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Abstract

Empirical questions such as whether the Phillips curve or the Okun’s law is stable

can often be framed as a model comparison—e.g., comparing a vector autoregres-

sion (VAR) in which the coefficients in one equation are constant versus one that

has time-varying parameters. We develop Bayesian model comparison methods to

compare a class of time-varying parameter VARs we call hybrid TVP-VARs—VARs

with time-varying parameters in some equations but constant coefficients in others.

Using US data, we find evidence that the VAR coefficients in some, but not all,

equations are time varying. Our finding highlights the empirical relevance of these

hybrid TVP-VARs.
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1 Introduction

Time-varying parameter vector autoregressions (TVP-VARs) developed by Cogley and

Sargent (2001, 2005) and Primiceri (2005) have become workhorse models for analyzing

the evolving inter-relationships between multiple macroeconomic variables. Models with

time-varying parameters and stochastic volatility are also found to forecast better than

homoskedastic, constant-coefficient models, as demonstrated in many recent papers.1

However, there is an emerging literature that has expressed concerns about the potential

over-parameterization of these TVP-VARs,2 and it remains unclear if all forms of time

variation are needed.

In Chan and Eisenstat (2018) we take a first step in addressing this model specification

issue by developing model comparison techniques for these TVP-VARs. Using a US

dataset, we find overwhelming evidence in favor of the model of Primiceri (2005) compared

to a conventional constant-coefficient VAR. But most of the gains appear to have come

from allowing for stochastic volatility rather than time variation in the VAR coefficients.

However, our earlier work does not provide a more nuanced understanding of the role

of time-varying coefficients. For instance, empirical researchers are often only interested

in assessing the stability of one or a few equations in a VAR system. For example,

Karlsson and Österholm (2018) address the question of whether the US Phillips curve

is stable, which amounts to testing if the inflation equation in a VAR has time-varying

coefficients—and the hypothesis is silent about the coefficients in other equations.

In view of this, we consider a class of models we call hybrid TVP-VARs—i.e., VARs that

allow some equations to have time-varying parameters while coefficients in other equations

remain constant. In terms of methodological contribution, we develop an improved ver-

sion of the importance sampling estimator for marginal likelihood in Chan and Eisenstat

(2018). The key improvement is dimension reduction: instead of a very high-dimensional

importance sampling estimator for the joint VAR system, we use an equivalent, recursive

representation to obtain a sequence of lower-dimensional importance sampling estimators,

the product of which gives the same marginal likelihood of the model. By vastly reducing

the dimension of the importance sampling, the improved version can substantially reduce

the computational time and allow us to potentially scale up to larger systems.

1Recent examples include Clark (2011), D’Agostino, Gambetti, and Giannone (2013), Koop and
Korobilis (2013), Clark and Ravazzolo (2014) and Cross and Poon (2016).

2See, e.g., Chan, Koop, Leon-Gonzalez, and Strachan (2012), Nakajima and West (2013) and Bel-
monte, Koop, and Korobilis (2014).

2



On the empirical side, we confirm our earlier finding that the data favor a constant-

coefficient VAR with stochastic volatility relative to the more flexible model of Primiceri

(2005) that allows for time-varying coefficients. However, we find strong evidence that

the VAR coefficients in some, but not all, equations are time varying, highlighting the

empirical relevance of the hybrid TVP-VARs.

2 Hybrid TVP-VARs with Stochastic Volatility

We outline in this section the class of time-varying parameter models we wish to compare.

Let yt = (y1,t, . . . , yn,t)
′ be an n×1 vector of endogenous variables at time t. First consider

the following standard TVP-VAR with stochastic volatility:

Atyt = bt +B1,tyt−1 + · · ·+Bp,tyt−p + εt, εt ∼ N (0,Σt), (1)

where bt is an n × 1 vector of time-varying intercepts, B1,t, . . . ,Bp,t are n × n VAR

coefficient matrices, At is an n × n lower triangular matrix with ones on the diagonal

and Σt = diag(exp(h1,t), . . . , exp(hn,t)). The law of motion of each of the log-volatilities

ht = (h1,t, . . . , hn,t)
′ is specified as an independent random walk:

hi,t = hi,t−1 + ζi,t, ζi,t ∼ N (0, σ2
i,h), (2)

where the initial conditions hi,0 are treated as parameters to be estimated.

The system in (1) is written in the structural form and the covariance matrix Σt by con-

struction is diagonal. Hence, we can estimate this recursive system equation by equation.

A similar representation is used in Carriero, Clark, and Marcellino (2016) to estimate

a large VAR with a standard stochastic volatility specification. To estimate the model

equation by equation, we first introduce some notations. Let bi,t denote the i-th element

of bt and Bi,j,t the i-th row of Bj,t. Then, βi,t = (bi,t,Bi,1,t, . . . ,Bi,p,t)
′ is the intercept

and VAR coefficients for the i-th equation. Further, let αi,t denote the free elements in

the i-th row of the impact matrix At, i.e., αi,t = (Ai1,t, . . . , Ai(i−1),t)
′. Then, the i-th

equation of the system in (1) can be rewritten as:

yi,t = wi,tαi,t + x̃tβi,t + εi,t, εi,t ∼ N (0, ehi,t),
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where wi,t = (−y1,t, . . . ,−yi−1,t) and x̃t = (1,y′
t−1, · · · ,y

′
t−p).

3

Letting xi,t = (wi,t, x̃t), we can further simplify the i-th equation as:

yi,t = xi,tθi,t + εi,t, εi,t ∼ N (0, ehi,t), (3)

where θi,t = (α′
i,t,β

′
i,t)

′ is of dimension kθi = (i − 1) + (np + 1) = np + i. Finally, the

coefficients evolve as a random walk:

θi,t = θi,t−1 + ηi,t, ηi,t ∼ N (0,Σθi), (4)

where the initial conditions θi,0 are treated as unknown parameters.

The standard TVP-VAR specifies each equation to be time varying as in (3). In contrast,

a hybrid TVP-VAR allows some equations to have time-varying coefficients while others

have time-invariant coefficients.4 More specifically, each hybrid TVP-VAR of n variables

is defined by a vector of binary variables M = (M1, . . . ,Mn) ∈ {0, 1}n. For i = 1, . . . , n,

if Mi = 1, then the i-th equation of the system is specified by (3)–(4); otherwise the i-th

equation has constant coefficients

yi,t = xi,tγi + εi,t, εi,t ∼ N (0, , ehi,t).

3 Importance Sampling for Marginal Likelihood

This section presents an improved version of the importance sampling estimator for

marginal likelihood proposed in Chan and Eisenstat (2018). The key improvement is

dimension reduction: instead of a very high-dimensional importance sampling estimator

for the joint system (1), we use the equivalent representation in (3) to develop a sequence

of lower-dimensional importance sampling estimators that gives the same marginal like-

lihood estimator. By reducing the dimension of the importance sampling, the improved

approach version can substantially reduce the computational time and allow us to poten-

tially scale up to larger systems.

3Note that yi,t depends not only on lagged values of all variables, but it also depends on contem-
poraneous variables y1,t, . . . , yi−1,t. However, the system is recursive and the density function remains
the same form when we perform the change of variables from εt to yt—in fact, it can be shown that
determinant of the Jacobian is one.

4In all models we include stochastic volatility as it is found to be empirically important; see, e.g.,
Clark (2011) and Chan and Eisenstat (2018).
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Below we outline the new importance sampling estimator. To fix ideas, we focus on the

TVP-VAR case; hybrid TVP-VARs can be handled similarly. For notational convenience,

stack yi = (yi,1, . . . , yi,T )
′, θi = (θ′

i,1, . . . , θ
′
i,T )

′ and hi = (hi,1, . . . , hi,T )
′ over t = 1, . . . , T ,

and define y = {yi}ni=1, θ = {θi}ni=1 and h = {hi}ni=1. Moreover, the time-invariant

parameters of the model are Σθ = {Σθi}
n
i=1, Σh = {σ2

i,h}
n
i=1, θ0 = (θ′

1,0, . . . , θ
′
n,0)

′ and

h0 = (h1,0, . . . , hn,0)
′. Then, the marginal likelihood of the model is defined as the integral

p(y) =

∫
p(y |Σθ,Σh, θ0,h0)p(Σθ,Σh, θ0,h0)d(Σθ,Σh, θ0,h0),

where p(Σθ,Σh, θ0,h0) is the prior density and

p(y |Σθ,Σh, θ0,h0) =

∫
p(y | θ,h,Σθ,Σh, θ0,h0)p(θ,h |Σθ,Σh, θ0,h0)d(θ,h)

is the integrated likelihood, i.e., the marginal density of the data unconditional of the

latent states θ and h. The major challenge is to evaluate this integrated likelihood as the

integration is very high dimensional. Chan and Eisenstat (2018) propose an importance

sampling estimator for that purpose. Here we improve upon the earlier algorithm by

dividing this high dimensional integration into n lower dimensional integrations.

To that end, first note that the conditional likelihood given the latent states θ and h can

be decomposed as

p(y | θ,h,Σθ,Σh, θ0,h0) = p(y | θ,h) =
n∏

i=1

p(yi | θi,hi),

where p(yi | θi,hi) is the product of T univariate Gaussian densities implied by (3). Fur-

thermore, recall that hi,t and θi,t evolve according to independent random walks given in

(2) and (4), respectively. Therefore, their joint density can be decomposed as:

p(θ,h |Σθ,Σh, θ0,h0) =

n∏

i=1

p(θi |Σθi, θi,0)p(hi | σ
2
i,h, hi,0).

Consequently, the integrated likelihood can be written as

p(y |Σθ,Σh, θ0,h0) =

n∏

i=1

∫
p(yi | θi,hi)p(θi |Σθi, θi,0)p(hi | σ

2
i,h, hi,0)d(θi,hi)

=
n∏

i=1

∫
p(yi |hi,Σθi , θi,0)p(hi | σ

2
i,h, hi,0)dhi. (5)
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Both terms in the integrand in (5) have an analytical expression. The first term is the

density of the data marginal of θi, and the second term is the prior density of hi implied

by (2); their closed-formed expressions are given in Appendix A. Next, we adapt the

approach in Chan and Eisenstat (2018) to estimate the integrated likelihood using (5).

More specifically, each of the n integrations in (5) can be estimated by importance sam-

pling. In this case, the ideal zero-variance importance sampling density is given by

p(hi |yi,Σθi, σ
2
i,h, θi,0, hi,0) ∝ p(yi |hi,Σθi, θi,0)p(hi | σ

2
i,h, hi,0).

However, this density cannot be used directly as the importance sampling density because

its normalization constant is unknown. To proceed, we approximate this ideal zero-

variance importance sampling density using a Gaussian approximation. In particular,

its mean vector is set to be the mode of p(hi |yi,Σθi , σ
2
i,h, θi,0, hi,0) and its precision

matrix—i.e., the inverse of the covariance matrix—is set to be the negative Hessian of

log p(hi |yi,Σθi, σ
2
i,h, θi,0, hi,0) evaluated at the mode. Independent samples from this

Gaussian importance sampling density can be obtained efficiently using the algorithm in

Chan and Jeliazkov (2009). Finally, the integrated likelihood is simply the product of

the estimates of these n integrals.

Once we can evaluate the integrated likelihood, we use the cross-entropy method of Chan

and Eisenstat (2015) to further integrate out the time-invariant parametersΣθ,Σh, θ0 and

h0. The cross-entropy method is an adaptive importance sampling algorithm that uses

the posterior draws of the time-invariant parameters to construct the optimal importance

sampling density. This step is relatively easier as the dimension of the time-invariant

parameters is much lower. We refer the readers to Chan and Eisenstat (2015) for a more

detailed discussion.

4 Application: Are VAR Coefficients Time Varying?

In this empirical application we compare a number of hybrid TVP-VARs with different

combinations of time-varying parameters and constant coefficients. We use a dataset

that consists of US quarterly observations on the GDP deflator, real GDP, and short-

term interest rate from 1954Q3 to 2017Q4, sourced from the Federal Reserve Bank of

St. Louis economic database. The GDP deflator and real GDP are transformed to

annualized growth rates. The short-term interest rate is the effective Federal Funds rate
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and is not transformed. Following standard practice, we set the lag length to be p = 2.

We compute the log marginal likelihoods of the hybrid TVP-VARs using the importance

sampling algorithm described in Section 3. Each log marginal likelihood estimate is based

on 20000 evaluations of the integrated likelihood. The importance sampling density for

the time-invariant parameters is constructed using the cross-entropy method with 20000

posterior draws after a burn-in period of 5000.

Before presenting the marginal likelihood estimates, we compare the speed of the new

algorithm with that of the original one in Chan and Eisenstat (2018) for computing the

marginal likelihoods of three models: TVP-VARs with and without stochastic volatility

(respectively TVP-SV and TVP) and a constant-coefficient VAR with stochastic volatility

(VAR-SV). The algorithms are implemented using Matlab on a standard desktop with

an Intel Core i5-4590S @3.0 GHz processor and 8 GB of RAM. The computation times

are reported in Table 1. As shown in the table, the improved algorithm can reduce the

computation times by about 35%-65%.

Table 1: Computation times of marginal likelihoods of TVP-SV, TVP and VAR-SV (in
minutes).

TVP-SV TVP VAR-SV
Chan and Eisenstat (2018) 568 5.9 1.4
new approach 206 2.9 0.9

There are three variables in the VAR and in each equation the coefficients can either be

constant or time varying. Hence, there are in total eight hybrid TVP-VARs, including

the full-fledged TVP-VAR of Primiceri (2005). The marginal likelihood estimates are

reported in Table 2. Consistent with the model comparison results in Chan and Eisenstat

(2018), the model with constant VAR coefficients and stochastic volatility is slightly

preferred by the data relative to the more flexible TVP-VAR of Primiceri (2005). Since

the marginal likelihood has a built-in penalty for model complexity, a more flexible model

will have a higher marginal likelihood value only if the increase in model fit is substantial

relative to the increase in model complexity. Here we have an example where a more

flexible model has a lower marginal likelihood value.

In addition, we find evidence that some of the VAR coefficients are time varying. In

particular, the best model is the one that specifies constant coefficients in the interest

rate equation while allowing time variation in both the GDP deflator and real GDP

equations. The Bayes factor in favor of this model relative to the constant coefficient
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VAR with stochastic volatility is 9.8 × 106, showing overwhelming evidence in favor of

the former. Moreover, models with time-varying parameters in the interest rate equation

have consistently lower marginal likelihood values compared to their counterparts with

constant coefficients in interest rate equation.5 This finding might be surprising given

that several authors have found that the late 1970s and early 1980s were characterized

by a clear change in the monetary policy regime (Clarida, Gal/’i, and Gertler, 2000;

Lubik and Schorfheide, 2004; Benati and Surico, 2009; Castelnuovo and Surico, 2010;

Castelnuovo and Fanelli, 2015). One possible reason could be that a one-time change

in the monetary policy regime over a long sample period is not well approximated by

drifting parameters. To investigate this possibility, we redid the model comparison using

a shortened sample from 1970Q1 to 1999Q4. With this shorter sample, we find evidence

that the coefficients in the interest rate equation are time varying (detailed results are

reported in Appendix B).

Table 2: Log marginal likelihood estimates of the hybrid TVP-VARs and the correspond-
ing numerical standard errors.

GDP deflator eq. real GDP eq. interest rate eq. log ML NSE
constant constant constant −1227.1 0.21
constant constant time varying −1243.7 0.32
constant time varying constant −1218.9 0.11
constant time varying time varying −1235.9 0.10
time varying constant constant −1219.2 0.15
time varying constant time varying −1236.2 0.18
time varying time varying constant −1211.0 0.08
time varying time varying time varying −1228.0 0.13

Overall, our model comparison exercise suggests that if we only compare the constant

coefficient VAR with the TVP-VAR, we might conclude that the VAR coefficients have

not changed over the sample period. This conclusion, however, overlooks the possibility

that only a subset of the VAR coefficients have changed over time. Our results therefore

highlight the empirical relevance of the hybrid TVP-VARs.

5Our sample covers the periods when the Fed Funds rate effectively hit the zero lower bound. For
robustness check, we redid the model comparison exercise by replacing the Fed Funds rate with the
shadow rate constructed by Wu and Xia (2016). The results are similar and are reported in Appendix
B. In particular, the data favor models where the interest rate equation has constant coefficients. We
thank an anonymous referee for this suggestion.
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5 Concluding Remarks and Future Research

With the aim of expanding the toolkit of empirical researchers, we considered a class

of TVP-VARs in which the VAR coefficients are time varying in some equations but

constant in others. We then adapted the importance sampling estimator for marginal

likelihood in Chan and Eisenstat (2018) to this class of hybrid TVP-VARs. Using a US

dataset, we confirmed our earlier finding that the data prefer a constant-coefficient VAR

with stochastic volatility compared to the full-fledged TVP-VAR of Primiceri (2005).

However, we found evidence that only some VAR coefficients are time varying, while

others are constant.

In future work, it would be interesting to extend the methods to compare large TVP-

VARs. In particular, it would be helpful to compare different shrinkage priors and dif-

ferent ways to model stochastic volatility in high-dimensional settings. Such a model

comparison exercise would provide useful guidelines for empirical researchers.
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Appendix A: Computational Details

In this appendix we provide the technical details for evaluating the integrated likelihood

of the TVP-VAR with stochastic volatility. Using the decomposition in (5), it suffices to

consider the evaluation of

∫
p(yi |hi,Σθi , θi,0)p(hi | σ

2
i,h, hi,0)dhi. (6)

Below we give explicit expressions for the two terms in the integral and the exposition

follows closely Chan and Eisenstat (2018). Define µθi
= 1T ⊗ θi,0, Syi

= diag(hi) and

Sθi = IT ⊗Σθi, where 1T is a T ×1 column of ones. Furthermore, let Hθi denote the first

difference matrix of dimension kθi, i.e.,

Hθi =




Ikθi 0 · · · 0

−Ikθi Ikθi
. . .

...
...

. . .
. . . 0

0 · · · −Ikθi Ikθi




.

Then, using a similar derivation in Chan and Grant (2016), one can obtain the first term

in the integral (in log) as follows:

log p(yi |hi,Σθi, θi,0) =−
T

2
log(2π)−

1

2
1′
Thi −

T

2
log |Σθi| −

1

2
log |Kθi|

−
1

2

(
y′
iS

−1
yi
yi + µ′

θi
H′

θi
S−1
θi
Hθiµθi

− θ̂
′

iKθi θ̂i

)
,

(7)

where

Kθi = H′
θi
S−1
θi
Hθi +X′

iS
−1
yi
Xi, θ̂i = K−1

θi

(
H′

θi
S−1
θi
Hθiµθi

+X′
iS

−1
yi
yi

)
. (8)

The second term in the integral in (6) is in fact a Gaussian density:

log p(hi | σ
2
i,h, hi,0) = −

T

2
log(2πσ2

i,h)−
1

2σ2
i,h

(hi − µhi
)′H′

hHh(hi − µhi
),

where µhi
= 1T ⊗ hi,0 and Hh is the first difference matrix of dimension T .

Given the analytical expressions of the integrant in (6), we next integrate out hi using

importance sampling. To obtain a good importance sampling density, we use the EM

algorithm to find the maximum of the marginal density p(hi |yi,Σθi, σ
2
i,h, θi,0, hi,0), which
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is the ideal zero-variance importance sampling density (but it cannot be used directly

because its normalization constant is unknown).

To implement the E-step, we compute the following conditional expectation

Q(hi | h̃i) = E
θi|h̃i

[
log p(hi |yi,Σθi, σ

2
i,h, θi,0, hi,0)

]
,

where the expectation is taken with respect to p(θi |yi, h̃i,Σθi, θ0,i) for an arbitrary vec-

tor h̃i. Moreover, this conditional distribution is Gaussian:

(θi |yi, h̃i,Σθi, θ0,i) ∼ N (θ̂i,K
−1
θi
),

where θ̂i and Kθi are given in (8). We emphasize that both the mean vector θ̂i and

precision matrix Kθi are functions of h̃, and they are computed using h̃i. It can be shown

that Q(h | h̃) has the following explicit expression:

Q(h | h̃) =−
1

2σ2
i,h

(hi − µhi
)′H′

hHh(hi − µhi
)−

1

2
1′
Thi

−
1

2
tr
(
diag(e−hi)

(
XiK

−1
θi
X′

i + (yi −Xiθ̂i)(yi −Xiθ̂i)
′
))

+ c1, (9)

where tr(·) is the trace operator and c1 is a constant not dependent on hi.

In the M-step, we maximize the function Q(hi | h̃i) with respect to hi. This is done using

the Newton-Raphson method with gradient

gQ = −
1

σ2
i,h

H′
hHh(hi − µhi

)−
1

2

(
1T − e−hi ⊙ ẑi

)
,

and Hessian

HQ = −
1

σ2
i,h

H′
hHh −

1

2
diag

(
e−hi ⊙ ẑi

)
, (10)

where ⊙ denotes the entry-wise product, ẑi = (s2i,1 + ε̂2i,1, . . . , s
2
i,T + ε̂2i,T )

′, s2i,t is the t-th

diagonal element of XiK
−1
θi
X′

i and ε̂t is the t-th element of yi −Xiθ̂i. Since both gQ and

HQ can be computed efficiently using sparse and band matrix algorithms and the Hessian

HQ is negative definite for all hi, the convergence of the Newton-Raphson method is fast.

After obtaining the mode ĥi of the ideal importance sampling density, we next compute

the Hessian of the log density evaluated at ĥi. For that purpose we use the identity

log p(hi |yi,Σθi , σ
2
i,h, θi,0, hi,0) = Q(hi |hi) +H(hi |hi), (11)
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whereH(hi |hi) = −Eθi |hi
[log(θi |yi,hi,Σθi, θ0,i)]. Hence, the Hessian of the log marginal

density evaluated at ĥi is simply the sum of the Hessians of Q and H with hi = ĥi. The

former comes out as a by-product of the EM algorithm; an analytical expression is given

in (10). The latter has the following explicit expression:

HH = −
1

2
Z′ ⊙ (IT − Zi),

where Zi = diag(e−hi)XiK
−1
θi
X′

i. Finally, let HQ denote the Hessian of Q(h |h) evaluated

at hi = ĥi. Then, the negative Hessian of the log marginal density of hi evaluated at

hi = ĥi is simply Kh = −(HQ + HH), which is used as the precision matrix of the

Gaussian approximation.
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Appendix B: Additional Results

In this appendix we report additional model comparison results. Table 3 presents the log

marginal likelihood estimates of hybrid TVP-VARs using a dataset in which we replace

the Fed Funds rate with the shadow rate constructed by Wu and Xia (2016).

Table 3: Log marginal likelihood estimates of the hybrid TVP-VARs and the correspond-
ing numerical standard errors; replacing Fed Funds Rate with the shadow rate in Wu and
Xia (2016).

GDP deflator eq. real GDP eq. interest rate eq. log ML NSE
constant constant constant −1258.5 0.91
constant constant time varying −1271.7 0.39
constant time varying constant −1250.3 0.54
constant time varying time varying −1266.1 0.40
time varying constant constant −1249.6 0.70
time varying constant time varying −1264.6 0.47
time varying time varying constant −1244.4 0.59
time varying time varying time varying −1259.0 0.47

Table 4 reports the log marginal likelihood estimates of hybrid TVP-VARs using the

original dataset (with Fed Funds rate) but the sample period is shortened to 1970Q1-

1999Q4.

Table 4: Log marginal likelihood estimates of the hybrid TVP-VARs and the correspond-
ing numerical standard errors; Fed Funds Rate; sample period 1970Q1-1999Q4.

GDP deflator eq. real GDP eq. interest rate eq. log ML NSE
constant constant constant −688.6 0.24
constant constant time varying −686.3 0.24
constant time varying constant −680.0 0.17
constant time varying time varying −678.0 0.15
time varying constant constant −683.7 0.25
time varying constant time varying −681.2 0.33
time varying time varying constant −675.5 0.13
time varying time varying time varying −673.5 0.06
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