarterly data, the number of VAR
coefficients can be more than the number of observations when n is large.
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The model in (1) runs from t = 1 to t = T , and it depends on the p initial condi-
tions y−p+1, . . . ,y0. In principle these initial conditions can be modeled explicitly.
Here all the analysis is done conditioned on these initial conditions. If the series is
not too short, both approaches typically give similar results.

There are two common ways to stack the VAR(p) in (1) over t = 1, . . . ,T . In the
first representation, we rewrite the VAR(p) as:

yt = Xtβ + ε t ,

where Xt = In⊗ [1,y′t−1, . . . ,y
′
t−p] with ⊗ denoting the Kronecker product and β =

vec([b, A1, . . . ,Ap]
′)—i.e., the intercepts and VAR coefficient matrices are stacked

by rows into a nk×1 vector. Furthermore, stacking y = (y′1, . . . ,y
′
T )
′, we obtain

y = Xβ + ε, (2)

where X = (X′1, . . . ,X
′
T )
′ is a T n×nk matrix of regressors and ε ∼N (0,IT ⊗Σ).

In the second representation, we first stack the dependent variables into a T × n
matrix Y so that its t-th row is y′t . Now, let Z be a T × k matrix of regressors, where
the t-th row is x′t = (1,y′t−1, . . . ,y

′
t−p). Next, let A= (b,A1, . . . ,Ap)

′ denote the k×n
matrix of VAR coefficients. Then, we can write the VAR(p) as follows:

Y = ZA+U, (3)

where U is a T ×n matrix of innovations in which the t-th row is ε ′t . In terms of the
first representation in (2), y = vec(Y′), β = vec(A) and ε = vec(U′). It follows that

vec(U)∼N (0,Σ ⊗ IT ). (4)

1.2 Likelihood Functions

Next we derive the likelihood functions implied by the two equivalent representa-
tions of the VAR(p), namely (2) and (3).

Using the first representation of the VAR(p) in (2), we have

(y |β ,Σ)∼N (Xβ ,IT ⊗Σ).

Therefore, the likelihood function is given by:

p(y |β ,Σ) = (2π)−
T n
2 |(IT ⊗Σ)|−

1
2 e−

1
2 (y−Xβ )′(IT⊗Σ)−1(y−Xβ )

= (2π)−
T n
2 |Σ |−

T
2 e−

1
2 (y−Xβ )′(IT⊗Σ−1)(y−Xβ ), (5)

where the second equality holds because |IT ⊗Σ | = |Σ |T and (IT ⊗Σ)−1 = IT ⊗
Σ
−1.
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Since the two representations of the VAR(p) are equivalent, the likelihood im-
plied by (3) should be the same as in (5). In what follows we rewrite (5) in terms
of Y, Z and A. To do that, we need the following results: for conformable matrices
B,C,D, we have

vec(BCD) = (D′⊗B)vec(C), (6)
tr(B′C) = vec(B)′vec(C), (7)

tr(BCD) = tr(CDB) = tr(DBC), (8)

where tr(·) is the trace function.
Noting that y−Xβ = ε = vec(U′), we now rewrite the quadratic form in (5) as

(y−Xβ )′(IT ⊗Σ
−1)(y−Xβ ) = vec(U′)′(IT ⊗Σ

−1)vec(U′)

= vec(U′)′vec(Σ−1U′)

= tr(UΣ
−1U′)

= tr(Σ−1U′U),

where the second equality holds because of (6); the third equality holds because
of (7); and the last equality holds because of (8). Using this representation of the
quadratic form and U=Y−ZA, the likelihood implied by the second representation
in (3) is therefore given by

p(Y |A,Σ) = (2π)−
T n
2 |Σ |−

T
2 e−

1
2 tr(Σ−1(Y−ZA)′(Y−ZA)). (9)

2 Priors for Large Bayesian VARs

What makes Bayesian VARs Bayesian is the use of informative priors that incorpo-
rate non-data information. As mentioned in the introduction, VARs tend to have a
lot of parameters, and large VARs exacerbate this problem. For example, a VAR(4)
with n = 20 dependent variables has 1,620 VAR coefficients, which is much larger
than the number of observations in typical quarterly datasets. Without informative
priors or regularization, it is not even possible to estimate the VAR coefficients.

In this section we discuss a range of informative priors that are found useful in
the context of large VARs. One common feature of these priors is that they aim to
“shrink” an unrestricted VAR to one that is parsimonious and seemingly reasonable.
These priors differ in how they achieve this goal, and whether they lead to analytical
results or simpler Markov chain Monte Carlo (MCMC) algorithms for estimating the
posterior distributions. In addition, they also differ in how easily they can be applied
to more flexible VARs, such as VARs with stochastic volatility.
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2.1 The Minnesota Prior

Shrinkage priors in the context of small VARs are first developed by Doan, Litter-
man, and Sims (1984) and Litterman (1986). Due to their affiliations with the Uni-
versity of Minnesota and the Federal Reserve Bank of Minneapolis at that time, this
family of priors is commonly called Minnesota priors. It turns out that Minnesota
priors can be directly applied to large VARs. This approach uses an approxima-
tion that leads to substantial simplifications in prior elicitation. Below we present a
version discussed in Koop and Korobilis (2010).

To introduce the Minnesota priors, we use the first representation of the VAR
with likelihood given in (5). Here the model parameters consist of two blocks: the
VAR coefficients β and the error covariance matrix Σ . Instead of estimating Σ , the
Minnesota prior replaces it with an estimate Σ̂ obtained as follows.

We first estimate each of the n equations of the VAR separately, ignoring the
error covariances across equations. Let s2

i denote the standard OLS estimate of the
error variance for the i-th equation. Then, we set Σ̂ = diag(s2

1, . . . ,s
2
n). As we will see

below, the main advantage of this approach is that it simplifies the computations—
often MCMC is not needed for posterior analysis or forecasts. One main drawback,
however, is that here we replace an unknown quantity Σ by a potentially crude esti-
mate Σ̂ . This approach therefore ignores parameter uncertainty—instead of tackling
it by integrating out the unknown parameters with respect to the posterior distribu-
tion. As such, this approach often produces inferior density forecasts.

With Σ being replaced by an estimate, the only parameters are the VAR coeffi-
cients β . Now, consider the following normal prior for β :

β ∼N (β Minn,VMinn).

The Minnesota prior sets sensible values for β Minn and VMinn in a systematic man-
ner. To explain the prior elicitation procedure, first note that β consists of three
groups of parameters: intercepts, coefficients associated with a variable’s own lags
and coefficients associated with lags of other variables.

The prior mean β Minn is typically set to zero for growth rates data, such as GDP
growth rate or inflation rate. This prior mean provides shrinkage for VAR coeffi-
cients, and reflects the prior belief that growth rates data are typically not persistent.
For levels data such as money supply or consumption level, β Minn is set to be zero
except the coefficients associated with the first own lag, which are set to be one.
This prior incorporates the belief that levels data are highly persistent—particularly,
it expresses the preference for a random walk specification. Other variants, such as
specifying a highly persistent but stationary process, are also commonly used.

The Minnesota prior sets the prior covariance matrix VMinn to be diagonal; the
exact values of the diagonal elements in turn depend on three key hyperparameters,
c1,c2 and c3. Now consider the coefficients in the i-th equation. First, for a coef-
ficient associated with the i-th variable’s own lag l, l = 1, . . . , p, its variance is set
to be c1/l2. That is, the higher the lag length, the higher the degree of shrinkage
(either to zero or to unity). Second, for a coefficient associated with the l-th lag of
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variable j, j 6= i, its variance is set to be c2s2
i /(l

2s2
j). In other words, in additional

to applying higher level of shrinkage to higher lag length, the prior variance also
adjusts for the scales of the variables. Lastly, the variance of the intercept is set to
be c3. The Minnesota prior therefore turns a complicated prior elicitation task into
setting only three hyperparameters. There are by now many different variants of the
Minnesota prior; see, e.g., Kadiyala and Karlsson (1997) and Karlsson (2013) for
additional discussion.

2.1.1 Estimation

Estimation under the Minnesota prior is straightforward; that is one of the main
appeals of the Minnesota prior. Recall that Σ is replaced by an estimate Σ̂ , and we
only need to estimate β . Given the VAR representation in (2) and the normal prior
β ∼N (β Minn,VMinn), standard linear regression results give

(β |y)∼N (β̂ ,K−1
β
),

where

Kβ = V−1
Minn +X′(IT ⊗ Σ̂

−1
)X, β̂ = K−1

β

(
V−1

Minnβ Minn +X′(IT ⊗ Σ̂
−1
)y
)
,

and we have replaced Σ by the estimate Σ̂ . In particular, the posterior mean of β

is β̂ , and we would only need to compute this once instead of tens of thousands of
times within a Gibbs sampler.

When the number of variables n is large, however, computations might still be
an issue because β̂ is of dimension nk×1 with k = np+1. In those cases, inverting
the nk× nk precision matrix Kβ to obtain the covariance matrix K−1

β
is computa-

tional intensive. It turns out that to obtain β̂ , one needs not compute the inverse K−1
β

explicitly. To that end, we introduce the following notations: given a non-singular
square matrix B and a conformable vector c, let B\c denote the unique solution to
the linear system Bz = c, i.e., B\c = B−1c. When B is lower triangular, this linear
system can be solved quickly by forward substitution. When B is upper triangular,
it can be solved by backward substitution.2

Now, we first compute the Cholesky factor CKβ
of Kβ such that Kβ = CKβ

C′Kβ
.

Then, compute

C′Kβ
\
(

CKβ
\(V−1

Minnβ Minn +X′(IT ⊗ Σ̂
−1
)y)
)

by forward then backward substitution.3 Then, by construction,

2 Forward and backward substitutions are implemented in standard packages such as MATLAB,
GAUSS and R. In MATLAB, for example, it is done by mldivide(B,c) or simply B\c.
3 Since VMinn is diagonal, its inverse is straightforward to compute.
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(C′Kβ
)−1C−1

Kβ
(V−1

Minnβ Minn +X′(IT ⊗ Σ̂
−1
)y)

= (CKβ
C′Kβ

)−1(V−1
Minnβ Minn +X′(IT ⊗ Σ̂

−1
)y)

= β̂ .

This alternative way to obtain β̂ is substantially faster when n is large.

2.2 The Natural Conjugate Prior

The original Minnesota prior discussed in Section 2.1 replaces the error covariance
matrix Σ with an estimate—and in doing so ignores parameter uncertainty associ-
ated with Σ . That approach substantially simplifies the computations at the expense
of the quality of density forecasts. In this section we introduce the natural conjugate
prior for the VAR coefficients and Σ . This prior retains much of the computational
tractability of the Minnesota prior, but it explicitly treats Σ to be an unknown quan-
tity to be estimated.

To introduce the natural conjugate prior, we use the second representation of the
VAR with likelihood given in (9). Now the model parameters consist of two blocks:
the error covariance matrix Σ as before and the VAR coefficients organized into the
k× n matrix A. The natural conjugate prior is a joint distribution for (vec(A),Σ).
To describe its specific form, we first need to define the following distributions.

An n×n random matrix Ω is said to have an inverse-Wishart distribution with
shape parameter ν > 0 and scale matrix S if its density function is given by

f (Ω ;ν ,S) =
|S|ν/2

2nν/2Γn(ν/2)
|Ω |−

ν+n+1
2 e−

1
2 tr(SΩ

−1),

where Γn is the multivariate gamma function. We write Ω ∼ I W (ν ,S). For ν >
m+1, EΩ = S/(ν−m−1).

Next, an m× n random matrix W and an n× n random matrix Ω are said
to have a normal-inverse-Wishart distribution with parameters M,P,S and ν

if (vec(W) |Ω) ∼ N (vec(M),Ω ⊗P) and Ω ∼ I W (ν ,S). We write (W,Ω) ∼
N I W (M,P,ν ,S). The kernel of the normal-inverse-Wishart density function is
given by

f (W,Ω ;M,P,ν ,S) ∝ |Ω |−
ν+m+n+1

2 e−
1
2 tr(Ω−1(W−M)′P−1(W−M))e−

1
2 tr(Ω−1S). (10)

To derive this density function from the definition, first note that
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[vec(W−M)]′(Ω ⊗P)−1vec(W−M) = [vec(W−M)]′(Ω−1⊗P−1)vec(W−M)

= [vec(W−M)]′vec(P−1(W−M)Ω−1)

= tr((W−M)′P−1(W−M)Ω−1)

= tr(Ω−1(W−M)′P−1(W−M)).

In the above derivations, the second equality holds because of (6); the third equality
holds because of (7); and the last equality holds because of (8).

Now, from the definition, the joint density function of (vec(W),Ω) is given by

f (W,Ω) ∝ |Ω |−
ν+n+1

2 e−
1
2 tr(SΩ

−1)×|Ω ⊗P|−
1
2 e−

1
2 [vec(W−M)]′(Ω⊗P)−1vec(W−M)

= |Ω |−
ν+m+n+1

2 e−
1
2 tr(Ω−1S)e−

1
2 tr(Ω−1(W−M)′P−1(W−M)),

where we have used the fact that |Ω ⊗P| = |Ω |m|P|n. This proves that the joint
density function of (vec(W),Ω) has the form given in (10).

By construction, the marginal distribution of Ω is I W (ν ,S). It turns out that the
marginal distribution of vec(W) unconditional on Ω is a multivariate t distribution.
For more details, see, e.g., Karlsson (2013).

Now we consider the following normal-inverse-Wishart prior on (A,Σ):

Σ ∼I W (ν0,S0), (vec(A) |Σ)∼N (vec(A0),Σ ⊗VA).

That is, (vec(A),Σ)∼N I W (vec(A0),VA,ν0,S0) with joint density function

p(A,Σ) ∝ |Σ |−
ν0+n+k+1

2 e−
1
2 tr(Σ−1S0)e−

1
2 tr(Σ−1(A−A0)

′V−1
A (A−A0)). (11)

It turns out that the joint posterior distribution of (A,Σ) is also a normal-inverse-
Wishart distribution, as shown in the next section. Hence, this prior is often called
the natural conjugate prior. The hyperparameters of this prior are vec(A0),VA,ν0,
and S0. Below we describe one way to elicit these hyperparameters.

One often sets a small value for ν0 (say, n+2) so that the prior variance of Σ is
large—i.e., the prior is relatively uninformative. Given ν0, one then chooses a value
for S0 to match the desired prior mean of Σ via the equality EΣ = S0/(ν0− n−
1). As for vec(A0) and VA, their values are chosen to mimic the Minnesota prior.
For example, vec(A0) is typically set to zero for growth rates data. For levels data,
vec(A0) is set to be zero except the coefficients associated with the first own lag,
which are set to be one.

Finally, to elicit VA, first note that given Σ , the prior covariance matrix of vec(A)
is Σ ⊗VA. This Kronecker structure implies cross-equation restrictions on the co-
variance matrix, which is more restrictive than the covariance matrix VMinn under
the Minnesota prior. However, the advantage of this Kronecker structure is that it can
be exploited to speed up computations, which we will discuss in the next section.

Following the example of the Minnesota prior, we choose VA to induce shrink-
age. Specifically, VA is assumed to be diagonal with diagonal elements vA,ii =
c1/(l2s2

r ) for a coefficient associated with the l-th lag of variable r and vA,ii = c2



Large Bayesian Vector Autoregressions 9

for an intercept, where s2
r is the residual sample variance of an AR(p) model for the

variable r. Similar to the Minnesota prior, we apply a higher degree of shrinkage
for a coefficient associated with a higher lag length. But contrary to the Minnesota
prior, here we cannot have different prior variances for a variable’s own lag and the
lag of a different variable due to the Kronecker structure.

2.2.1 Estimation

In this section we discuss the estimation of A and Σ under the natural conjugate
prior. As mentioned earlier, the posterior distribution of A and Σ turns out to be the
normal-inverse-Wishart distribution as well. To see this, we combine the likelihood
given in (9) and the natural conjugate prior in (11) to get

p(A,Σ |Y) ∝ p(A,Σ)p(Y |A,Σ)

∝ |Σ |−
ν0+n+k+1

2 e−
1
2 tr(Σ−1S0)e−

1
2 tr(Σ−1(A−A0)

′V−1
A (A−A0))

×|Σ |−
T
2 e−

1
2 tr(Σ−1(Y−ZA)′(Y−ZA)).

∝ |Σ |−
ν0+n+k+T+1

2 e−
1
2 tr(Σ−1S0)e−

1
2 tr[Σ−1((A−A0)

′V−1
A (A−A0)+(Y−ZA)′(Y−ZA))].

(12)

The last line looks almost like the kernel of the normal-inverse-Wishart density func-
tion in (10)—the only difference is that here we have two quadratic terms involving
A instead of one. If we could somehow write the sum

(A−A0)
′V−1

A (A−A0)+(Y−ZA)′(Y−ZA)

as (A− Â)′KA(A− Â) for some k× n matrix Â and k× k symmetric matrix KA,
then p(A,Σ |Y) is a normal-inverse-Wishart density function.

To that end, below we do a matrix version of “completing the square”:

(A−A0)
′V−1

A (A−A0)+(Y−ZA)′(Y−ZA)

= (A′V−1
A A−2A′V−1

A A0 +A′0V−1
A A0)+(A′Z′ZA−2A′Z′Y+Y′Y)

= A′(V−1
A +Z′Z)A−2A′(V−1

A A0 +Z′Y)+ Â′KAÂ− Â′KAÂ+A′0V−1
A A0 +Y′Y

= (A− Â)′KA(A− Â)− Â′KAÂ+A′0V−1
A A0 +Y′Y, (13)

where
KA = V−1

A +Z′Z, Â = K−1
A (V−1

A A0 +Z′Y).

Note that on the right-hand-side of the second equality, we judiciously add and
subtract the term Â′KAÂ so that we obtain one quadratic form in A.

Now, substituting (13) into (12), we have



10 Joshua C. C. Chan

p(A,Σ |Y) ∝ |Σ |−
ν0+n+k+T+1

2 e−
1
2 tr(Σ−1S0)e−

1
2 tr[Σ−1((A−Â)′KA(A−Â)−Â′KAÂ+A′0V−1

A A0+Y′Y)]

= |Σ |−
ν0+n+k+T+1

2 e−
1
2 tr(Σ−1Ŝ)e−

1
2 tr[Σ−1(A−Â)′KA(A−Â)],

where Ŝ = S0+A′0V−1
A A0+Y′Y− Â′KAÂ. Comparing this kernel with the normal-

inverse-gamma density function in (10), we conclude that

(A,Σ |Y)∼N I W (Â,K−1
A ,ν0 +T, Ŝ).

In particular, the posterior means of A and Σ are respectively Â and Ŝ/(ν0+T −1).
Other posterior moments can often be found by using properties of the normal-
inverse-Wishart distribution. When analytically results are not available, we can es-
timate the quantities of interest by generating draws from the posterior distribution
p(A,Σ |Y). Below we describe a computationally efficient way to obtain posterior
draws.

Since (A,Σ |Y) ∼N I W (Â,K−1
A ,ν0 + T, Ŝ), we can sample A and Σ in two

steps. First, we draw Σ marginally from (Σ |Y)∼I W (ν0 +T, Ŝ). Then, given the
sampled Σ , we simulate from the conditional distribution

(vec(A) |Y,Σ)∼N (vec(Â),Σ ⊗K−1
A ).

Here note that the covariance matrix Σ ⊗K−1
A is of dimension nk = n(np+1), and

sampling from this normal distribution using conventional methods—e.g., comput-
ing the Cholesky factor of the covariance matrix Σ ⊗K−1

A —would involve O(n6)
operations. This is especially computationally intensive when n is large. Here we
consider an alternative method with complexity of the order O(n3) only.

This more efficient approach exploits the Kronecker structure Σ ⊗K−1
A to speed

up computation. In particular, it is based on an efficient sampling algorithm to draw
from the matrix normal distribution.4 We further improve upon this approach by
avoiding the computation of the inverse of the k× k matrix KA.

Recall that given a non-singular square matrix B and a conformable vector c, we
use the notation B\c to denote the unique solution to the linear system Bz = c, i.e.,
B\c = B−1c. Now, we first obtain the Cholesky decomposition CKA of KA such that
CKA C′KA

= KA. Then compute

C′KA
\(CKA\(V

−1
A A0 +Z′Y))

by forward followed by backward substitution. By construction,

(C′KA
)−1(C−1

KA
(V−1

A A0 +Z′Y)) = (C′KA
CKA)

−1(V−1
A A0 +Z′Y) = Â.

Next, let CΣ be the Cholesky decomposition of Σ . Then, compute

4 The algorithm of drawing from the matrix normal distribution is well-known, and is described
in the textbook by Bauwens, Lubrano, and Richard (1999, p.320). This algorithm is adapted in
Carriero, Clark, and Marcellino (2016) and Chan (2018) to estimate more flexible large Bayesian
VARs.
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W1 = Â+(C′KA
\U)C′Σ ,

where U is a k× n matrix of independent N (0,1) random variables. In the Ap-
pendix B we show that vec(W1)∼N (vec(Â),Σ ⊗K−1

A ) as desired.
Therefore, we have a computationally efficient way to sample from the posterior

distribution (A,Σ |Y) ∼ N I W (Â,K−1
A ,ν0 + T, Ŝ). Note also that the algorithm

described above gives us an independent sample—unlike MCMC draws which are
correlated by construction.

2.3 The Independent Normal and Inverse-Wishart Prior

The main advantage of the natural conjugate prior is that analytical results are avail-
able for posterior analysis and simulation is typically not needed. However, it comes
at a cost of restricting the form of prior variances on the VAR coefficients. In this
section we discuss an alternative joint prior for the VAR coefficients and covariance
matrix that is more flexible.

To that end, we use the first representation of the VAR with likelihood given
in (5). This joint prior on (β ,Σ) is often called the independent normal and
inverse-Wishart prior, because it assumes prior independence between β and Σ ,
i.e., p(β ,Σ) = p(β )p(Σ). More specifically, we consider the form

β ∼N (β 0,Vβ ), Σ ∼I W (ν0,S0)

with prior densities

p(β ) = (2π)−
nk
2 |Vβ |−

1
2 e−

1
2 (β−β 0)

′V−1
β

(β−β 0), (14)

p(Σ) =
|S0|ν0/2

2nν0/2Γn(ν0/2)
|Σ |−

ν0+n+1
2 e−

1
2 tr(S0Σ−1). (15)

The hyperparameters of this prior are β ,Vβ ,ν0, and S0. The values for ν0 and
S0 can be chosen the same way as in the case of the natural conjugate prior. For β 0
and Vβ , we can set them to be the same as the Minnesota prior, i.e., β 0 = β Minn and
Vβ = VMinn. Also note that in contrast to the natural conjugate prior, here Vβ , the
prior covariance matrix of the VAR coefficients, is not required to have a Kronecker
structure, and is therefore more flexible.

2.3.1 Estimation

As mentioned above, in contrast to the case of the natural conjugate prior, the pos-
terior distribution under the independent normal and inverse-Wishart prior is non-
standard, and posterior simulation is needed for estimation and forecasting. Below
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we derive a Gibbs sampler to draw from the posterior distribution p(β ,Σ |y). To
that end, we derive the two full conditional distributions p(β |y,Σ) and p(Σ |y,β ).

Using the likelihood given in (5) and the prior on β given in (14), we note that
standard linear regression results would apply. In fact, we have

(β |y,Σ)∼N (β̂ ,K−1
β
),

where

Kβ = V−1
β

+X′(IT ⊗Σ
−1)X, β̂ = K−1

β

(
V−1

β
β 0 +X′(IT ⊗Σ

−1)y
)
.

The main difficulty of obtaining a draw from N (β̂ ,K−1
β
) using conventional

methods is that computing the n(np+1)×n(np+1) inverse K−1
β

is very computa-

tionally intensive when n is large. But fortunately we can sample from N (β̂ ,K−1
β
)

without computing K−1
β

explicitly. First, β̂ can be obtained by forward and back-
ward substitution as before. Second, we can use an alternative algorithm to sample
from N (β̂ ,K−1

β
) without computing K−1

β
explicitly.

Algorithm 1 (Sampling from the Normal Distribution Given the Precision Ma-
trix).

To generate R independent draws from N (µ,K−1) of dimension m, carry out
the following steps:

1. Compute the lower Cholesky factor B of K such that K = BB′.
2. Generate U = (U1, . . . ,Um)

′ by drawing U1, . . . ,Um ∼N (0,1).
3. Return W = µ +(B′)−1U.
4. Repeat Steps 2 and 3 independently R times.

To check that W∼N (µ,K−1), we first note that W is an affine transformation
of the normal random vector U, so it has a normal distribution. It is easy to check
that EW = µ . The covariance matrix of W is

Cov(W) = (B′)−1Cov(U)((B′)−1)′ = (B′)−1(B)−1 = (BB′)−1 = K−1.

Hence, W∼N (µ,K−1).
Using this algorithm to sample from N (β̂ ,K−1

β
) allows us to avoid the expensive

computation of the inverse K−1
β

. However, if Kβ is a dense matrix, this algorithm
still involves O(n6) operations. Hence, it is expected to be much slower than simu-
lations under the natural conjugate prior that involves only O(n3) operations.

Next, we derive the conditional distribution p(Σ |y,β ). First note that the likeli-
hood in (5) can be equivalently written as

p(y |β ,Σ) = (2π)−
T n
2 |Σ |−

T
2 e−

1
2 ∑

T
t=1(yt−Xt β )

′Σ−1(yt−Xt β ). (16)

Now, combining (16) and the prior on Σ given in (15), we have



Large Bayesian Vector Autoregressions 13

p(Σ |y,β ) ∝ p(y |β ,Σ)p(Σ)

∝ |Σ |−
T
2 e−

1
2 ∑

T
t=1(yt−Xt β )

′Σ−1(yt−Xt β )×|Σ |−
ν0+n+1

2 e−
1
2 tr(S0Σ−1)

= |Σ |−
ν0+n+T+1

2 e−
1
2 tr(S0Σ−1)e−

1
2 tr[∑T

t=1(yt−Xt β )(yt−Xt β )
′Σ−1]

= |Σ |−
ν0+n+T+1

2 e−
1
2 tr[(S0+∑

T
t=1(yt−Xt β )(yt−Xt β )

′)Σ−1],

which is the kernel of an inverse-Wishart density function. In fact, we have

(Σ |y,β )∼I W

(
ν0 +T,S0 +

T

∑
t=1

(yt −Xtβ )(yt −Xtβ )
′

)
. (17)

Hence, a Gibbs sampler can be constructed to simulate from the posterior distri-
bution by repeatedly drawing from p(β |y,Σ) and p(Σ |y,β ).

2.4 The Stochastic Search Variable Selection Prior

Another popular shrinkage prior for the VAR coefficients is the so-called stochastic
search variable selection (SSVS) prior considered in George, Sun, and Ni (2008).
It is based on the independent normal and inverse-Wishart prior, but it introduces a
hierarchical structure for the normal prior on β . The main idea is to divide, in a data-
based manner, the elements in β into two groups: in the first group the coefficients
are shrunk strongly to zero, whereas they are not shrunk in the second group. In other
words, the “variable selection” part is done by setting the coefficients in the first
group to be close to zero, and only the variables in the second group are “selected”.
This partition is done stochastically in each iteration in the MCMC sampler, and
hence “stochastic search”.

Specifically, the elements of β are assumed to be independent, and each element
β j has a two-component mixture distribution with mixture weight q j ∈ (0,1):

(β j |q j)∼ (1−q j)φ(β j;0,κ0 j)+q jφ(β j;0,κ1 j),

where φ(·; µ,σ2) denotes the density function of the N (µ,σ2) distribution. The
SSVS prior sets the first prior variance κ0 j to be “small”’ and the second prior
variance κ1 j to be large.

To see the partition more clearly, let us consider an equivalent latent variable
representation by introducing the indicator γ j ∈ {0,1} with success probability q j,
i.e., P(γ j = 1 |q j) = q j. Then, we can rewrite the above prior as

(β j |γ j)∼ (1− γ j)N (0,κ0 j)+ γ jN (0,κ1 j).

Hence, when γ j = 0, β j is strongly shrunk to zero; when γ j = 1, the prior on β j is
relatively non-informative.

Let γ = (γ1, . . . ,γnk)
′. For later reference, we rewrite the joint prior (β |γ) as:
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(β |γ)∼N (0,Ω γ),

where Ω γ is diagonal with diagonal elements (1− γ j)κ0 j + γ jκ1 j, j = 1, . . . ,nk.
It remains to choose values for the prior variances κ0 j and κ1 j. There are vari-

ous implementations, here we simply set κ1 j = 10 and κ0 j to be the j-th diagonal
element of the Minnesota prior covariance matrix VMinn. As for Σ , we assume the
inverse-Wishart prior:

Σ ∼I W (ν0,S0).

It is possible to have a SSVS prior on Σ as well. See George, Sun, and Ni (2008) for
further details. Finally, we set the mixture weight q j to be 0.5, so that β j has equal
probabilities in each component. An alternative is to treat q j as a model parameter
to be estimated.

2.4.1 Estimation

Estimation involves only slight modifications of the 2-block Gibbs sampler un-
der the independent normal and inverse-Wishart prior. In particular, here we con-
struct a 3-block sampler to sequentially draw from p(Σ |y,γ,β ), p(β |y,γ,Σ) and
p(γ |y,β ,Σ).

The full conditional distribution of Σ is inverse-Wishart, having the exact same
form as given in (17). Next, the full conditional distribution of β is again normal:

(β |y,γ,Σ)∼N (β̂ ,K−1
β
),

where
Kβ = Ω

−1
γ +X′(IT ⊗Σ

−1)X, β̂ = K−1
β

X′(IT ⊗Σ
−1)y.

Sampling from this normal distribution can be done using Algorithm 1.
Finally, to draw from p(γ |y,β ,Σ), note that γ1, . . . ,γnk are conditionally in-

dependent given the data and other parameters. In fact, we have p(γ |y,β ,Σ) =

∏
nk
j=1 p(γ j |β j). Moreover, each γ j is a Bernoulli random variable and we only need

need to compute its success probability. To that end, note that

P(γ j = 1 |β j) ∝ q jφ(β j;0,κ1 j)

and
P(γ j = 0 |β j) ∝ (1−q j)φ(β j;0,κ0 j).

Hence, after normalization, we obtain

P(γ j = 1 |β j) =
q jφ(β j;0,κ1 j)

q jφ(β j;0,κ1 j)+(1−q j)φ(β j;0,κ0 j)
.
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3 Large Bayesian VARs with Time-Varying Volatility, Heavy
Tails and Serial Dependent Errors

Despite the empirical success of large Bayesian VARs with standard error assump-
tions (e.g., homoscedastic, Gaussian and serially independent), there is a lot of re-
cent work in developing flexible VARs with more general error distributions. These
more flexible VARs are motivated by the empirical observations that features like
time-varing volatility and non-Gaussian errors are useful for modeling a variety of
macroeconomic time series.

In this section we study a few of these more flexible VARs, including VARs
with heteroscedastic, non-Gaussian and serially correlated errors. To that end, we
focus on the second representation of the VAR(p), which we reproduce below for
convenience:

Y = ZA+U, vec(U)∼N (0,Σ ⊗ IT ).

Note we can equivalently write the error specification as ut ∼N (0,Σ), t = 1, . . . ,T.
That is, the errors here are assumed to be independent, homoscedastic and Gaussian.
Below we consider a variety of extensions of this basic VAR.

To motivate the framework, recall that the main difficulty in doing posterior sim-
ulation for large Bayesian VARs is the large number of VAR coefficients in A. One
key advantage of the natural conjugate prior on (A,Σ) is that the conditional distri-
bution of A given Σ is Gaussian and its covariance matrix has a Kronecker product
structure. This special feature can be exploited to dramatically speed up computa-
tion from O(n6) to O(n3), as described in Section 2.2.1.

It turns out that this Kronecker product structure in the conditional covariance
matrix of A can be preserved for a wide class of flexible models. Specifically, Chan
(2018) proposes the following VAR with a more general covariance structure:

Y = ZA+U, vec(U)∼N (0,Σ ⊗Ω), (18)

where Ω is a T ×T covariance matrix. Obviously, if Ω = IT , (18) reduces to the
standard VAR. Here the covariance matrix of vec(U) is assumed to have the Kro-
necker product structure Σ ⊗Ω . Intuitively, it separately models the cross-sectional
and serial covariance structures of U, which are governed by Σ and Ω respectively.

In the next few subsections, we first show that by choosing a suitable serial co-
variance structure Ω , the model in (18) includes a wide variety of flexible specifica-
tions. Section 3.4 then shows that the form of the error covariance matrix, namely
Σ ⊗Ω , leads to a Kronecker product structure in the conditional covariance matrix
of A. Again this special feature is used to dramatically speed up computation. The
presentation below follows Chan (2018).
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3.1 Common Stochastic Volatility

One of the most useful features for modeling macroeconomic time series is time-
variance volatility. For example, the volatilities of a wide range of macroeconomic
variables were substantially reduced at the start of the Great Moderation in the early
1980s. Models with homoscedastic errors would not be able to capture this feature
of the data.

To allow for heteroscedastic errors, Carriero, Clark, and Marcellino (2016) in-
troduce a large Bayesian VAR with a common stochastic volatility. In their setup,
the error covariance matrix is scaled by a common, time-varying factor that can
be interpreted as the overall macroeconomic volatility. More specifically, consider
ut ∼N (0,eht Σ) with the common volatility eht . The log volatility ht in turns fol-
lows a stationary AR(1) process:

ht = ρht−1 + ε
h
t , (19)

where εh
t ∼N (0,σ2

h ) and |ρ|< 1. Note that for identification purposes, this AR(1)
process is assumed to have a zero unconditional mean.

One drawback of this setup is that the volatility specification is somewhat
restrictive—all variances are scaled by a single factor and, consequently, they are
always proportional to each other. On the other hand, there is empirical evidence, as
shown in Carriero, Clark, and Marcellino (2016), that the volatilities of macroeco-
nomic variables tend to move together. And specifying a common stochastic volatil-
ity is a parsimonious way to model that feature.

This common stochastic volatility model falls within the framework in (18)
with Ω = diag(eh1 , . . . ,ehT ). Empirical applications that use this common stochas-
tic volatility include Mumtaz (2016), Mumtaz and Theodoridis (2017) and Poon
(2018).

3.2 Non-Gaussian Errors

Gaussian errors are often assumed for convenience rather than for deep theoretical
reasons. In fact, some recent work has found that VARs with heavy-tailed error
distributions, such as the t distribution, often forecast better than their counterparts
with Gaussian errors (see, e.g., Cross and Poon, 2016; Chiu, Mumtaz, and Pinter,
2017).

Since many distributions can be written as a scale mixture of Gaussian dis-
tributions, the framework in (18) can accommodate various commonly-used non-
Gaussian distributions. To see this, let Ω = diag(λ1, . . . ,λT ). If each λt follows inde-
pendently an inverse-gamma distribution (λt |ν)∼I G (ν/2,ν/2), then marginally
ut has a multivariate t distribution with mean vector 0, scale matrix Σ and degree of
freedom parameter ν (see, e.g., Geweke, 1993).
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If each λt has an independent exponential distribution with mean α , then marginally
ut has a multivariate Laplace distribution with mean vector 0 and covariance ma-
trix αΣ (Eltoft, Kim, and Lee, 2006b). Other scale mixtures of Gaussian distribu-
tions can be defined similarly. For additional examples, see, e.g., Eltoft, Kim, and
Lee (2006a).

3.3 Serially Dependent Errors

Instead of the conventional assumption of serially independent errors, the frame-
work in (18) can also handle serially correlated errors, such as errors that follow an
ARMA(p,q) process.

For a concrete example, suppose ut follows the following MA(2) process:

ut = ε t +ψ1ε t−1 +ψ2ε t−2,

where ε t ∼N (0,Σ), ψ1 and ψ2 satisfy the invertibility conditions. This is nested
within the general framework with

Ω =



ω0 ω1 ω2 0 · · · 0

ω1 ω0 ω1
. . . . . .

...

ω2 ω1 ω0
. . . . . . 0

0
. . . . . . . . . . . . ω2

...
. . . . . . . . . . . . ω1

0 · · · 0 ω2 ω1 ω0


,

where ω0 = 1+ψ2
1 +ψ2

2 , ω1 = ψ1(1+ψ2) and ω2 = ψ2.
One drawback of the above MA(2) specification is that each element of ut must

have the same MA coefficients (although their variances can be different). Put it dif-
ferently, the framework in (18) cannot accommodate, for example, a general MA(2)
process of the form

ut = ε t +Ψ 1ε t−1 +Ψ 2ε t−2,

where Ψ 1 and Ψ 2 are n×n matrices of coefficients. This is because in this case the
covariance matrix of vec(U) does not have a Kronecker structure—i.e., it cannot be
written as Σ ⊗Ω . Nevertheless, this restricted form of serial correlation might still
be useful to capture persistence in the data.

Other more elaborate covariance structures can be constructed by combining dif-
ferent examples in previous sections. For example, suppose ut follows an MA(1)
stochastic volatility process of the form:

ut = ε t +ψ1ε t−1,
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where ε t ∼N (0,eht Σ) and ht has an AR(1) process as in (19). This is a multivariate
generalization of the univariate moving average stochastic volatility models consid-
ered in Chan (2013). This model is a special case of the flexible Bayesian VAR in
(18) with

Ω =



(1+ψ2
1 )e

h1 ψ1eh1 0 · · · 0

ψ1eh1 ψ2
1 eh1 + eh2

. . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . ψ2

1 ehT−2 + ehT−1 ψ1ehT−1

0 · · · 0 ψ1ehT−1 ψ2
1 ehT−1 + ehT


.

3.4 Estimation

Next we discuss the estimation of the Bayesian VAR in (18) using MCMC methods.
To keep the discussion general, we leave Ω unspecified and focus on the key step
of jointly sampling both the VAR coefficients A and the cross-sectional covariance
matrix Σ . Then, we take up various examples of Ω and provide estimation details
for tackling each case.

Using a similar derivation as in Section 1.2, one can show that the likelihood of
the VAR in (18) is given by

p(Y |A,Σ ,Ω) = (2π)−
T n
2 |Σ |−

T
2 |Ω |−

n
2 e−

1
2 tr(Σ−1(Y−XA)′Ω−1(Y−XA)). (20)

Next, we assume a prior of the form p(A,Σ ,Ω) = p(A,Σ)p(Ω), i.e., the param-
eter blocks (A,Σ) and Ω are a priori independent. For (A,Σ), we adopt the natural
conjugate prior:

Σ ∼I W (ν0,S0), (vec(A) |Σ)∼N (vec(A0),Σ ⊗VA)

with joint density function given in (11).
Given the prior p(A,Σ ,Ω) = p(A,Σ)p(Ω), posterior draws can be obtained by

sequentially sampling from: 1) p(A,Σ |Y,Ω); and 2) p(Ω |Y,A,Σ). Here we first
describe how one can implement Step 1 efficiently. Depending on the covariance
structure Ω , additional blocks might be needed to sample some extra hierarchical
parameters. These steps are typically easy to implement as they amount to fitting a
univariate time series model. We will discuss various examples below.

When Ω = IT , the Bayesian VAR in (18) reduces to the conventional VAR with
the natural conjugate prior. And in Section 2.2 we showed that (A,Σ |Y) has a
normal-inverse-Wishart distribution. There we also discussed how we can draw
from the normal-inverse-Wishart distribution efficiently. It turns out that similar
derivations go through even with an arbitrary covariance matrix Ω . More specifi-
cally, it follows from (20) and (11) that
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p(A,Σ |Y,Ω) ∝|Σ |−
ν0+n+k+T

2 e−
1
2 tr(Σ−1S0)

× e−
1
2 tr(Σ−1((A−A0)

′V−1
A (A−A0)+(Y−ZA)′Ω−1(Y−ZA)))

=|Σ |−
ν0+n+k+T

2 e−
1
2 tr(Σ−1S0)e−

1
2 tr(Σ−1(A′0V−1

A A0+Y′Ω−1Y−Â′KAÂ))

× e−
1
2 tr(Σ−1(A−Â)′KA(A−Â)),

where KA =V−1
A +Z′Ω−1Z and Â =K−1

A (V−1
A A0+Z′Ω−1Y). In the above deriva-

tions, we have “completed the square” and obtained:

(A−A0)
′V−1

A (A−A0)+(Y−ZA)′Ω−1(Y−ZA)

=(A− Â)′KA(A− Â)+A′0V−1
A A0 +Y′Ω−1Y− Â′KAÂ.

If we let
Ŝ = S0 +A′0V−1

A A0 +Y′Ω−1Y− Â′KAÂ,

then (A,Σ |Y,Ω) has a normal-inverse-Wishart distribution with parameters ν0+T ,
Ŝ, Â and K−1

A . We can then sample (A,Σ |Y,Ω) in two steps. First, sample Σ

marginally from (Σ |Y,Ω)∼I W (ν0 +T, Ŝ). Second, given the Σ sampled, simu-
late

(vec(A) |Y,Σ ,Ω)∼N (vec(Â),Σ ⊗K−1
A ).

As discussed in Section 2.2, we can sample from this normal distribution efficiently
without explicitly computing the inverse K−1

A .
Here we comment on a few computational details. Again, we need not compute

the T×T inverse Ω
−1 to obtain KA, Â or Ŝ. As an example, consider computing the

quadratic form Z′Ω−1Z. Let CΩ be the Cholesky factor of Ω such that CΩ C′
Ω
=Ω .

Then, Z′Ω−1Z can be obtained via Z̃′Z̃, where Z̃ = CΩ\Z.
This approach would work fine for an arbitrary Ω with dimension, say, less than

1000. For larger T , computing the Cholesky factor of Ω and performing the forward
and backward substitution is likely to be time-consuming. Fortunately, for most
models, Ω or Ω

−1 are band matrices—i.e., sparse matrices whose nonzero elements
are confined to a diagonal band. For example, Ω is diagonal—hence banded—for
both the common stochastic volatility model and the t errors model. Moreover, Ω is
banded for VARs with MA errors and Ω

−1 is banded for AR errors.
This special structure of Ω or Ω

−1 can be exploited to speed up computation. For
instance, obtaining the Cholesky factor of a band T×T matrix with fixed bandwidth
involves only O(T ) operations (e.g., Golub and van Loan, 1983, p.156) as opposed
to O(T 3) for a dense matrix of the same size. Similar computational savings can be
obtained for operations such as multiplication, forward and backward substitution
by using band matrix routines. We refer the readers to Chan (2013) for a more
detailed discussion on computation involving band matrices.

Next, we take up various examples of Ω and provide the corresponding estima-
tion details.
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3.4.1 t Errors

As discussed in Section 3.2, a VAR with iid t errors falls within the framework
in (18) with Ω = diag(λ1, . . . ,λT ), where each λt follows an inverse-gamma dis-
tribution (λt |ν) ∼ I G (ν/2,ν/2). Unconditional on λt , ut has a t distribution
with degree of freedom parameter ν . Note that in this case Ω is diagonal and
Ω
−1 = diag(λ−1

1 , . . . ,λ−1
T ).

Let p(ν) denote the prior density function of ν . Then, posterior draws can be
obtained by sequentially sampling from: 1) p(A,Σ |Y,Ω ,ν); 2) p(Ω |Y,A,Σ ,ν);
and 3) p(ν |Y,A,Σ ,Ω). Step 1 can be implemented exactly as before. For Step 2,
note that

p(Ω |Y,A,Σ ,ν) =
T

∏
t=1

p(λt |Y,A,Σ ,ν) ∝

T

∏
t=1

λ
− n

2
t e−

1
2λt

u′t Σ−1ut ×λ
−( ν

2 +1)
t e−

ν

2λt

In other words, each λt is conditionally independent given other parameters and
has an inverse-gamma distribution: (λt |Y,A,Σ ,ν) ∼ I G ((n+ ν)/2,(u′tΣ−1ut +
ν)/2).

Lastly, ν can be sampled by an independence-chain Metropolis-Hastings step
with the proposal distribution N (ν̂ ,K−1

ν ), where ν̂ is the mode of log p(ν |Y,A,Σ ,Ω)
and Kν is the negative Hessian evaluated at the mode. For implementation details of
this step, see Chan and Hsiao (2014).

3.4.2 Common Stochastic Volatility

Now, consider the common stochastic volatility model proposed in Carriero, Clark,
and Marcellino (2016): ut ∼ N (0,eht Σ), where ht follows an AR(1) process in
(19). In this case Ω = diag(eh1 , . . . ,ehT ), which is also diagonal.

We assume independent truncated normal and inverse-gamma priors for ρ and
σ2

h : ρ ∼N (ρ0,Vρ)1(|ρ| < 1) and σ2
h ∼ I G (νh0,Sh0). Then, posterior draws can

be obtained by sampling from: 1) p(A,Σ |Y,Ω ,ρ,σ2
h ); 2) p(Ω |Y,A,Σ ,ρ,σ2

h ); 3)
p(ρ |Y,A,Σ ,Ω ,σ2

h ); and 4) p(σ2
h |Y,A,Σ ,Ω ,ρ).

Step 1 again can be implemented exactly as before. For Step 2, note that

p(Ω |Y,A,Σ ,ρ,σ2
h ) = p(h |Y,A,Σ ,ρ,σ2

h ) ∝ p(h |ρ,σ2
h )

T

∏
t=1

p(yt |A,Σ ,ht),

where p(h |ρ,σ2
h ) is a Gaussian density implied by the state equation,

log p(yt |A,Σ ,ht) = ct −
n
2

ht −
1
2

e−ht u′tΣ
−1ut

and ct is a constant not dependent on ht . It is easy to check that
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∂

∂ht
log p(yt |A,Σ ,ht) =−

n
2
+

1
2

e−ht u′tΣ
−1ut ,

∂ 2

∂h2
t

log p(yt |A,Σ ,ht) =−
1
2

e−ht u′tΣ
−1ut .

Then, one can implement a Newton-Raphson algorithm to obtain the mode of
log p(h |Y,A,Σ ,ρ,σ2

h ) and compute the negative Hessian evaluated at the mode,
which are denoted as ĥ and Kh, respectively. Using N (ĥ,K−1

h ) as a proposal
distribution, one can sample h directly using an acceptance-rejection Metropolis-
Hastings step. We refer the readers to Chan (2017) and Chan and Jeliazkov (2009)
for details. Finally, Steps 3 and 4 are standard and can be easily implemented (see.,
e.g., Chan and Hsiao, 2014).

3.4.3 MA(1) Errors

We now consider an example where Ω is not diagonal and we construct Ω us-
ing band matrices. More specifically, suppose each element of ut follows the same
MA(1) process:

uit = ηit +ψηi,t−1,

where |ψ| < 1, ηit ∼N (0,1), and the process is initialized with ui1 ∼N (0,1+
ψ2). Stacking ui = (ui1, . . . ,uiT )

′ and η i = (ηi1, . . . ,ηiT )
′, we can rewrite the MA(1)

process as
ui = Hψ η i,

where η i ∼N (0,Oψ) with Oψ = diag(1+ψ2,1, . . . ,1), and

Hψ =


1 0 · · · 0
ψ 1 · · · 0
...

. . . . . .
...

0 · · · ψ 1

 .

It follows that the covariance matrix of ui is Hψ Oψ H′ψ . That is, Ω = Hψ Oψ H′ψ is a
function of ψ only. Moreover, both Oψ and Hψ are band matrices. Notice also that
for a general MA(q) process, one only needs to redefine Hψ and Oψ appropriately
and the same procedure would apply.

Let p(ψ) be the prior for ψ . Then, posterior draws can be obtained by sequen-
tially sampling from: 1) p(A,Σ |Y,ψ) and 2) p(ψ |Y,A,Σ). Again, Step 1 can be
carried out exactly the same as before. In implementing Step 1, we emphasize that
products of the form Z′Ω−1Z or Z′Ω−1Y can be obtained without explicitly com-
puting the inverse Ω

−1. Instead, since in this case Ω is a band matrix, its Cholesky
factor CΩ can be obtained in O(T ) operations. Then, to compute Z′Ω−1Z, one
simply returns Z̃′Z̃, where Z̃ = CΩ\Z.
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For Step 2, p(ψ |Y,A,Σ) is non-standard, but it can be evaluated quickly using
the direct method in Chan (2013), which is more efficient than using the Kalman
filter. Specifically, since the determinant |Hψ |= 1, it follows from (4) that the like-
lihood is given by

p(Y |A,Σ ,ψ) = (2π)−
T n
2 |Σ |−

T
2 (1+ψ

2)−
n
2 e−

1
2 tr(Σ−1Ũ′O−1

ψ Ũ)),

where Ũ = H−1
ψ (Y−ZA), which can be obtained in O(T ) operations since Hψ

is a band matrix. Therefore, p(ψ |Y,A,Σ) ∝ p(Y |A,Σ ,ψ)p(ψ) can be evaluated
quickly. Then, ψ is sampled using an independence-chain Metropolis-Hastings step
as in Chan (2013).

3.4.4 AR(1) Errors

Here we consider an example where Ω is a full matrix, but Ω
−1 is banded. Specifi-

cally, suppose each element of ut follows the same AR(1) process:

uit = φui,t−1 +ηit ,

where |φ |< 1, ηit ∼N (0,1), and the process is initialized with ui1 ∼N (0,1/(1−
φ 2)). Stacking ui = (ui1, . . . ,uiT )

′ and η i = (ηi1, . . . ,ηiT )
′, we can rewrite the AR(1)

process as
Hφ ui = η i,

where η i ∼N (0,Oφ ) with Oφ = diag(1/(1−φ 2),1, . . . ,1), and

Hφ =


1 0 · · · 0
−φ 1 · · · 0

...
. . . . . .

...
0 · · · −φ 1

 .

Since the determinant |Hφ |= 1 6= 0, Hφ is invertible. It follows that the covariance
matrix of ui is H−1

φ
Oφ (H′φ )

−1, or Ω
−1 = H′

φ
O−1

φ
Hφ , where both Oφ and Hφ are

band matrices.
Suppose we assume the truncated normal prior φ : φ ∼ N (φ0,Vφ )1(|φ | < 1).

Then, posterior draws can be obtained by sampling from: 1) p(A,Σ |Y,φ); and 2)
p(φ |Y,A,Σ). In implementing Step 1, products of the form Z′Ω−1Z can be com-
puted easily as the inverse Ω

−1 is a band matrix.
For Step 2, p(φ |Y,A,Σ) is non-standard, but a good approximation can be ob-

tained easily without numerical optimization. To that end, recall that

ut = φut−1 + ε t ,

where ε t ∼ N (0,Σ), and the process is initialized by u1 ∼ N (0,Σ/(1− φ 2)).

Then, consider the Gaussian proposal N (φ̂ ,K−1
φ

), where Kφ = 1/Vφ +∑
T
t=2 u′t−1Σ

−1ut−1
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and φ̂ =K−1
φ

(φ0/Vφ +∑
T
t=2 u′t−1Σ

−1ut). With this proposal distribution, we can then
implement an independence-chain Metropolis-Hastings step to sample φ .

4 Empirical Application: Forecasting with Large Bayesian VARs

In this section we consider a real-time macroeconomic forecasting exercise to illus-
trate the large Bayesian VARs and the associated estimation methods discussed in
Section 3.

4.1 Data, Models and Priors

In our empirical application we use a real-time dataset considered in Chan (2018)
that consists of 20 variables at quarterly frequency. The dataset includes a variety of
standard macroeconomic and financial variables such as GDP, industrial production,
inflation, interest rates and unemployment. The data are sourced from the Federal
Reserve Bank of Philadelphia and the sample period is from 1964Q1 to 2015Q4.
These variables are commonly used in applied work and are similar to the vari-
ables included in the large VARs in Banbura, Giannone, and Reichlin (2010) and
Koop (2013). A detailed description of the variables and their transformations are
provided in Appendix A.

We include a range of large Bayesian VARs combined with different prior spec-
ifications. For comparison, we also include a small Bayesian VAR using only four
core variables: real GDP growth, industrial production, unemployment rate and PCE
inflation. The full description other models are given in Table 1.

Table 1 A list of competing models.

Model Description
BVAR-small 4-variable VAR with the Minnesota prior
BVAR-Minn 20-variable VAR with the Minnesota prior
BVAR-NCP 20-variable VAR with the natural conjugate prior
BVAR-IP 20-variable VAR with the independent prior
BVAR-SSVS 20-variable VAR with the SSVS prior
BVAR-CSV 20-variable VAR with a common stochastic volatility
BVAR-CSV-t 20-variable VAR with a common SV and t errors
BVAR-CSV-t-MA 20-variable VAR with a common SV and MA(1) t errors

Whenever possible, we choose the same priors for common parameters across
models. For the Minnesota prior, we set β Minn = 0 and the three hyperparameters
for VMinn are set to be c1 = 0.22,c2 = 0.12 and c3 = 102. For the natural con-
jugate prior, we set A0 = 0 and the two hyperparameters for the covariance ma-
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trix VA are assumed to be c1 = 0.22 and c2 = 102. Moreover we set ν0 = n+ 3,
S0 = diag(s2

1, . . . ,s
2
n), where s2

i denotes the standard OLS estimate of the error vari-
ance for the i-th equation.

For the common stochastic volatility model, we assume independent priors for
σ2

h and ρ: σ2
h ∼I G (νh0,Sh0) and ρ ∼N (ρ0,Vρ)1l(|ρ|< 1), where we set νh0 = 5,

Sh0 = 0.04, ρ0 = 0.9 and Vρ = 0.22. These values imply that the prior mean of
σ2

h is 0.12 and ρ is centered at 0.9. For the degree of freedom parameter ν under
the t model, we consider a uniform prior on (2,50), i.e., ν ∼ U (2,50). For the
MA coefficient ψ under the MA model, we assume the truncated normal prior ψ ∼
N (ψ0,Vψ)1l(|ψ| < 1) so that the MA process is invertible. We set ψ0 = 0 and
Vψ = 1. The prior thus centers around 0 and has support within the interval (−1,1).
Given the large prior variance, it is also relatively noninformative.

4.2 Forecast Evaluation Metrics

We perform a recursive out-of-sample forecasting exercise to evaluate the perfor-
mance of the Bayesian VARs with different priors in terms of both point and density
forecasts. We focus on four main variables: real GDP growth, industrial production,
unemployment rate and PCE inflation.

We use each of the Bayesian VARs listed in Table 1 to produce both point and
density m-step-ahead iterated forecasts with m = 1 and m = 2. Due to reporting
lags, the real-time data vintage available at time t contains observations only up
to quarter t−1. Hence, the forecasts are current quarter nowcasts and one-quarter-
ahead forecasts. The evaluation period is from 1975Q1 to 2015Q4, and we use the
2017Q3 vintage to compute the actual outcomes.

Given the data up to time t, denoted as Y1:t , we obtain posterior draws given
Y1:t . We then compute the predictive mean E(yi,t+m |Y1:t) as the point forecast for
variable i, and the predictive density p(yi,t+m |Y1:t) as the density forecast for the
same variable. For many Bayesian VARs considered, neither the predictive mean
nor the predictive density of yi,t+m can be computed analytically. If that is the case,
we obtain them using predictive simulation. Next, we move one period forward
and repeat the whole exercise with data Y1:t+1, and so on. These forecasts are then
evaluated for t = t0, . . . ,T −m.

For forecast evaluation metrics, let yo
i,t+m denote the actual value of the variable

yi,t+m. The metric used to evaluate the point forecasts is the root mean squared
forecast error (RMSFE) defined as

RMSFE =

√
∑

T−m
t=t0 (yo

i,t+m−E(yi,t+m |Y1:t))2

T −m− t0 +1
.

To evaluate the density forecast p(yi,t+m |Y1:t), one natural measure is the predic-
tive likelihood p(yi,t+m = yo

i,t+m |Y1:t), i.e., the predictive density of yi,t+m evaluated
at the actual value yo

i,t+m. If the actual outcome yo
i,t+m is likely under the density
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forecast, the value of the predictive likelihood will be large, and vise versa. See,
e.g., Geweke and Amisano (2011) for a more detailed discussion of the predictive
likelihood and its connection to the marginal likelihood. We evaluate the density
forecasts using the average of log predictive likelihoods (ALPL):

ALPL =
1

T −m− t0 +1

T−m

∑
t=t0

log p(yi,t+m = yo
i,t+m |Y1:t).

For this metric, a larger value indicates better forecast performance.

4.3 Forecasting Results

For easy comparison, we report below the ratios of RMSFEs of a given model to
those of the 4-variable Bayesian VAR using the core variables: real GDP growth,
industrial production, unemployment rate and PCE inflation. Hence, values smaller
than unity indicate better forecast performance than the benchmark. For the aver-
age of log predictive likelihoods, we report differences from that of the 4-variable
Bayesian VAR. In this case, positive values indicate better forecast performance
than the benchmark.

Tables 2–5 report the point and density forecast results for the four core variables.
No single models or priors can outperform others for all variables in all horizons.
However, there are a few consistent patterns in the forecasting results. First, consis-
tent with the results in Banbura, Giannone, and Reichlin (2010) and Koop (2013),
large VARs tend to forecast real variables better than the small VAR, whereas the
small VAR does better than large models for PCE inflation in terms of point fore-
casts (see also Stock and Watson, 2007).

Table 2 Forecast performance relative to a 4-variable Bayesian VAR; GDP growth.

relative RMSFE relative ALPL
m = 1 m = 2 m = 1 m = 2

BVAR-Minn 0.95 0.98 −0.04 −0.10
BVAR-NCP 0.92 0.98 0.04 0.03
BVAR-IP 1.01 0.96 0.03 0.05
BVAR-SSVS 0.92 1.02 0.01 0.00
BVAR-CSV 0.95 0.94 0.13 0.09
BVAR-CSV-t 0.93 0.95 0.13 0.09
BVAR-CSV-t-MA 0.93 0.93 0.13 0.10
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Table 3 Forecast performance relative to a 4-variable Bayesian VAR; industrial production.

relative RMSFE relative ALPL
m = 1 m = 2 m = 1 m = 2

BVAR-Minn 0.97 0.94 0.02 −0.02
BVAR-NCP 0.96 0.95 0.15 0.09
BVAR-IP 0.94 0.90 0.10 0.10
BVAR-SSVS 0.99 0.96 0.08 0.07
BVAR-CSV 0.89 0.90 0.27 0.17
BVAR-CSV-t 0.88 0.89 0.26 0.17
BVAR-CSV-t-MA 0.87 0.89 0.27 0.17

Table 4 Forecast performance relative to a 4-variable Bayesian VAR; unemployment rate.

relative RMSFE relative ALPL
m = 1 m = 2 m = 1 m = 2

BVAR-Minn 0.99 0.96 0.08 0.33
BVAR-NCP 0.99 0.96 0.11 0.30
BVAR-IP 1.02 0.99 −0.01 −0.03
BVAR-SSVS 1.02 1.01 −0.03 −0.07
BVAR-CSV 1.00 0.95 0.18 0.43
BVAR-CSV-t 0.99 0.95 0.16 0.40
BVAR-CSV-t-MA 0.98 0.96 0.16 0.37

Table 5 Forecast performance relative to a 4-variable Bayesian VAR; PCE inflation.

relative RMSFE relative ALPL
m = 1 m = 2 m = 1 m = 2

BVAR-Minn 1.04 1.06 −0.01 0.02
BVAR-NCP 1.04 1.06 −0.02 −0.01
BVAR-IP 1.02 1.00 −0.02 0.00
BVAR-SSVS 1.00 1.02 0.00 0.02
BVAR-CSV 1.04 1.04 0.09 0.11
BVAR-CSV-t 1.03 1.03 0.10 0.10
BVAR-CSV-t-MA 1.03 1.04 0.09 0.08

Second, among the four priors for large Bayesian VARs, the natural conjugate
prior seems to perform well—even when it is not the best among the four, its per-
formance is close to the best. See also a similar comparison in Koop (2013). Given
that the natural conjugate prior can substantially speed up computations in posterior
simulation, it might be justified to be used as the default in large systems.

Third, the results also show that large Bayesian VARs with more flexible error
covariance structures tend to outperform the standard VARs. This is especially so for
density forecasts. Our results are consistent with those in numerous studies, such as
Clark (2011), D’Agostino, Gambetti, and Giannone (2013) and Clark and Ravazzolo
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(2015), which find that small Bayesian VARs with stochastic volatility outperform
their counterparts with only constant variance. Fourth, even though BVAR-CSV
tends to forecast very well, in many instances its forecast performance can be further
improved by using the t error distribution or adding an MA component.

Overall, these forecasting results show that large Bayesian VARs tend to forecast
well relative to small systems. Moreover, their forecast performance can be further
enhanced by allowing for stochastic volatility, heavy-tailed and serially correlated
errors.

5 Further Reading

Koop and Korobilis (2010) and Karlsson (2013) are two excellent review papers
that cover many of the topics discussed in Section 2. The presentation of the large
Bayesian VARs with time-varying volatility, heavy-tailed distributions and serial
dependent errors in Section 3 closely follows Chan (2018).

Developing large, flexible Bayesian VARs is an active research area and there
are many different approaches. For instance, Koop and Korobilis (2013) consider an
approximate method for forecasting using large time-varying parameter Bayesian
VARs. Chan, Eisenstat, and Koop (2016) estimate a Bayesian VARMA contain-
ing 12 variables. Carriero, Clark, and Marcellino (2015b) propose an efficient
method to estimate a 125-variable VAR with a standard stochastic volatility speci-
fication. Koop, Korobilis, and Pettenuzzo (2017) consider compressed VARs based
on the random projection method. Ahelegbey, Billio, and Casarin (2016b,a) de-
velop Bayesian graphical models for large VARs. Gefang, Koop, and Poon (2019)
use variational approximation for estimating large Bayesian VARs with stochastic
volatility.
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Appendix A: Data

The real-time dataset for our forecasting application includes 13 macroeconomic
variables that are frequently revised and 7 financial or survey variables that are not
revised. The list of variables is given in Table 6. They are sourced from the Fed-
eral Reserve Bank of Philadelphia and cover the quarters from 1964Q1 to 2015Q4.
All monthly variables are converted to quarterly frequency by averaging the three
monthly values within the quarter.

Table 6 Description of variables used in the recursive forecasting exercise.

Variable Transformation
Real GNP/GDP 400∆ log
Real Personal Consumption Expenditures: Total 400∆ log
Real Gross Private Domestic Investment: Nonresidential 400∆ log
Real Gross Private Domestic Investment: Residential 400∆ log
Real Net Exports of Goods and Services no transformation
Nominal Personal Income 400∆ log
Industrial Production Index: Total 400∆ log
Unemployment Rate no transformation
Nonfarm Payroll Employment 400∆ log
Indexes of Aggregate Weekly Hours: Total 400∆ log
Housing Starts 400∆ log
Price Index for Personal Consumption Expenditures, Constructed 400∆ log
Price Index for Imports of Goods and Services 400∆ log
Effective Federal Funds Rate no transformation
1-Year Treasury Constant Maturity Rate no transformation
10-Year Treasury Constant Maturity Rate no transformation
Moody’s Seasoned Baa Corporate Bond Minus Federal Funds Rate no transformation
ISM Manufacturing: PMI Composite Index no transformation
ISM Manufacturing: New Orders Index no transformation
S&P 500 400∆ log
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Appendix B: Sampling from the Matrix Normal Distribution

Suppose we wish to sample from N (vec(Â),Σ ⊗K−1
A ). Let CKA and CΣ be the

Cholesky decompositions of KA and Σ respectively. We wish to show that if we
construct

W1 = Â+(C′KA
\U)C′Σ ,

where U is a k×n matrix of independent N (0,1) random variables, then vec(W1)
has the desired distribution. To that end, we make use of some standard results on
the matrix normal distribution (see, e.g., Bauwens, Lubrano, and Richard, 1999, pp.
301-302).

A p× q random matrix W is said to have a matrix normal distribution
MN (M,Q⊗P) for covariance matrices P and Q of dimensions p× p and q× q,
respectively, if vec(W)∼N (vec(M),Q⊗P). Now suppose W∼MN (M,Q⊗P)
and define V = CWD+E. Then, V∼MN (CMD+E,(D′QD)⊗ (CPC′)).

Recall that U is a k×n matrix of independent N (0,1) random variables. Hence,
U ∼MN (0,In⊗ Ik). Using the previous result with C = (C′KA

)−1, D = C′
Σ

and

E = Â, it is easy to see that W1 ∼MN (Â,Σ ⊗K−1
A ). Finally, by definition we

have vec(W1)∼N (vec(Â),Σ ⊗K−1
A ).
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