
Measuring the Output Gap Using Stochastic Model

Specification Search

Angelia L. Grant
Economics Discipline Group,

University of Technology Sydney

Joshua C.C. Chan∗

Economics Discipline Group,

University of Technology Sydney

May 2017

Abstract

It is well known that different specification choices can give starkly different output

gap estimates. To account for model uncertainty, we use stochastic model specifi-

cation search to average estimates over a wide variety of popular specifications—a

total of more than 2000 possible combinations. In particular, we consider three

types of specification choices: sets of variables used in the analysis, output trend

specifications and distributional assumptions. Using US data, we find that the

unemployment gap is useful in estimating the output gap, but conditional on the

unemployment gap, the inflation gap no longer depends on the output gap. Our

results show a steady decline in trend output growth throughout the sample, and

the estimate at the end of our sample is only about 1.2%. Moreover, data favor t

over Gaussian distributed innovations, suggesting the relatively frequent occurrence

of extreme events.
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1 Introduction

How do we measure the overall slack in the economy? This is an important problem for

both academics and policymakers and has generated a large empirical literature. One

popular approach measures the overall slack by estimating the so-called output gap—

the deviation of the output of an economy from its potential or trend output. Early

contributions to this approach include the Beveridge-Nelson decomposition (Beveridge

and Nelson, 1981), the Hodrick-Prescott filter (Hodrick and Prescott, 1980, 1997), and

the unobserved components models of Harvey (1985), Watson (1986) and Clark (1987).

These are all univariate approaches that use only output data.

Later work extends these univariate approaches to incorporate more information—they

seek to exploit the effects of the output gap on other macroeconomic variables. For

example, Kuttner (1994) studies a bivariate unobserved components model of output and

inflation through a Phillips curve relationship; Sinclair (2009) considers an alternative

bivariate model of output and unemployment; and Berger and Kempa (2011) propose

a trivariate system that includes output, inflation and the exchange rate. Many other

papers use different sets of macroeconomic variables, and different specifications tend to

give markedly different estimates.

Given the sensitivity of output gap estimates to the exact specification used in the anal-

ysis, here we take a Bayesian model averaging approach. By including a wide variety

of specifications used in the literature, the model-average estimates explicitly take into

account model uncertainty and are therefore more robust with respect to different model-

ing choices. In addition, the results from this model averaging exercise also tell us about

features that are supported by the data—should we include inflation or unemployment

in estimating the output gap? Should trend output be modeled as a deterministic or a

stochastic process?

We consider three types of specification choices. The first is the set of variables to include

and how the relationships between the variables are specified. We consider systems with

output, inflation and unemployment—our specifications include univariate models of only

output, bivariate models of output and inflation or unemployment, and trivariate models

with all three variables.

The second model choice concerns the specification of the trend output. This is a key

specification because the output gap is the difference between actual output and the

unobserved trend output. Again, there is a wide range of specifications used in the
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literature. For instance, a popular trend specification is a random walk with a constant

drift, as in, e.g., Watson (1986) and Morley, Nelson, and Zivot (2003). Luo and Startz

(2014) and Grant and Chan (2017b) consider breaks in the random walk drift, whereas a

stochastic drift process is considered in Harvey and Jaeger (1993) and Harvey, Trimbur,

and Van Dijk (2007). In contrast, Perron and Wada (2009) favor a linear deterministic

trend but with a break in the growth rate. We consider a class of specifications that

include stochastic and deterministic trends, and the trend growth rate can either be

constant, have a small number of breaks or be time-varying.

The third model choice concerns the distributional assumptions of the innovations. In

a recent paper, Creal, Koopman, and Zivot (2010) show that allowing for stochastic

volatility helps more precisely estimate the output gap, but they only consider Gaussian

innovations. In addition to allowing for stochastic volatility, we consider a framework to

select between Gaussian and t distributed innovations in a data-driven manner. This is

motivated by a few recent papers, such as Cúrdia, Del Negro, and Greenwald (2014) and

Chiu, Mumtaz, and Pinter (2015), which highlight the importance of rare large shocks in

driving business cycles.

Given the large number of specification choices, a brute-force approach that enumerates

and estimates all possible combinations would be time-consuming. In addition, computing

the marginal likelihood for models with time-varying coefficients and stochastic volatility

is a difficult problem (e.g., Chan and Eisenstat, 2015). Instead, we construct a suitable

model space that includes all relevant models under consideration. We then navigate

this large model space using an algorithm based on the stochastic model specification

search for time-varying parameter models proposed in Frühwirth-Schnatter and Wagner

(2010). Using the proposed approach, not only can we compute the posterior model

probabilities for all the specifications, we can also estimate the output gap and other

quantities of interest by averaging the corresponding estimates over all the specifications.1

Our methodology is similar to that used in Berger, Everaert, and Vierke (2016), but their

focus is on testing time variation in the model parameters, whereas we are interested in

1Alternative ways to estimate the output gap using Bayesian model averaging have been considered.
For example, Morley and Piger (2012) perform model averaging of output gaps using the Bayesian
information criteria for a class of univariate models. Garratt, Mitchell, and Vahey (2014) combine output
gaps from bivariate models of output and inflation using a rolling window of predictive likelihoods. Grant
and Chan (2017b) conduct a model comparison exercise that includes various univariate models and two
bivariate models. Relatedly, Kleijn and Van Dijk (2006) consider Bayesian model averaging of various
univariate decompositions for US industrial production and unemployment, while Strachan and Van Dijk
(2013) conduct a business cycle analysis by averaging models with different cointegrating relationships,
overidentifying restrictions, lag structures, etc.
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assessing a range of specification choices for estimating the output gap.

Using US data, our results suggest that the unemployment gap is useful in determining

the output gap. In contrast, we find evidence that the inflation gap does not depend on

the output gap once the unemployment gap is taken into account. This is consistent with

the results in Morley, Piger, and Rasche (2015), where the unemployment gap explains a

large fraction of the variation in the inflation gap in G7 countries. Our estimates indicate

a steady decline in the trend output growth rate: from about 4% in the 1960s to about

3% in the early 1980s to 2000s, followed by a substantial drop after the Great Recession

to about 1.2%. Lastly, we find evidence in favor of t distributed innovations, suggesting

the relatively frequent occurrence of extreme events.

2 Stochastic Model Specification Search

In this section we develop a general model space that nests a wide range of common

specifications. This is constructed along three dimensions. In Section 2.1 we first consider

models that include different sets of variables and various ways these variables are related

to each other. Section 2.2 investigates a variety of trend output specifications, including

random walks, integrated random walks and a linear deterministic trend specification.

Lastly, Section 2.3 considers specifications with Gaussian or t distributed innovations.

2.1 Model Dimension Search

As mentioned in the introduction, univariate specifications that include only output—

such as the Beveridge-Nelson decomposition (Beveridge and Nelson, 1981), the Hodrick-

Prescott filter (Hodrick and Prescott, 1980, 1997), and unobserved components models

(Morley, Nelson, and Zivot, 2003; Grant and Chan, 2017b)—are widely used to esti-

mate trend output. Bivariate models of output and inflation (Kuttner, 1994; Basistha,

2007; Basistha and Nelson, 2007) or output and unemployment (Sinclair, 2009) are also

common.

Following Berger, Everaert, and Vierke (2016), we consider a trivariate unobserved com-

ponents model of (log) output yt, the inflation rate πt and the unemployment rate ut.
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Specifically,

πt − π∗

t = ρπ(πt−1 − π∗

t−1) + δλuλu(ut − u∗

t ) + δλyλy(yt − y∗t ) + επt , (1)

yt − y∗t = δγuγu(ut − u∗

t ) + ct, (2)

ut − u∗

t = ρu1(ut−1 − u∗

t−1) + ρu2(ut−2 − u∗

t−2) + εut , (3)

ct = ρc1ct−1 + ρc2ct−2 + εct , (4)

where π∗

t is trend inflation, y∗t is trend output and u∗

t is the non-accelerating inflation

rate of unemployment, or NAIRU.

The inflation equation (1) states that the deviation of inflation from its underlying trend,

πt − π∗

t , depends on both the unemployment gap ut − u∗

t and the output gap yt − y∗t .

When the unemployment rate is at the NAIRU and output is at its trend, inflation equals

its underlying trend plus a transitory AR(1) component.

The output equation (2) relates the output gap to the unemployment gap, where γu

is the Okun’s coefficient. Following Morley, Nelson, and Zivot (2003), we assume that

ct, the cyclical component of output, follows a stationary AR(2) process. Finally, the

unemployment gap in (3) is modeled as a stationary AR(2) process. Since the model

(1)–(4) is a triangular system, we assume the innovations επt , ε
c
t and εut to be independent

at all leads and lags. For now we leave their distributions unspecified; they are discussed

in Section 2.3.

In the model above we introduce three binary indicators δλu , δλy and δγu , i.e., each

takes values in {0, 1}. This setup allows us to consider a range of models with different

dimensions for estimating the output gap. For instance, when all the indicators are zero,

this trivariate model reduces to the univariate unobserved components model of output in

Watson (1986).2 When δλu = 0, δγu = 0 and δλy = 1, it becomes a bivariate unobserved

components model of output and inflation. When δλu = 0, δλy = 0 and δγu = 1, the

model becomes a bivariate unobserved components model of output and unemployment.

In addition, by allowing both the output and unemployment gaps to enter the inflation

equation, we can investigate which gap is a better proxy for real activity, or if both are

informative for modeling inflation.

2Technically, the dimension of the trivariate model remains the same. But since the three equations
(1)-(3) are now unrelated to each other, it becomes the same as estimating three univariate models
separately. The output gap estimates from this model with all the indicators set to zero are the same as
those from a univariate model of output.
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2.2 Trend Output Specification Search

There are many different specifications for modeling the trend output y∗t . For example,

Perron and Wada (2009) favor a linear deterministic trend with a break in the trend

growth rate in 1973. In contrast, using the marginal likelihood as the model selection

criterion, Luo and Startz (2014) and Grant and Chan (2017b) find evidence in support

of a random walk trend where the drift has a break in 2006-2007.

More importantly, how one models y∗t turns out to have a critical impact on the out-

put gap and the trend output growth estimates. For instance, it is well known that the

correlated unobserved components model of Morley, Nelson, and Zivot (2003) yields out-

put gap estimates that are small in amplitude, whereas the Hodrick-Prescott (HP) filter

generates large and persistent cycles. Grant and Chan (2017a) show that this difference

arises entirely due to the different ways the trend output is modeled. In particular, the

correlated unobserved components model assumes a random walk trend with a constant

drift (or a small number of breaks in the drift), whereas the HP filter implicitly models

the output trend as a particular random walk with a stochastic drift (see also Harvey

and Jaeger, 1993).

Given the importance of modeling the trend output y∗t appropriately, we adopt a flexible

data-driven approach based on the stochastic model specification search for time-varying

parameter models proposed in Frühwirth-Schnatter and Wagner (2010). This approach

constructs a general model that nests all the alternative models of interest. By introducing

suitable binary indicators and treating these indicators as model parameters, one can then

navigate the model space in a data-driven manner.

To illustrate the key ideas, below we consider two representations of a stochastic trend

model. We will then introduce the general trend specification we use in the application.

The first is the following centered parameterization:

y∗t = y∗t−1 + at + εy
∗

t , εy
∗

t ∼ N (0, σ2
y∗),

at = at−1 + εat , εat ∼ N (0, σ2
a),

where the initial condition a0 is treated as an unknown parameter. Here at can be

interpreted as the time-varying trend growth rate at time t. This setup can be used to

nest a number of trend specifications. For example, if both variances σ2
y∗ and σ2

a are zero,

then y∗t follows a linear deterministic trend with slope a0. If σ
2
y∗ > 0 and σ2

a = 0, then y∗t

follows a random walk with drift a0.
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One complication of this approach is that zero lies at the boundary of the parameter space

for variances σ2
y∗ and σ2

a. To get around this technical difficulty, we consider the second

representation—the non-centered parameterization proposed in Frühwirth-Schnatter and

Wagner (2010). Specifically, let

y∗t = y∗0 + a0t+ σy∗ ỹ
∗

t + σa

t∑

i=1

ãi,

where

ỹ∗t = ỹ∗t−1 + εỹ
∗

t , εỹ
∗

t ∼ N (0, 1), (5)

ãt = ãt−1 + εãt , εãt ∼ N (0, 1), (6)

and the state equations are initialized with ỹ∗0 = ã0 = 0.3 Here σy∗ and σa are the

standard deviations which are defined to have support in the real line.4

To get back to the centered parameterization, let at = a0 + σaãt, ζ
a
t = σaε

ã
t and ζy

∗

t =

σy∗ε
ỹ∗

t . Then, we have

at − at−1 = σaε
ã
t = ζat , ζat ∼ N (0, σ2

a),

y∗t − y∗t−1 = a0 + δy∗σy∗ε
ỹ∗

t + σaãt,

= at + ζy
∗

t , ζy
∗

t ∼ N (0, σ2
y∗).

Hence, the two parameterizations are equivalent.

Next, we use the non-centered parameterization and enrich it by allowing breaks in the

random walk drift or deterministic growth rate a0. In addition, we introduce binary in-

dicators to select between the alternative trend specifications. More specifically, consider

the following trend output specification:

y∗t = y∗0 + δa0a0t+ δy∗σy∗ ỹ
∗

t + δaσa

t∑

i=1

ãi + δd1d1tD1973,t + δd2d2tD2007,t (7)

where δa0 , δy∗ , δa, δd1 and δd2 are binary indicators, and D1973,t and D2007,t are dummy

3Berger, Everaert, and Vierke (2016) also use this approach to test for time variation in the trend
growth rate. We build upon their work and consider a larger class of trend specifications. Consequently,
our empirical results are somewhat different from theirs, which are discussed in Section 3.

4Note that the signs of σy∗ and σa are not identified. We refer the readers to Frühwirth-Schnatter
and Wagner (2010) for a more detailed discussion.
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variables—D1973,t takes value 1 if time t is 1973Q1 or later, and 0 otherwise; D2007,t is

1 if time t is 2007Q1 or later, and 0 otherwise. This trend specification includes many

models previously considered in the literature. Below we give a few examples.

If all the indicators are zero except δa0 , then the trend output y∗t has a linear deterministic

trend with growth rate a0. If in addition δd1 = 1, then this trend specification is the same

as in Perron and Wada (2009)—a deterministic trend with a break in the growth rate in

1973Q1. Similarly, if δd2 is also 1, then the deterministic trend growth has an additional

break in 2007Q1, as considered in Grant and Chan (2017b).

Next, if δa = δd1 = δd2 = 0 and δy∗ = δa0 = 1, then y∗t follows a random walk with drift a0.

If in addition δd2 = 1, then the drift has a break in 2007Q1, similar to the specification

in Luo and Startz (2014).

If δa = δa0 = 1 and δy∗ = δd1 = δd2 = 0, then y∗t has the same trend specification implicitly

assumed by the Hodrick-Prescott filter (see, e.g, Harvey and Jaeger, 1993; Grant and

Chan, 2017a). If both δa = δy∗ = 1, then y∗t has a stochastic trend with a time-varying

growth rate. Hence, the framework in (7) nests many popular trend specifications in the

literature, and we are able to average the output gap estimates across all these different

specifications.

Finally, we assume that trend inflation and the NAIRU follow independent driftless ran-

dom walks. Unlike output that is expected to have a positive long-run growth, the

long-run growth for both inflation and unemployment is expected to be zero—at least for

developed countries like the US. More specifically, consider

π∗

t = π∗

t−1 + επ
∗

t , (8)

u∗

t = u∗

t−1 + εu
∗

t , (9)

where επ
∗

t ∼ N (0, σ2
π∗) and εu

∗

t ∼ N (0, σ2
u∗).

2.3 Distribution Search

A large and growing literature has highlighted the importance of allowing for time-varying

volatility in modeling macroeconomic time series, especially output and inflation. See, for

example, Cogley and Sargent (2005), Primiceri (2005), Stock and Watson (2007), Clark

(2011) and Chan (2013). However, most of these papers assume Gaussian innovations—
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consequently these models assign relatively low probability to extreme events. Using a

dynamic stochastic general equilibrium model with stochastic volatility and t innovations,

Cúrdia, Del Negro, and Greenwald (2014) demonstrate that rare large shocks play an

important role in driving US business cycles. More recently, Chiu, Mumtaz, and Pinter

(2015) consider a vector autoregression (VAR) with stochastic volatility and t innovations,

and find that it fits the data better than alternative models. Cross and Poon (2016) show

that these models also forecast better than their counterparts with Gaussian innovations.

In light of this discussion, we allow επt , ε
c
t and εut—the innovations to the inflation equa-

tion (1), the output equation (4) and the unemployment equation (3), respectively—to

have stochastic volatility. In addition, we implement a distribution search to choose be-

tween a Gaussian and a t distribution. Specifically, we introduce three binary variables

δzπ , δzc and δzu as follows. If δzπ = 0, then επt follows a Gaussian distribution with

variance eh
π
t , i.e., επt ∼ N (0, eh

π
t ). If δzπ = 1, then επt follows a t distribution with the

following latent variable representation (see, e.g., Geweke, 1993; Koop, Poirier, and To-

bias, 2007): (επt | zπt ) ∼ N (0, zπt e
hπ
t ) and zπt ∼ IG(νπ/2, νπ/2), where IG(b1, b2) denotes

the inverse-gamma distribution with mean b2/(b1 − 1) when b1 > 1. Similarly we define

δzc and δzu to choose between a Gaussian and a t distribution for εct and εut , respectively.

Finally, the log volatilities hπ
t and hc

t are assumed to follow random walk processes as

follows:

hπ
t = hπ

t−1 + εh
π

t , (10)

hc
t = hc

t−1 + εh
c

t , (11)

hu
t = hu

t−1 + εh
u

t , (12)

where εh
π

t ∼ N (0, σ2
hπ), εh

c

t ∼ N (0, σ2
hc) and εh

u

t ∼ N (0, σ2
hu).

2.4 Model Summary

To summarize, the observation equations of the full model are specified in (1)–(4), where

the innovations are given as follows: if δzπ = 1, then επt ∼ N (0, zπt e
hπ
t ) with zπt ∼

IG(νπ/2, νπ/2); if δzπ = 0, επt ∼ N (0, eh
π
t ) instead. Similarly, for δzc = 1, εct ∼ N (0, zct e

hc
t )

with zct ∼ IG(νc/2, νc/2); if δzc = 0, εct ∼ N (0, eh
c
t ). And for δzu = 1, εut ∼ N (0, zut e

hu
t )

with zut ∼ IG(νu/2, νu/2); if δzu = 0, εut ∼ N (0, eh
u
t ). Finally, the state equations are

given in (5)–(12).
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Table 1 provides a summary of the binary indicators. Given that we have eleven indica-

tors, there are a total of 211 = 2048 models to consider. Estimating each of these models

and averaging the corresponding output gap estimates would simply be impractical. In

the next section we outline an algorithm to efficiently navigate this large model space

and obtain an output gap estimate that averages across these models.

Table 1: Summary of the binary indicators.

δλu determines if the unemployment gap enters the inflation equation
δγu determines if the unemployment gap enters the output equation
δλy determines if the output gap enters the inflation equation
δa0 determines if the trend output growth has a drift when δa = 0
δy∗ determines if permanent level shocks affect the trend output
δa determines if the trend output has a time-varying growth rate
δd1 determines if the drift in trend output growth has a break in 1973
δd2 determines if the drift in trend output growth has a break in 2007
δzπ determines if the innovations to inflation equation follow a t distribution
δzc determines if the innovations to output gap equation follow a t distribution
δzu determines if the innovations to unemployment equation follow a t distribution

2.5 Priors and Bayesian Estimation

In this section we give an overview of the prior distributions and the posterior sampler to

simulate from the joint posterior distribution. Details of the priors and the derivations

of the posterior sampler are provided in the Appendix. Most of the priors used are

standard; here we briefly discuss the priors on the variances of the innovations in the

state equations.

Following Frühwirth-Schnatter and Wagner (2010), we consider normal priors with zero

mean for the (unsigned) standard deviations σy∗ and σa: σy∗ ∼ N (0, Vσy∗
) and σa ∼

N (0, Vσa
). By a change of variable (see, e.g., Kroese and Chan, 2014, Section 3.5), it

can be shown that the implied prior for the variance σ2
a is G(0.5, 0.5/Vσa

), where G(b1, b2)
denotes the Gamma distribution with mean b1/b2. Compared to the conventional inverse-

gamma prior, this gamma prior has more mass concentrated around small values of σ2
a.

Figure 1 plots the gamma and inverse gamma density functions with the same mean and

variance. It is clear that the shapes of the two densities are rather different around zero:

while the mode of the inverse gamma density is away from zero, most of the mass of

the gamma density is near zero. Hence, the gamma prior provides shrinkage—a priori
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it favors the more parsimonious model in which y∗t does not have a time-varying growth

rate.
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Figure 1: Probability density functions of gamma (left panel) and inverse gamma (right
panel) with mean 0.12 and standard deviation

√
2× 0.012.

Our posterior sampler consists of 11 blocks and uses elements of the algorithms in

Frühwirth-Schnatter and Wagner (2010) and Chan, Koop, and Potter (2016). In particu-

lar, a key novel feature of our approach is that it builds upon the band matrix algorithms

developed in Chan and Jeliazkov (2009) and Chan (2013). It is shown in McCausland,

Miller, and Pelletier (2011) that this band matrix approach is more efficient compared to

the conventional Kalman filter-based algorithms. In addition, we follow the recommen-

dation of Frühwirth-Schnatter and Wagner (2010) where we integrate out the relevant

regression coefficients when we sample the model indicators to improve efficiency.

Below we provide a brief outline of the sampler. The derivation details are given in the

Appendix.

1. Sample π∗ from its full conditional distribution. This is done using the precision

sampler of Chan and Jeliazkov (2009).

2. Sample u∗ from its full conditional distribution. This is again implemented by using

the precision sampler of Chan and Jeliazkov (2009).

3. Sample ỹ∗ and (y∗0, a0, σy∗ , σa, d1, d2) from their full conditional distributions, and

randomly permute the signs of ỹ∗ and σy∗ as suggested in Frühwirth-Schnatter and

Wagner (2010).
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4. Sample ã and (y∗0, a0, σy∗ , σa, d1, d2) from their full conditional distributions, and

randomly permute the signs of ã and σa.

5. Sample (δλu , δλy , δγu) and (ρπ, λu, λy, γu) jointly. This is achieved by first drawing

the indicators marginally of (ρπ, λu, λy, γu), followed by sampling the latter from

their joint conditional distribution.

6. Sample (δa0 , δy∗ , δa, δd1 , δd2) and (y∗0, a0, σy∗ , σa, d1, d2) jointly. Again, this is achieved

by first drawing the indicators marginally of (y∗0, a0, σy∗ , σa, d1, d2), followed by sam-

pling the latter from their full conditional distribution.

7. Sample (δzπ , δzc , δzu), z
π, zc and zu jointly: first sample the indicators marginally

of zπ, zc and zu, followed by drawing zπ, zc and zu from their full conditional

distributions.

8. Sample ρu and ρc from their full conditional distributions.

9. Sample hπ, hc and hu from their full conditional distributions using the auxiliary

mixture sampler of Kim, Shepherd, and Chib (1998) as implemented in Chan and

Hsiao (2014).

10. Sample the variances σ2
u∗ , σ2

π∗ , σ2
hπ , σ2

hc and σ2
hu from their respectively full con-

ditional distributions. The conditional distributions of these variances are non-

standard due to the gamma priors. We draw each of these variances using an

independence-chain Metropolis-Hastings step.

11. Sample νπ, νc and νu using an independence-chain Metropolis-Hastings step as

implemented in Chan and Hsiao (2014).

3 Empirical Results

The data for our analysis are US quarterly real GDP, CPI inflation and the civilian

unemployment rate from 1948Q1 to 2015Q4. All series are sourced from the Federal

Reserve Bank of St. Louis economic database. The real GDP series is transformed by

taking logs and multiplying by 100; the CPI index is transformed to an annualized growth

rate. The posterior analysis presented below is based on 100000 posterior draws after a

burn-in period of 10000.

12



3.1 Posterior Model Probabilities

Table 2 reports the posterior means of the eleven indicator variables. Since these are bi-

nary variables, the posterior means can be interpreted as inclusion probabilities of various

features. First, in terms of model dimension, the results suggest that the unemployment

gap is directly useful for estimating the output gap—the posterior mean of δγu is 1, and

the unemployment gap is always included in the output equation. This therefore sup-

ports the joint modeling of output and unemployment, as is done in Sinclair (2009) and

Mertens (2014).

However, the estimate of δλy is only 0.25, indicating that the output gap is relatively

unimportant in determining inflation once we take into account the unemployment gap.

This is in line with the finding in Morley, Piger, and Rasche (2015), who show that the

unemployment gap explains a large fraction of the variation in the inflation gap in G7

countries, but in contrast to earlier work that emphasizes the direct connection between

the output gap and inflation, such as Kuttner (1994) and Gerlach and Smets (1999).

We emphasize that our results do not imply that inflation is not useful for estimating

the output gap. Rather the information is channeled through the unemployment gap:

inflation helps refine the estimate on the unemployment gap, which in turn helps pin

down the output gap.

Table 2: Posterior estimates of the indicator variables.
δλu δγu δλy δa0 δy∗ δa δd1 δd2 δzπ δzc δzu

0.98 1.00 0.25 1.00 0.55 1.00 0.15 0.00 0.99 0.57 0.89

Second, in terms of trend output specifications, our results strongly indicate that trend

output has a time-varying growth rate. Recall that if δd1 = δd2 = 1 and δa = 0, then the

trend growth rate has breaks in 1973 and 2007—and nowhere else. By contrast, if δa = 1,

then the trend growth rate changes every period. The posterior mean of δa is 1, whereas

those of δd1 and δd2 are 0.15 and 0, respectively. This suggests that the breaks in 1973 and

2007 are not needed if we allow the trend output growth to gradually drift every period.

In contrast to earlier work, such as Perron and Wada (2009), Luo and Startz (2014) and

Grant and Chan (2017b), that finds one or two breaks in trend output growth using

univariate models, the results from our trivariate model favor specifying trend output

growth as a stochastic process. Finally, the posterior mean of δy∗ is estimated to be 0.55,

showing mixed evidence on the role of the permanent level shocks to the trend output.
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We take this as partial support for the trend output specification in Grant and Chan

(2017a) that turns off these permanent level shocks.

Third, in terms of selecting between Gaussian and t innovations, the data generally favor

the latter in both the inflation and unemployment equations, whereas the evidence is

mixed for the output equation. In other words, for inflation and unemployment, even

after allowing for stochastic volatility, the magnitude of some innovations is still larger

than that is typical under the Gaussian distribution. These results support the claim

that rare large shocks play an important role in driving US business cycles.

Next, we report in Table 3 the posterior model probabilities of the top ten models. These

ten models account for a majority of the posterior model probabilities (the sum of the

probabilities is 0.79), but none of the models dominate. This illustrates a substantial

degree of model uncertainty and highlights the importance of averaging across models.

Table 3: Posterior model probabilities of the top ten models.

δλu δγu δλy δa0 δy∗ δa δd1 δd2 δzπ δzc δzu Prob
1 1 0 1 1 1 0 0 1 1 1 0.172
1 1 0 1 0 1 0 0 1 1 1 0.143
1 1 0 1 1 1 0 0 1 0 1 0.125
1 1 0 1 0 1 0 0 1 0 1 0.111
1 1 1 1 1 1 0 0 1 1 1 0.059
1 1 1 1 1 1 0 0 1 0 1 0.046
1 1 1 1 0 1 0 0 1 1 1 0.041
1 1 1 1 0 1 0 0 1 0 1 0.035
1 1 0 1 1 1 1 0 1 1 1 0.034
1 1 0 1 0 1 1 0 1 1 1 0.028

The most likely model is one in which the unemployment gap is included in both the

inflation and output equations, and the output gap is left out of the inflation equation;

trend output has a time-varying growth rate and a permanent level shock component;

and the innovations in all equations are t distributed. This model is closely followed by

two variants: one in which the permanent level shock component is turned off; in the

other the distribution of the output equation is Gaussian instead of t. Even though these

three models receive the most support from the data, model uncertainty is substantial.

In what follows, we report various features of interest by averaging across all the different

models rather than showing only estimates from the most likely model.
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3.2 Parameter Estimates

In this section we discuss the parameter estimates from the stochastic model specification

search exercise—these estimates are computed by averaging across all the different mod-

els. We focus on the relationships among the inflation gap, the unemployment gap and

the output gap, how persistent they are, and how often large shocks impact the inflation

and output equations.

Table 4 reports the posterior means and 2.5 and 97.5 percentiles for selected parameters.

The posterior mean of λu is −0.57, indicating a downward sloping Phillips curve—in

fact, a 1 percentage point unemployment gap is associated with an inflation rate that

is on average 0.57 percentage points below its trend. Counterintuitively, the coefficient

associated with the output gap in the inflation equation, λy, is negative, but its magnitude

is small and the corresponding 95% credible interval includes 0. This is consistent with

the posterior estimates of the indicator variables reported in Table 2, which indicate that

one needs not include the output gap in the inflation equation in the presence of the

unemployment gap. Finally, the Okun’s coefficient γu—i.e., the coefficient associated

with the unemployment gap in the output equation—is estimated to be −1.71, which is

only slightly different from the widely accepted value of −2 (Ball, Leigh, and Loungani,

2013).

Table 4: Posterior means and percentiles for selected parameters.

posterior mean 2.5 percentile 97.5 percentile
λu −0.57 −1.30 −0.01
γu −1.71 −1.95 −1.47
λy −0.04 −0.39 0.09
ρπ 0.33 0.16 0.50
ρc1 0.90 0.73 1.06
ρc2 0.01 −0.13 0.15
ρu1 1.64 1.53 1.75
ρu2 −0.67 −0.78 −0.56
νπ 7.7 2.8 30.3
νc 27.5 5.3 48.9
νu 13.5 2.4 46.0

Second, the AR(1) coefficient for the inflation gap, ρπ, is estimated to be 0.33, indicating

that the inflation gap is moderately persistent. In stark contrast, both the output and

unemployment gaps are substantially more persistent—the sums of the AR coefficients
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are 0.91 and 0.97, respectively.

Third, the degree of freedom parameters associated with the t distributions in the in-

flation, output and unemployment equations are estimated to be 7.7, 27.5 and 13.5,

respectively. This implies that there are more large, rare shocks to the inflation and

unemployment equations than allowed under the Gaussian assumption, whereas the in-

novations in the output equation are more similar to the those under the Gaussian dis-

tribution. These results are again consistent with the posterior estimates of the indicator

variables reported in Table 2.

Next, we plot in Figure 2 the histograms of the posterior draws of σy∗ and σa, the

standard deviations of the shocks to trend output and trend output growth, respectively.

It is clear that while the density of σy∗ has a point mass at 0, the density of σa has two

distinct modes and no mass near 0. This is in line with earlier results on posterior model

probabilities—there is mixed evidence on the role of permanent level shocks to trend

output, but the data strongly favor a time-varying growth rate for trend output.
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Figure 2: Histograms of the posterior draws of σy∗ (left panel) and σa (right panel).

3.3 Output Gap and Trend GDP Growth Estimates

In this section we report the estimates of the output gap and the trend output growth rate

from the proposed model. For comparison, we also report the corresponding estimates

produced by the US Congressional Budget Office (CBO), as well as estimates from the

univariate correlated unobserved components model (UCUR) of Morley, Nelson, and Zivot

(2003) with two breaks in the trend growth rate at 1973Q1 and 2007Q1.
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Figure 3 depicts the output gap estimates. It is evident that all three output gaps

generally coincide with the recession periods dated by the National Bureau of Economic

Research (NBER). However, there are substantial differences between the estimates from

the new trivariate model and those from the univariate UCUR model. For example,

under the new model, the trough of the recession in the early 1980s is estimated to be

about −11%, whereas the estimate under the UCUR is only about −3%. In addition,

under the UCUR, the output gap essentially closed in around 2011, whereas the new

model indicates that the output gap has remained large in magnitude since the Great

Recession. This might reflect the fact that the estimates from our trivariate model take

into account the large unemployment gap, which is not captured in the univariate UCUR

model.

Despite using very different methodologies, the output gap estimates from the new model

and the CBO are remarkably similar—the correlation between the two measures is about

0.95. However, our estimates tend to be larger in magnitude, at least up until the

early 1990s. For example, the CBO estimates an output gap of about −8% at the

trough of the 1980s recession, compared to −11% from our model. This might reflect the

typically higher natural rate of unemployment estimated by the CBO up until the 1990s

(see Figure 6 below)—a higher NAIRU often implies a smaller unemployment gap, and

therefore a smaller output gap in magnitude through Okun’s law.
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Figure 3: Estimates of output gap from the proposed model, the CBO and the correlated
UC model with two breaks in the trend growth rate at 1973Q1 and 2007Q1. The shaded
regions are the NBER recession dates.

Figure 4 plots the estimates of the annualized trend output growth. All three estimates

show an overall steady decline: from between 4% and 5% in the 1960s to about 3%
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from the early 1980s to 2000s. After that all estimates drop substantially to between

1% and 2% before the Great Recession. The general decline in trend output growth is

consistent with the results in Gordon (2012), who argues that US labor productivity has

slowed markedly after 1972 compared to the previous eight decades, because the main

ideas of the Second Industrial Revolution which started in early 1900s had mostly been

implemented by then.
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Figure 4: Estimates of annualized trend output growth from the proposed model, the
CBO and the correlated UC model with two breaks in the trend growth rate at 1973Q1
and 2007Q1.

The UCUR and our proposed models give strikingly similar estimates; the only difference

lies in the nature of the breaks—whether the decrease in trend output is gradual in our

model or abrupt in the UCUR model. As the results on posterior model probabilities

in Section 3.1 show, there is strong evidence in support of specifying a gradual change

in output trend growth. The estimates from the CBO are also generally similar, though

they seem to be more volatile. At the end of the sample at 2015Q4, the estimates from

the proposed model, the UCUR and the CBO are 1.2%, 1.3% and 1.6%, respectively.

3.4 Trend Inflation, NAIRU and SV Estimates

Next, we plot trend inflation from the proposed model in Figure 5. For comparison,

we also report the estimates from the univariate unobserved components model with

stochastic volatility (UCSV) of Stock and Watson (2007). Overall the two series are

broadly similar, showing double peaks in mid-1970s and early 1980s, and a marked decline

since mid-1980s. The trend inflation estimates from the proposed model, however, are
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generally less volatile.

It is also interesting to note that in contrast to the results in Berger, Everaert, and Vierke

(2016), our trend inflation estimates increase from about 2.5% in mid-2000s to about 5%

in 2010. Coibion and Gorodnichenko (2015) argue that the absence of disinflation during

the Great Recession—i.e., that inflation was much higher than expected given the high

unemployment rate—can be attributed to the rise in firms’ inflation expectations between

2009 and 2011. Our results support this explanation. In particular, the proposed model

indicates that in order to explain both the high unemployment rate and the higher than

expected inflation rate during the Great Recession given the Phillips curve relationship,

trend inflation needs to be higher.
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Figure 5: Estimates of trend inflation from the proposed model and the UCSV model.
The shaded region represents the 10% and 90% quantiles.

Figure 6 depicts the NAIRU estimates from the proposed model and the natural rate of

unemployment produced by the CBO. Both estimates are smooth and exhibit only very

low frequency movements. However, as mentioned previously, the CBO estimates tend

to be larger than those from the proposed model up until late 1990s—from then onward

they are very similar. At the end of the sample, the estimates from the proposed model

and the CBO are 4.7% and 4.8%, respectively.
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Figure 6: Estimates of the NAIRU from the proposed model as well as the natural rate
of unemployment produced by the CBO. The shaded region represents the 10% and 90%
quantiles.

Figure 7 reports the stochastic volatility estimates for the inflation, output and unem-

ployment equations. The three series of volatility estimates are clearly time-varying, but

they show different patterns. Both the volatilities of the inflation and unemployment

innovations are episodic—they are high at the beginning of the sample; they drop sub-

stantially during the 1960s; they increase again during the Great Inflation, and subside

during the Great Moderation, until they peak again following the aftermath of the Great

Recession. In contrast, the volatility of the output innovations appears to experience only

a one-off drop in the early 1980s, which coincides with the usual timing of the Great Mod-

eration. These estimates highlight the empirical relevance of allowing stochastic volatility

in modeling the three variables.
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Figure 7: Estimates of the stochastic volatility for the inflation equation (top panel), the
output equation (middle panel) and the unemployment equation (bottom panel). The
estimates are expressed in standard deviations. The shaded region represents the 10%
and 90% quantiles.
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4 Concluding Remarks and Future Research

This paper accounts for the sensitivity of the output gap to different specification choices

by taking a Bayesian model averaging approach that averages estimates across a wide

variety of specifications proposed in the literature. In particular, we consider three types

of specification choices—sets of variables, trend output specifications and distributional

assumptions—and construct a suitable model space that nests all relevant models. We

then navigate this large model space using an algorithm based on the stochastic model

specification search for time-varying parameter models proposed in Frühwirth-Schnatter

and Wagner (2010).

Our results indicate that the unemployment gap is useful in determining the output gap,

but conditional on the unemployment gap, the inflation gap does not depend on the

output gap. We find a steady decline in trend output growth throughout the sample; the

estimate at the end of the sample is only about 1.2%. Moreover, data favor t distributed

innovations, suggesting the relatively frequent occurrence of extreme events.

For future research, it is worthwhile to investigate if other macroeconomic variables pro-

vide additional information about the output gap. One promising approach is to embed

the proposed trivariate system in a large Bayesian vector autoregression such as those in

Banbura, Giannone, and Reichlin (2010) and Koop (2013). Using this framework, we can

also assess the impacts of the output gap on other macroeconomic variables.
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Appendix: Estimation Details

This appendix describes the priors and provides the estimation details of the proposed

unobserved components model. For convenience we reproduce the trivariate UC model

below:

πt − π∗

t = ρπ(πt−1 − π∗

t−1) + δλuλu(ut − u∗

t ) + δλyλy(yt − y∗t ) + επt , (13)

yt − y∗t = δγuγu(ut − u∗

t ) + ct, (14)

ut − u∗

t = ρu1(ut−1 − u∗

t−1) + ρu2(ut−2 − u∗

t−2) + εut , (15)

ct = ρc1ct−1 + ρc2ct−2 + εct , (16)

where the initial conditions are given as c0 = c−1 = 0, π∗

0 = π0, u
∗

0 = u0, u
∗

−1 = u−1 and

y∗0 ∼ N (y∗0,0, Vy∗
0
). The error terms are drawn from either the Gaussian distribution or the

t distribution: επt ∼ N (0, zπt e
hπ
t ) with zπt ∼ IG(νπ/2, νπ/2) if δzπ = 1; otherwise we have

επt ∼ N (0, eh
π
t ) instead. Similarly, for δzc = 1, εct ∼ N (0, zct e

hc
t ) with zct ∼ IG(νc/2, νc/2);

if δzc = 0, εct ∼ N (0, eh
c
t ). Finally, εut ∼ N (0, zut e

hu
t ) with zut ∼ IG(νu/2, νu/2) if δzu = 1;

otherwise εut ∼ N (0, eh
u
t ).

We consider the following noncentered parameterization of the trend output y∗t :

y∗t = y∗0 + δa0a0t+ δy∗σy∗ ỹ
∗

t + δaσa

t∑

i=1

ãi + δd1d1tD1973,t + δd2d2tD2007,t, (17)

where

ỹ∗t = ỹ∗t−1 + εỹ
∗

t , (18)

ã∗t = ã∗t−1 + εã
∗

t . (19)

The state equations are initialized with ỹ∗0 = ã∗0 = 0 and the innovations have standard

normal distributions: εỹ
∗

t ∼ N (0, 1) and εã
∗

t ∼ N (0, 1). The trend inflation π∗

t and

NAIRU u∗

t follow random walk processes:

π∗

t = π∗

t−1 + επ
∗

t , (20)

u∗

t = u∗

t−1 + εu
∗

t , (21)

where επ
∗

t ∼ N (0, σ2
π∗) and εu

∗

t ∼ N (0, σ2
u∗), and the state equations are initialized with

π∗

1 ∼ (π∗

0, Vπ∗) and u∗

1 ∼ (u∗

0, Vu∗).
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Finally, the log-volatilities follow random walk processes:

hπ
t = hπ

t−1 + εh
π

t , (22)

hc
t = hc

t−1 + εh
c

t , (23)

hu
t = hu

t−1 + εh
u

t , (24)

where εh
π

t ∼ N (0, σ2
hπ), εh

c

t ∼ N (0, σ2
hc) and εh

u

t ∼ N (0, σ2
hu). These are initialized

as hπ
1 ∼ (hπ

0 , Vhπ), hc
1 ∼ (hc

0, Vhc) and hu
1 ∼ (hu

0 , Vhu) with hπ
0 = hc

0 = hu
0 = 0 and

Vhπ = Vhc = Vhu = 100.

We assume proper but relatively noninformative priors for the model parameters. In

particular, we assume independent normal priors for the coefficients: ρπ ∼ N (ρπ0 , Vρπ),

λu ∼ N (λu
0 , Vλu), λy ∼ N (λy

0, Vλy), γu ∼ N (γu
0 , Vγu), a0 ∼ N (a0,0, Va0), d1 ∼ N (d1,0, Vd1),

d2 ∼ N (d2,0, Vd2), ρ
c ∼ N (ρc

0,Vρc)1(ρc ∈ R) and ρu ∼ N (ρu
0 ,Vρu)1(ρu ∈ R), where R

is the stationarity region. We set all prior means to be zero and set the prior variances

to be relatively large, with Vρπ = Vλu = Vλy = Vγu = Va0 = Vd1 = Vd2 = 1 and

Vρc = Vρu = I2.

For each of the binary indicators δi, we assume an independent Bernoulli prior with success

probability pi, where i = λu, γu, λy, a0, y
∗, a, d1, d2, z

π, zc, zu. The priors for the degree of

freedom parameters are uniform: νπ ∼ U(2, bνπ), νc ∼ U(2, bνc) and νu ∼ U(2, bνu), where
we set bνπ = bνc = bu = 50. The lower bounds are set at 2 to ensure the first two

moments of the t distribution exist. The upper bounds are set at 30 since a t distribution

with degree of freedom larger than 50 is essentially indistinguishable from normal for our

purpose.

Following Frühwirth-Schnatter and Wagner (2010), we assume gamma priors for the

error variances in the state equations, or equivalently normal prior with zero mean for

the (unsigned) standard deviations: σy∗ ∼ N (0, Vσy∗
), σa ∼ N (0, Vσa

),

σ2
u∗ ∼ G

(
1

2
,

1

2Vσu∗

)
, σ2

π∗ ∼ G
(
1

2
,

1

2Vσπ∗

)
, σ2

hπ ∼ G
(
1

2
,

1

2Vσhπ

)
,

σ2
hc ∼ G

(
1

2
,

1

2Vσhc

)
, σ2

hu ∼ G
(
1

2
,

1

2Vσhu

)
.

We set Vσπ∗
= 0.22, Vσa

= 0.012, Vσu∗
= Vσy∗

= Vσhπ
= Vσhc

= Vσhu
= 0.12. These priors

imply that the prior means are Eσ2
π∗ = 0.22, Eσ2

a = 0.012, Eσ2
u∗ = Eσ2

y∗ = Eσ2
hπ = Eσ2

hc =

Eσ2
hu = 0.12.
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Posterior draws can be obtained by following the steps below:

1. Sample π∗ from its full conditional distribution. Since (13) and (20) define

a standard linear Gaussian state space model, standard algorithms can be applied to

sample π∗. To derive the conditional density, first write (13) as

Hρππ = Hρππ
∗ + δλuλu(u− u∗) + δλyλy(y − y∗) + επ,

where

Hρπ =




1 0 0 · · · 0

−ρπ 1 0 · · · 0

0 −ρπ 1 · · · 0
...

. . . . . .
...

0 · · · 0 −ρπ 1




,

and επ ∼ N (0,Sπ). If δzπ = 1, Sπ = diag(zπ1 e
hπ
1 , . . . , zπT e

hπ
T ); otherwise Sπ = diag(eh

π
1 , . . . , eh

π
T ).

Since |Hρπ | = 1 for any ρπ, the log conditional likelihood for π is given by (ignoring terms

not involving π∗):

−1

2
(π − π∗ −mπ∗)′H′

ρπS
−1
π Hρπ(π − π∗ −mπ∗),

where mπ∗ = H−1
ρπ (δλuλu(u− u∗) + δλyλy(y − y∗)) Next, rewrite (20) as

Hπ∗ = µ̃π∗ + επ
∗

,

where επ
∗ ∼ N (0,Sπ∗) with Sπ∗ = diag(Vπ∗ , σ2

π∗ , . . . , σ2
π∗), µ̃π∗ = (π∗

0, 0, . . . , 0)
′, and

H =




1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
...

. . . . . .
...

0 · · · 0 −1 1




.

Since |H| = 1, the log prior density of π∗ is (again ignoring terms not involving π∗):

−1

2
(π∗ − µπ∗)′H′S−1

π∗ H(π∗ − µπ∗),

where µπ∗ = H−1µ̃π∗ . Then, by standard linear regression results (see, e.g., Kroese and

25



Chan, 2014, p.237-240), the conditional distribution of π∗ is N (π̂∗,K−1
π∗ ), where

Kπ∗ = H′S−1
π∗ H+H′

ρπS
−1
π Hρπ , π̂

∗ = K−1
π∗

(
H′S−1

π∗ Hµπ∗ +H′

ρπS
−1
π Hρπ(π −mπ∗)

)
.

SinceH andHρ∗ are band matrices, so is the precision matrixKπ∗ . As such, the precision

sampler of Chan and Jeliazkov (2009) can be used to sample π∗ efficiently.

2. Sample u∗ from its full conditional distribution. Information of u∗ comes

from four sources: the measurement equations (13), (14) and (15), as well as the state

equation (21). As before, if δzc = 1, define Sc = diag(zc1e
hc
1 , . . . , zcT e

hc
T ); otherwise let

Sc = diag(eh
c
1 , . . . , eh

c
T ). Moreover, set Su = diag(zu1 e

hu
1 , . . . , zuT e

hu
T ) if δzu = 1; otherwise

let Su = diag(eh
u
1 , . . . , eh

u
T ). Then, rewrite these equations in matrix form:

Hρπ(π − π∗) = δλyλy(y − y∗) + δλuλu(u− u∗) + επ,

y − y∗ = δγuγu(u− u∗) + c,

Hρu(u− u∗) = εu,

Hρcc = εc,

Hu∗ = Hµu∗ + εu
∗

,

where εc ∼ N (0,Sc), ε
u ∼ N (0,Su), ε

u∗ ∼ N (0,Su∗) with Su∗ = diag(Vu∗ , σ2
u∗ , . . . , σ2

u∗),

µu∗ = H−1(u∗

0, 0, . . . , 0)
′, and

Hρu =




1 0 0 0 · · · 0

−ρu1 1 0 0 · · · 0

−ρu2 −ρu1 1 0 · · · 0

0 −ρu2 −ρu1 1 · · · 0
...

. . . . . . . . . . . . 0

0 · · · 0 −ρu2 −ρu1 1




Hρc =




1 0 0 0 · · · 0

−ρc1 1 0 0 · · · 0

−ρc2 −ρc1 1 0 · · · 0

0 −ρc2 −ρc1 1 · · · 0
...

. . . . . . . . . . . . 0

0 · · · 0 −ρc2 −ρc1 1




.

Using a similar derivation as above, it can be shown that the conditional distribution of

u∗ is N (û∗,K−1
u∗ ), where

Ku∗ = H′S−1
u∗ H+H′

ρuS
−1
u Hρu + (δγuγu)2H′

ρcS
−1
c Hρc + (δλuλu)2S−1

π ,

û∗ = K−1
u∗

(
H′S−1

u∗ Hµu∗ +H′

ρuS
−1
u Hρuu− δγuγuH′

ρcS
−1
c Hρc(y − y∗ − δγuγuu)

−δλuλuS−1
π (Hρπ(π − π∗)− δλyλy(y − y∗)− δλuλuu)

)
.

Once again the precision matrix Ku∗ is banded and the precision sampler of Chan and
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Jeliazkov (2009) can be used to sample u∗ efficiently.

3. Sample ỹ∗ and (y∗0, a0, σy∗ , σa, d1, d2) from their full conditional distributions,

and randomly permute the signs of ỹ∗ and σy∗ . First, we derive the full conditional

distribution of ỹ∗. To that end, rewrite (17) in the following matrix notations:

y∗ = y∗01T + δa0a011:T + δy∗σy∗ỹ + δaσaÃ+ δd1d1D̃1973 + δd2d2D̃2007, (25)

where 1T is a T×1 column of ones, 11:T = (1, 2, 3, . . . , T )′ and Ã = (ã1, ã1+ã2, . . . ,
∑T

t=1 ãt)
′.

Let ⊙ denote the component-wise multiplication. Then, D̃1973 = D1973 ⊙ 11:T and

D̃2007 = D2007 ⊙ 11:T .

Next, rewrite (13) and (14) in terms of ỹ:

Hρππ = Hρππ
∗ + δλuλu(u− u∗) + δλyλy(y −mỹ∗ − δy∗σy∗ỹ) + επ,

y = mỹ∗ + δy∗σy∗ỹ + δγuγu(u− u∗) + c,

where mỹ∗ = y∗01T + δa0a011:T + δaσaÃ + δd1d1D̃1973 + δd2d2D̃2007, ε
π ∼ N (0,Sπ) and

c ∼ N (0, (H′

ρcS−1
c Hρc)−1). The state equation (18) can be written as

Hỹ = εỹ
∗

,

where εỹ
∗ ∼ N (0, IT ). Hence, using a similar derivation as above, the full conditional

distribution of ỹ∗ is N (̂̃y
∗

,K−1
ỹ∗ ), where

Kỹ∗ = H′H+ (δλyλyδy∗σy∗)
2S−1

π + (δy∗σy∗)
2H′

ρcS
−1
c Hρc ,

̂̃y
∗

= K−1
ỹ∗

(
−δλyλyδy∗σy∗S

−1
π (Hρπ(π − π∗)− δλyλy(y −mỹ∗)− δλuλu(u− u∗))

+δy∗σy∗H
′

ρcS
−1
c Hρc(y −mỹ∗ − δγuγu(u− u∗))

)
.

Again the precision matrix Kỹ∗ is banded and we sample ỹ∗ using the algorithm in Chan

and Jeliazkov (2009).

Now, we derive the conditional distribution of βy∗ = (y∗0, a0, σy∗ , σa, d1, d2)
′. First, note

that the prior on βy∗ is given by βy∗ ∼ N (βy∗,0,Vβy∗
), where βy∗,0 = (y∗0,0, a0,0, 0, 0, d1,0, d2,0)

′

andVβy∗
= diag(Vy∗ , Va0 , Vσy∗

, Vσa
, Vd1 , Vd2). Next, we rewrite (25) as y

∗ = Xy∗βy∗ , where
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Xy∗ = (1T , δa011:T , δy∗ỹ, δaÃ, δd1D̃1973 + δd2D̃2007). Then, (13) and (14) become:

Hρπ(π − π∗) = δλyλy(y −Xy∗βy∗) + δλuλu(u− u∗) + επ,

y = Xy∗βy∗ + δγuγu(u− u∗) + c.

Using standard results from linear regression, the full conditional distribution of βy∗ is

N (β̂y∗ ,K
−1
βy∗

), where

Kβy∗
= V−1

βy∗
+ (δλyλy)2X′

y∗S
−1
π Xy∗ +X′

y∗H
′

ρcS
−1
c HρcXy∗ ,

β̂y∗ = K−1
βy∗

(
V−1

βy∗
βy∗,0 − δλyλyX′

y∗S
−1
π (Hρπ(π − π∗)− δλyλyy − δλuλu(u− u∗))

+X′

y∗H
′

ρcS
−1
c Hρc(y − δγuγu(u− u∗))

)
.

As discussed in Frühwirth-Schnatter and Wagner (2010), the signs of ỹ∗ and σy∗ are not

identifiable. To improve the efficiency of the sampler, we randomly permute the signs of

ỹ∗ and σy∗ . Specifically, let U be a discrete random variable that takes values in {−1, 1}
with equal probabilities. Given the current draws ỹ∗ and σy∗ , we return Uỹ∗ and Uσy∗ .

4. Sample ã and (y∗0, a0, σy∗ , σa, d1, d2) from their full conditional distributions,

and randomly permute the signs of ã and σa. Since HÃ = ã, we can sample Ã and

transform the draw to get ã. Now, it follows from (25) that

y∗ = mÃ + δaσaÃ,

where mÃ = y∗01T + δa0a011:T + δy∗σy∗ỹ+ δd1d1D̃1973+ δd2d2D̃2007. Next, rewrite (13) and

(14) in terms of Ã as follows:

Hρπ(π − π∗) = δλuλu(u− u∗) + δλyλy(y −mÃ − δaσaÃ) + επ,

y = mÃ + δaσaÃ+ δγuγu(u− u∗) + c,

where επ ∼ N (0,Sπ) and c ∼ N (0, (H′

ρcS−1
c Hρc)−1). The state equation for ã is given

by

Hã = εã, εã ∼ N (0, IT ),

which implies that Ã = H−1ã ∼ N (0, ((H2)′H2)−1). Following a similar derivation as
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before, one can show that the full conditional distribution of Ã is N (
̂̃
A,K−1

Ã
), where

K
Ã
= (H2)′H2 + (δλyλyδaσa)

2S−1
π + (δaσa)

2H′

ρcS
−1
c Hρc ,

̂̃
A = K−1

Ã

(
−δλyλyδaσaS

−1
π (Hρπ(π − π∗)− δλyλy(y −mÃ)− δλuλu(u− u∗))

+δaσaH
′

ρcS
−1
c Hρc(y −mÃ − δγuγu(u− u∗))

)
.

Since K
Ã

is again a band matrix, we can sample Ã efficiently using the algorithm in

Chan and Jeliazkov (2009). Then, (y∗0, a0, σy∗ , σa, d1, d2) can be sampled exactly as before.

Finally, we randomly permute the signs of ã and σa.

5. Sample (δλu , δλy , δγu) and (ρπ, λu, λy, γu) jointly. This is achieved by first drawing

the indicators marginally of (ρπ, λu, λy, γu), followed by sampling the latter from their

joint conditional distribution.

We first derive the full conditional distribution of (ρπ, λu, λy, γu). Note that βπ =

(ρπ, λu, λy)′and γu are conditionally independent given other parameters and states, and

we sample them in turn. To that end, rewrite (13) as

π − π∗ = Xπβπ + επ,

where επ ∼ N (0,Sπ) and

Xπ =




0 δλu(u1 − u∗

1) δλy(y1 − y∗1)

π1 − π∗

1 δλu(u2 − u∗

2) δλy(y2 − y∗2)
...

...
...

πT−1 − π∗

T−1 δλu(uT − u∗

T ) δλy(yT − y∗T ).




Recall that the prior for βπ is given by βπ ∼ N (βπ,0,Vβπ
), where βπ,0 = (ρπ0 , λ

u
0 , λ

y
0)

′ and

Vβπ
= diag(Vρπ , Vλu , Vλy). Hence, the full conditional distribution of βπ is N (β̂π,K

−1
βπ
),

where

Kβπ
= V−1

βπ
+X′

πS
−1
π Xπ, β̂π = K−1

βπ
(V−1

βπ
βπ,0 +X′

πS
−1
π (π − π∗)).

Similarly, the full conditional distribution of γu is N (λ̂y, K−1
γu ), where

Kγu = V −1
γu + δ2γu(u− u∗)′H′

ρcS
−1
c Hρc(u− u∗),

λ̂y = K−1
γu (V −1

γu γu
0 + δγu(u− u∗)′H′

ρcS
−1
c Hρc(y − y∗)).
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Now, we derive the conditional distribution of the indicators (δλu , δλy , δγu)′ marginally of

the coefficients βπ and γu. The prior is simply the product of Bernoulli distributions:

p(δλu , δλy , δγu) =
∏

i=λu,λy ,γu

pδii (1− pi)
1−δi .

Next, using a similar derivation in Chan and Grant (2016), one can show that the joint

density function of π and y marginally of βπ and γu is proportional to (omitting any

constants not depending on the indicators):

p(π,y | δλu , δλy , δγu , ·) ∝ |Kβπ
|− 1

2 e
1

2
β̂
′

πKβπ
β̂π |Kγu |− 1

2 e
1

2
(λ̂y)2Kγu .

We can therefore evaluate the conditional distribution of the indicators marginally of βπ

and γu. Finally, (δλu , δλy , δγu) can be sampled using the inverse-transform method (see,

e.g. Kroese and Chan, 2014, Algorithm 2.3).

6. Sample (δa0 , δy∗ , δa, δd1 , δd2) and (y∗0, a0, σy∗ , σa, d1, d2) jointly. Again, this is achieved

by first drawing the indicators marginally of (y∗0, a0, σy∗ , σa, d1, d2), followed by sampling

the latter from their full conditional distribution.

The full conditional distribution of βy∗ = (y∗0, a0, σy∗ , σa, d1, d2)
′ is N (β̂y∗ ,K

−1
βy∗

), which

is derived in Step 3. Now, using a similar derivation in Step 4, one can show that the

distribution of (δa0 , δy∗ , δa, δd1 , δd2) marginally of βy∗ is given by

p(δa0 , δy∗ , δa, δd1 , δd2 |π,y, ·) ∝
∏

i=a0,y∗,a,d1,d2

pδii (1− pi)
1−δi × |Kβy∗

|− 1

2 e
1

2
β̂
′

y∗Kβy∗
β̂y∗ .

7. Sample (δzπ , δzc , δzu), z
π, zc and zu jointly: first sample the indicators marginally of

zπ, zc and δzu , followed by drawing zπ, zc and zu from their full conditional distributions.

By our assumptions, the joint conditional density of επ = (επ1 , . . . , ε
π
T )

′ is given by:

p(επ |hπ, δzπ = 0) =
T∏

t=1

(2πeh
π
t )−

1

2 e−
1

2
e−hπt (επt )

2

,

p(επ |hπ, δzπ = 1) =

(
Γ(νπ+1

2
)

√
νππΓ(

νπ
2
)

)T T∏

t=1

e−
1

2
hπ
t

(
1 +

1

νπ
e−hπ

t (επt )
2

)
−

νπ+1

2

.

Hence, the conditional density of δzπ marginally of zπ is simply

p(δzπ | επ,hπ) ∝ pδzπzπ (1− pzπ)
1−δzπp(επ |hπ, δzπ).
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Similar expression can be derived for δzc and δzu . Next, given δzπ and other parameters,

zπ1 , . . . , z
π
T are independent inverse-gamma random variables:

(zπt | νπ, δzπ = 0) ∼ IG
(νπ
2
,
νπ
2

)
,

(zπt | νπ, δzπ = 1) ∼ IG
(
νπ + 1

2
,
νπ + e−hπ

t (επt )
2

2

)
.

Finally, zc1, . . . , z
c
T as well as zu1 , . . . , z

u
T can be sampled similarly.

8. Sample ρu and ρc from their full conditional distributions. Since ρu and

ρc are conditionally independent given the latent states and other parameters, we can

sample them jointly. First, let

Xρu =




u0 − u∗

0 u−1 − u∗

−1

u1 − u∗

1 u0 − u∗

0
...

...

uT−1 − u∗

T−1 uT−2 − u∗

T−2




, Xρc =




c0 c−1

c1 c0
...

...

cT−1 cT−2




.

Then, we can rewrite (15) and (16) as:

u− u∗ = Xρuρu + εu,

c = Xρcρc + εc,

where εu ∼ N (0,Su) and εc ∼ N (0,Sc). Hence, the conditional distributions of ρu and

ρc are, respectively, N (ρ̂u,K−1
ρu )1(ρu ∈ R) and N (ρ̂c,K−1

ρc )1(ρc ∈ R), where R is the

stationarity region and

Kρu = V−1
ρu +X′

ρuS
−1
u Xρu , ρ̂

u = K−1
ρu

(
V−1

ρuρ
u
0 +X′

ρuS
−1
u (u− u∗)

)
,

Kρc = V−1
ρc +X′

ρcS
−1
c Xρc , ρ̂

c = K−1
ρc

(
V−1

ρc ρ
c
0 +X′

ρuS
−1
c c

)
.

9. Sample hπ, hc and hu from their full conditional distributions. The log-

volatilities hπ, hc and hu can be sampled easily using the auxiliary mixture sampler of

Kim, Shepherd, and Chib (1998); see Chan and Hsiao (2014) for a textbook treatment.

For example, if δzπ = 1, define wπ
t = log((επt )

2/zπt ); otherwise, let w
π
t = log((επt )

2). Then,

we feed wπ
1 , . . . , w

π
T into the auxiliary mixture sampler as data.

10. Sample the variances σ2
u∗, σ2

π∗, σ2
hπ , σ2

hc and σ2
hu from their respectively

full conditional distributions. The variances are conditionally independent given the
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states and other parameters. Hence, we can sample them individually. The conditional

distributions of the variances are non-standard due to the gamma priors. However, each

can be sampled using a Metropolis-Hastings step with an inverse-gamma proposal density.

For example, to sample σ2
u∗ , we can first obtain a candidate draw s2 from IG(T/2 −

1,
∑T

t=2(u
∗

t − u∗

t−1)
2/2). Given the current draw σ2

u∗ , we accept the candidate draw s2

with probability

min

{
1, exp

(
− 1

2Vσu∗

(s2 − σ2
u∗)

)}
;

otherwise, we keep σu∗ . The other variances can be sampled similarly.

11. Sample νπ, νc and νu .

The conditional distributions of νπ, νc and νu are non-standard, but each can be sam-

pled using a Metropolis-Hastings step. For example, to sample e νπ, we first maximize

log p(νπ | zπ using the Newton-Raphson method to obtain the mode and the negative Hes-

sian evaluated at the mode, denoted as ν̂π and Kνπ , respectively. Then, we implement

an independence-chain Metropolis-Hastings step with proposal density N (ν̂π, K
−1
νπ

). For

implementation details, see Chan and Hsiao (2014).
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