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Abstract

Vector autoregressions (VARs) with multivariate stochastic volatility are widely

used for structural analysis. Often the structural model identified through economi-

cally meaningful restrictions—e.g., sign restrictions—is supposed to be independent

of how the dependent variables are ordered. But since the reduced-form model is

not order invariant, results from the structural analysis depend on the order of

the variables. We consider a VAR based on the factor stochastic volatility that

is constructed to be order invariant. We show that the presence of multivariate

stochastic volatility allows for statistical identification of the model. We further

prove that, with a suitable set of sign restrictions, the corresponding structural

model is point-identified. An additional appeal of the proposed approach is that it

can easily handle a large number of dependent variables as well as sign restrictions.

We demonstrate the methodology through a structural analysis in which we use a

20-variable VAR with sign restrictions to identify 5 structural shocks.

Keywords: vector autoregression, factor model, stochastic volatility, Bayesian model

comparison, sign restriction
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1 Introduction

Bayesian vector autoregressions (VARs) with multivariate stochastic volatility, first devel-

oped in Cogley and Sargent (2005) and Primiceri (2005), are now the workhorse models

in empirical macroeconomics. These multivariate stochastic volatility models, however,

have the undesirable property that the implied likelihoods are not invariant to the order

of the dependent variables.1 This ordering issue has become an increasingly pertinent

problem due to two prominent developments in the VAR literature. First, in the last two

decades there has been a gradual departure from conventional recursive or zero identi-

fication restrictions to other more credible identification schemes—such as identification

by sign restrictions (Faust, 1998; Canova and De Nicolo, 2002; Uhlig, 2005)—that do

not restrict the order of the variables. Despite this development, models of Cogley and

Sargent (2005) and Primiceri (2005) continue to be used to first obtain reduced-form es-

timates, which are then taken as inputs in the subsequent structural analysis. Since the

reduced-form estimates are not order invariant, the results from the structural analysis

depend on the order of the variables in a subtle way, often without explicit recognition

by the user.2

Second, following the seminal contributions by Banbura, Giannone, and Reichlin (2010)

and Koop (2013), there is an increasing desire to use large VARs involving more than

dozens of dependent variables for structural analysis. This development is partly moti-

vated by the concern of informational deficiency of using a limited information set—by

expanding the set of relevant variables, one can alleviate this concern (see, e.g., Hansen

and Sargent, 1991; Lippi and Reichlin, 1993, 1994). However, unless there is a natural

variable ordering (e.g., using recursive identification restrictions), the ordering issue be-

comes more severe as the number of ways to order the variables increases exponentially

with the number of variables.

In view of these developments, we consider an alternative Bayesian VAR based on the

factor stochastic volatility that is constructed to be invariant to the order of the dependent

variables. Factor stochastic volatility models are commonly used for modeling high-

1This non-invariance problem is explicitly acknowledged and discussed in both Cogley and Sargent
(2005) and Primiceri (2005). See also the discussion in Carriero, Clark, and Marcellino (2019)

2The implications of this non-invariance problem for structural analysis have been illustrated in
Bognanni (2018) and Hartwig (2019).
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dimensional financial data, but are less widely employed in empirical macroeconomics.3

In specifying a suitable factor stochastic volatility model, there is often a tension between

identification and order invariance. On the one hand, one can identify the factors and

the associated factor loadings by fixing the orientation of the factors (e.g., as in Geweke

and Zhou, 1996; Chib, Nardari, and Shephard, 2006). But this identification strategy

essentially fixes the order of the variables, and therefore the identified model is not order

invariant (see, e.g., the discussion in Chan, Leon-Gonzalez, and Strachan, 2018). On the

other hand, one could avoid fixing the orientation of the factors and obtain an order-

invariant model, but it is unclear that the factors and the loadings are identified.4

We solve this dilemma between achieving identification and order invariance by carefully

teasing out a set of conditions strong enough for identification, yet they are weak enough

that the model remains order invariant. More specifically, we construct a VAR in which

the innovations have a factor structure, and both the factors and the idiosyncratic errors

follow stochastic volatility processes. We first show that the likelihood implied by this

model is invariant to the order of the dependent variables. We then discuss sufficient

conditions for identification of the factors and the factor loadings, building upon the

approach in Sentana and Fiorentini (2001) and extending it to a more general setting

in which both the factors and the idiosyncratic errors are heteroscedastic. Under mild

regularity conditions, we show that the factor loadings under our setup are identified

up to permutation and sign changes. Furthermore, with additional sign restrictions that

satisfy a set of conditions, we show that the factor loadings and the associated factors

are point-identified.

To determine the number of factors, we develop an estimator of the marginal likelihood

based on an importance sampling approach to evaluate the observed-data or integrated

likelihood. Through a series of Monte Carlo experiments, we show that our marginal

likelihood estimator works well and is able to select the correct number of factors under

a variety of settings.

3A notable exception is Kastner and Huber (2020), who use Bayesian VARs with factor stochastic
volatility for macroeconomic forecasting. Carriero, Clark, and Marcellino (2018) consider a related
multiplicative 2-factor stochastic volatility model to study the impact of macroeconomic and financial
uncertainty.

4For example, Kastner (2019) does not impose any orientation restrictions on the factors, arguing
that identification of the factor loadings is not necessary for his purpose of estimating the reduced-form
covariance matrix.
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We then discuss how our VAR with factor stochastic volatility (VAR-FSV) can be used

for structural analysis. More specifically, we develop various structural analysis tools

for VAR-FSV similar to those designed for standard structural VARs. In particular, we

describe methods to construct structural impulse response functions, forecast error vari-

ance decompositions and historical decompositions. We demonstrate the methodology

by revisiting the 6-variable VAR identified by a set of sign restrictions on the contem-

poraneous impact matrix considered in Furlanetto, Ravazzolo, and Sarferaz (2019). We

augment their system to a 20-variable VAR by including additional, seemingly relevant

macroeconomic and financial variables, which helps alleviate the concern of informational

deficiency. In addition, the impulse responses obtained using the VAR-FSV with the sign

restrictions imposed are point-identified. Empirically, we show that by including the

additional variables and sign restrictions, one can substantially sharpen inference.

Our paper is related to the recent work by Korobilis (2020), who uses a VAR with a

factor error structure for structural analysis. His work is motivated by the computational

challenge of imposing a large number of sign restrictions to obtain admissible draws using

conventional accept-reject methods (such as the widely used algorithm in Rubio-Ramirez,

Waggoner, and Zha, 2010). This computational hurdle has so far limited the use of sign

restrictions to relatively small systems with at most half a dozen dependent variables.5

Instead of using standard structural VARs, Korobilis (2020) assumes that the factors

in his model play the role of structural shocks, and shows that in this case structural

analysis can be done efficiently even when one imposes a large number of sign restrictions.

His model, however, is homoscedastic, and consequently it is only set-identified. By

contrast, in our VAR-FSV both the factors and the idiosyncratic errors follow stochastic

volatility processes. This feature does not only accommodate the empirical finding that

macroeconomic and financial variables typically exhibit time-varying volatility (see, e.g.,

Clark, 2011; Clark and Ravazzolo, 2015), it also allows us to achieve point-identification

of the factors and the factor loadings.

Our work also contributes to the recent literature on using heteroscedasticity to iden-

tify conventional structural VARs, including Wozniak and Droumaguet (2015), Lanne,

Lütkepohl, and Maciejowska (2010), Herwartz and Lütkepohl (2014), Bertsche and Braun

5Large VARs, on the other hand, are mostly identified using recursive or zero restrictions. See, for
example, Leeper, Sims, and Zha (1996), Banbura, Giannone, and Reichlin (2010) and Ellahie and Ricco
(2017).
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(2020), Lewis (2021) and Brunnermeier, Palia, Sastry, and Sims (2021). Our paper con-

siders the alternative setting of a VAR with a factor stochastic volatility specification

and establishes sufficient conditions for identification. One key advantage of using VAR-

FSV for structural analysis, compared to structural VARs, is that under VAR-FSV it

is computationally feasible to estimate large systems and impose a large number of sign

restrictions.

Our work is also related to the growing literature on constructing multivariate stochastic

volatility models that are order invariant. One approach is based on Wishart or inverse-

Wishart processes; examples include Philipov and Glickman (2006), Asai and McAleer

(2009), Chan, Doucet, León-González, and Strachan (2018) and Shin and Zhong (2020).

These models, however, are typically computationally intensive to estimate as the estima-

tion involves drawing from non-standard high-dimensional distributions. As such, these

models are generally not applicable to large datasets. An alternative approach is based

on the common stochastic volatility models in Carriero, Clark, and Marcellino (2016)

and Chan (2020). Although these models are designed for large systems and can be es-

timated quickly, they are more restrictive since the time-varying error covariance matrix

depends on a single stochastic volatility process—in particular, the error variances are

always proportional to each other.

There are also order-invariant models that are based on the discounted Wishart pro-

cess, such as those in Uhlig (1997), West and Harrison (2006) and Bognanni (2018).

These models are convenient to estimate as they admit Kalman-filter type filtering and

smoothing algorithms. The cost for this tractability, however, is that they are generally

too tightly parameterized, and consequently, they tend to underperform in forecasting

macroeconomic variables relative to standard stochastic volatility models such as Cogley

and Sargent (2005) and Primiceri (2005) (see Arias, Rubio-Ramirez, and Shin, 2021, for

an example). Lastly, the recent paper Chan, Koop, and Yu (2021) extends the stochastic

volatility model of Cogley and Sargent (2005) by avoiding the use of Cholesky decompo-

sition so that the extension is order-invariant. So far this reduced-form VAR is used for

forecasting, and further research is needed to incorporate identification restrictions for

structural analysis.

The rest of this paper is organized as follows. Section 2 first introduces the VAR with

factor stochastic volatility. Its theoretical properties, including order invariance and suffi-
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cient conditions for identification, are discussed in Section 3. We then outline a posterior

sampler and a marginal likelihood estimator for the model in Section 4 and Section 5,

respectively. Next, Section 6 develops various structural analysis tools for the VAR-FSV

model, including algorithms to construct structural impulse response functions and to

perform various decompositions. Then, Section 7 presents Monte Carlo results to il-

lustrate how well the marginal likelihood estimator works under a variety of settings.

We next demonstrate the proposed methodology via a structural analysis with sign re-

strictions in Section 8. Finally, Section 9 concludes and discusses some future research

directions.

2 A Bayesian VAR with Factor Stochastic Volatility

In this section we outline a Bayesian VAR with factor stochastic volatility (FSV) and

the associated prior distributions. To that end, let yt be an n × 1 vector of dependent

variables at time t. Then, for t = 1, . . . , T , consider the following VAR-FSV model:

yt = a0 + A1yt−1 + · · ·+ Apyt−p + εt, (1)

εt = Lft + uyt , (2)

where ft = (f1,t, . . . , fr,t)
′ denotes a r × 1 vector of latent factors and L is an n × r

matrix of factor loadings. Note also that L is unrestricted. The disturbances uyt and the

latent factors ft are assumed to be independent at all leads and lags. Moreover, they are

specified as jointly Gaussian:(
uyt

ft

)
∼ N

((
0

0

)
,

(
Σt 0

0 Ωt

))
, (3)

where Σt = diag(eh1,t , . . . , ehn,t) and Ωt = diag(ehn+1,t , . . . , ehn+r,t) are diagonal matrices.

For t = 2, . . . , T , the log-volatilities evolve as:

hi,t = µi + φi(hi,t−1 − µi) + uhi,t, uhi,t ∼ N (0, σ2
i ), i = 1, . . . , n, (4)

hn+j,t = φn+jhn+j,t−1 + uhn+j,t, uhn+j,t ∼ N (0, σ2
n+j), j = 1, . . . , r, (5)
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where we impose |φ1| < 1, . . . |φn+r| < 1 to ensure stationarity. Finally, the initial

conditions follow the stationary distributions hi,1 ∼ N (µi, σ
2
i /(1− φ2

i )), i = 1, . . . , n, and

hn+j,1 ∼ N (0, σ2
n+j/(1 − φ2

n+j)), j = 1, . . . , r. Note that the stationary distributions of

the log-volatilities associated with the idiosyncratic errors have nonzero means, whereas

the means of those associated with the factors are set to be zero for normalization.

To facilitate estimation, we rewrite the VAR in (1) as

yt = (In ⊗ x′t)β + εt, (6)

where In is the identity matrix of dimension n, ⊗ is the Kronecker product, β =

vec([a0,A1, . . . ,Ap]
′) and xt = (1,y′t−1, . . . ,y

′
t−p)

′ is a k × 1 vector of intercept and

lagged values with k = np+ 1.

Next, we specify the prior distributions on the model parameters. Let βi and li denote the

VAR coefficients and the elements of L in the i-th equation, respectively, for i = 1, . . . , n.

We assume the following independent priors on βi and li for i = 1, . . . , n:

βi ∼ N (β0,i,Vβi), li ∼ N (l0,i,Vli).

We elicit the prior mean vector β0,i and the prior covariance matrix Vβi similar to

the Minnesota prior (Doan, Litterman, and Sims, 1984; Litterman, 1986; Kadiyala and

Karlsson, 1993). Specifically, for growth rates data, we set β0,i = 0 to shrink the VAR

coefficients to zero. For level data, β0,i is set to be zero as well except for the coefficient

associated with the first own lag, which is set to be one. The prior covariance matrix

Vβi is constructed so that it depends on two key hyperparameters, κ1 and κ2, that

control respectively the overall shrinkage strength of ‘own’ lags and ‘other’ lags. For a

more detailed discussion of the Minnesota prior, see, e.g., Koop and Korobilis (2010),

Del Negro and Schorfheide (2011) or Karlsson (2013).

Finally, for the parameters in the stochastic volatility equations, we assume the priors:

µi ∼ N (µ0,i, Vµi), φj ∼ N (φ0,j, Vφj)1(|φj| < 1), σ2
j ∼ IG(νj, Sj),

i = 1, . . . , n and j = 1, . . . , n+ r.
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3 Order Invariance and Identification

In this section we describe a few important properties of the VAR-FSV model specified

in (1)-(5). First, the likelihood implied by the model is invariant to the order of the

variables (after permuting the relevant parameters appropriately). To see that, let P be

an n × n permutation matrix such that PP′ = P′P = In. For the n-variate Gaussian

density fN (·;µ,Σ) with mean vector µ and covariance matrix Σ, it is easy to see that

fN (x;µ,Σ) = fN (Px; Pµ,PΣP′).

Next, we derive an expression of the likelihood function. To that end, stack hyt =

(h1,t, . . . , hn,t)
′ and hft = (hn+1,t, . . . , hn+r,t)

′. We similarly define φy,φf ,σ
2
y and σ2

f .

In addition, we let ht = (hy
′

t ,h
f ′

t )′, φ = (φ′y,φ
′
f )
′, σ2 = (σ2′

y ,σ
2′

f ) and µ = (µ1, . . . , µn)′.

Then, the state equations (4)-(5) imply that the densities of hyt and hft , for t = 2, . . . , T ,

are, respectively,

fN (hyt ;µ+ φy � (hyt−1 − µ), diag(σ2
y)) and fN (hft ;φf � hft−1, diag(σ2

f )),

where � is the element-wise multiplication. Moreover, the initial conditions hy1 and hf1

have, respectively, the densities

fN (hy1;µ, diag(σ2
y � (1− φy))), and fN (hf1 ; 0, diag(σ2

f � (1− φf ))),

where � denotes the element-wise division.

Next, using the representation in (6) and integrating out the factors, the density of yt

given the parameters and log-volatilities is fN (yt; (In ⊗ x′t)β,LΩtL
′ + Σt). Stacking

y = (y′1, . . . ,y
′
T )′, the likelihood function, or more precisely the integrated or observed-
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data likelihood, can therefore be written as

p(y |β,L,µ,φ,σ2) =∫
fN (hy1;µ, diag(σ2

y � (1− φy)))fN (hf1 ; 0, diag(σ2
f � (1− φf )))

×
T∏
t=2

fN (hyt ;µ+ φy � (hyt−1 − µ), diag(σ2
y))fN (hft ;φf � hft−1, diag(σ2

f ))

×
T∏
t=1

fN (yt; (In ⊗ x′t)β,LΩtL
′ + Σt)dh.

(7)

Now, for an arbitrary permutation matrix P, suppose we permute the order of the depen-

dent variables ỹt = Pyt and the associated lagged values x̃′t = (1, (Pyt−1)′, . . . , (Pyt−p)
′) =

x′tQ
′, where Q = diag(1, Ip⊗P). We claim that the likelihood implied by the VAR-FSV

model is invariant to the permutation P in the sense that

p(y |β,L,µ,φ,σ2) = p(ỹ | β̃, L̃, µ̃, φ̃, σ̃2),

where L̃ = PL, β̃ = (P ⊗ Q)β, µ̃ = Pµ, φ̃ = ((Pφy)
′,φ′f )

′ and σ̃2 = ((Pσ2
y)
′,σ2′

f )′.6

That is, we obtain the same likelihood value for any permutation of yt if the lagged

values and the parameters are permuted accordingly.

This claim of order invariance can be readily verified as follows. First, noting that

P(In ⊗ x′t)β = (P⊗ 1)(In ⊗ x′t)(P
′ ⊗Q′)(P⊗Q)β

= (PInP
′)⊗ (1x′tQ

′)(P⊗Q)β

= (In ⊗ x̃′t)β̃,

6Note that the permuted vector β̃ consists of the VAR coefficients of the following system stacked by
rows:

ỹt = ã0 + Ã1ỹt−1 + · · ·+ Ãpỹt−p + ε̃t,

where ã0 = Pa0 and Ãj = PAjP
′, j = 1, . . . , p. That is,

β̃ = vec


(Pa0)′

(PA1P
′)′

...
(PApP

′)′

 = vec

Q


a′0
A′1
...

A′p

P′

 = (P⊗Q)vec


a′0
A′1
...

A′p

 = (P⊗Q)β.

9



we therefore obtain

fN (yt; (In ⊗ x′t)β,LΩtL
′ + Σt) = fN (ỹt; (In ⊗ x̃′t)β̃, L̃ΩtL̃

′ + Σ̃t),

where Σ̃t = PΣtP
′. Similarly, we also have

fN (hy1;µ, diag(σ2
y � (1− φy))) = fN (Phy1; Pµ, diag((Pσ2

y)� (1−Pφy))),

fN (hyt ;µ+ φy � (hyt−1 − µ), diag(σ2
y)) = fN (Phyt ; Pµ+ (Pφy)� (Phyt−1 −Pµ), diag(Pσ2

y)).

Since the Gaussian densities in (7) are equal to their permuted counterparts, the integrand

in p(ỹ | β̃, L̃, µ̃, φ̃, σ̃2) is exactly the same as that in (7). The only difference between the

two integrals is the order of integration: (hyt ,h
f
t ) versus (Phyt ,h

f
t ). But since the integral

is finite, one can change the order of integration without changing the integral. Hence,

the desired result follows. The following proposition summarizes this result.

Proposition 1 (Order Invariance). Let p(y |β,L,µ,φ,σ2) denote the likelihood of the

VAR-FSV model with lagged values x1, . . . ,xT . Let P be an arbitrary n×n permutation

matrix and define ỹt = Pyt and x̃′t = x′tQ
′, where Q = diag(1,P). Then, the VAR-FSV

with dependent variables ỹt and lagged values x̃t has the same likelihood. More precisely,

p(y |β,L,µ,φ,σ2) = p(ỹ | β̃, L̃, µ̃, φ̃, σ̃2),

where L̃ = PL, β̃ = (P⊗Q)β, µ̃ = Pµ, φ̃ = ((Pφy)
′,φ′f )

′ and σ̃2 = ((Pσ2
y)
′,σ2′

f )′.

Next, we discuss sufficient conditions for identification of the factor loadings and latent

factors. We mainly follow the approach in Sentana and Fiorentini (2001), but consider a

more general setting in which the idiosyncratic errors uyt in (2) are also heteroscedastic.

First, note that it follows from (2) and (3) that the covariance matrix of εt is given

by Var[εt |Ωt,Σt] = LΩtL
′ + Σt := Γt. The covariance structure of any observationally

equivalent model to (1)–(3) with the same number of factors must satisfy Γt = L∗Ω∗tL
∗′+

Σ∗t for all t, where L∗ is n × r and Ω∗t is r × r. Furthermore, for a square matrix A of

dimension m, we define vecd(A) to be the m× 1 vector that stores its diagonal elements.

Now, we consider the following assumptions that are used throughout the paper.

Assumption 1. The stochastic processes in vecd(Ωt) are linearly independent, i.e., there

does not exist δ ∈ Rr, δ 6= 0 such that δ′vecd(Ωt) = 0 for all t.
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Assumption 2. If any row of the matrix of factor loadings L is deleted, there remain

two disjoint submatrices of rank r.

Assumption 1 requires that no stochastic volatilities in the common factors can be ex-

pressed as a linear combination of other factor stochastic volatilities. Under our factor

stochastic volatility model, this assumption is automatically satisfied. Assumption 2 lim-

its the extent of sparseness in the factor loadings matrix to ensure one can separately

identify the common and the idiosyncratic components. This assumption can be traced

back to Anderson and Rubin (1956), and is widely adopted in the literature. Implicitly,

it also requires that r 6 (n− 1)/2. Since factor models are mostly applied to situations

where the number of variables n is much larger than the number of factors r, this is not

a stringent condition.

With Assumptions 1 and 2, one can show that the factor stochastic volatility model

specified in (2)-(3) is identified up to permutations and sign changes of the factors. The

identification results are summarized in the following proposition.

Proposition 2 (Identification of the Common Variance Component). Under Assump-

tion 1 and Assumption 2, the only observationally equivalent model to (2)-(5) is L∗ =

LPrP±, Ω∗t = P±PrΩtP
′
rP
′
± and Σ∗t = Σt, where Pr is a permutation matrix of dimen-

sion r and P± is a reflection matrix in which each diagonal entry is either +1 or −1.

We prove the proposition by adapting the results in Anderson and Rubin (1956) and

Sentana and Fiorentini (2001) to our setting. The details are provided in Appendix A.

Proposition 2 contains two sets of identification results. First, it shows that the common

and idiosyncratic variance components can be separately identified. Second, the com-

mon variance component is identified up to permutations and sign switches of the latent

factors.

So far we have only considered the case where all r factors are heteroskedastic. It turns

out this is not necessary for identification of the common variance component. More

generally, one can show that part of the factor loadings matrix is identified even when

some of the factors are homoskedastic (their variances are normalized to be one). The

following proposition summarizes such a partial identification result.

Proposition 3 (Partial Identification of the Common Variance Component When the

Number of Heteroskedastic Factors Is r1 < r). Let Ωt = diag(Ω1t, Ir2), where Ω1t is a

11



r1 × r1 covariance matrix and Ir2 is the r2-dimensional identity matrix with r = r1 + r2.

Similarly partition L = (L1,L2) such that L1 is n×r1 and L2 is n×r2. If diag(Ω1t, 1) sat-

isfies Assumption 1 and L satisfies Assumption 2, then L1 is identified up to permutations

and sign switches.

The proof of this proposition is given in Appendix A. The condition that diag(Ω1t, 1)

satisfies Assumption 1—i.e., (vecd(Ω1t)
′, 1)′ are linearly independent for all t—requires all

stochastic processes in vecd(Ω1t) to be non-degenerate. (Otherwise those homoskedastic

factors should be relocated to the homoskedastic part.) It is also worth noting that

Proposition 3 does not imply that for r1 < r, the common variance component is not

identifiable. In fact, it turns out that the minimum number of heteroskedastic factors for

identifying L (up to permutations and sign switches) is r1 = r − 1. We summarize this

result in the following corollary.

Corollary 1. Under the assumptions in Proposition 3, if the number of heteroskedastic

factors is r1 > r − 1, then L is identified up to permutations and sign switches.

The reason why only r1 = r − 1 heteroskedastic factors are needed for identification is

intuitive. Under the assumptions in Proposition 3, when r1 = r − 1, only one element

in Ωt is normalized to one; the remaining r − 1 stochastic processes in Ω1t are linearly

independent. Consequently, Ωt also satisfies Assumption 1. And Corollary 1 follows from

Proposition 2.

For r1 < r− 1, part of the factor loadings matrix L is invariant under general orthogonal

transformation. To see that, suppose r1 < r−1, and hence L2 has at least r2 > 2 columns.

Let Rf2 be a r2× r2 orthogonal matrix other than permutation Pr2 or reflection P± such

that Rf2R
′
f2

= Ir2 .
7 Then, we have LΩtL

′ = L1Ω1tL
′
1 + L2L

′
2 = L1Ω1tL

′
1 + L2Rf2R

′
f2

L′2.

Hence, L∗ = (L1,L2Rf2) and Ω∗t = Ωt form an observationally equivalent model.

For point-identification, one needs additional restrictions on L (or the latent factors) to

pin down the unique permutation and sign configuration. As is common in macroeco-

nomic analysis using VARs, sign restrictions implied by economic theory are often avail-

able to assist structural identification. For a recent contribution linking sign restrictions

and factor models, see Korobilis (2020). Below we describe how we can incorporate sign

7The only one-dimensional orthogonal matrices are reflections, namely, +1 and −1. Hence, r2 must
be at least 2.

12



restrictions to achieve point-identification. To that end, let S denote the n × r matrix

that collects the corresponding restrictions on the factor loadings matrix L. The entries

of S can take four values: 1, −1, 0 and N/A, which denotes positive restriction, negative

restriction, zero restriction and no restrictions, respectively. For example, if economic

theory implies that Lij > 0, then Sij = +1; if there are no restrictions on Lij, then

Sij = N/A.

Recall that under Assumptions 1-2, Proposition 2 dictates that the factor loadings matrix

L∗ of any observationally equivalent model must be of the form L∗ = LP, where P is a

product of a reflection and a permutation. To be observationally equivalent with the sign

restrictions imposed—i.e., satisfying exactly the same sign restrictions—we must have

SP = S. Intuitively then, for point-identification of L there must be enough structure in

S such that the only possible P is the identify matrix. Now, suppose that each column

of S has at least one sign restriction and no columns are the same or negative of any

other columns. These conditions are sufficient as they rule out any permutations or sign

changes except the identity.

To see that the conditions are necessary, suppose there is a column that has no sign

restrictions. Then, changing the sign of the associated column in L (and the associated

rows in ft) would leave the model observationally equivalent. Next, suppose one column

is the same or the negative of any other column, then we can permute (and change signs

if necessary) the relevant columns to leave the model observationally equivalent. We

summarize these results in the following corollary.

Corollary 2. Under Assumptions 1-2, the necessary and sufficient conditions for point-

identification of the factor loadings matrix are that each column of S has at least one

sign restriction and no columns are the same or negative of any other columns.

4 Bayesian Estimation

In this section we describe an efficient posterior sampler to estimate the model in (1)–

(5) with signs or zero restrictions specified in S. Below we note a few details in our

implementation with the goal of improving speed and sampling efficiency. First, even

though the factors f1, . . . , fT are conditionally independent given the data and other
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parameters, we sample them jointly in one step using the precision sampler of Chan and

Jeliazkov (2009)—instead of drawing them sequentially in a for-loop—to speed up the

computations.

Second, since VARs tend to have a lot of parameters even for small and medium systems,

we implement an equation-by-equation estimation approach similar in spirit to that in

Carriero, Clark, and Marcellino (2019) to sample the VAR coefficients. Specifically, given

the latent factors f , the VAR becomes n unrelated regressions, and one can sample the

VAR coefficients equation by equation without any loss of efficiency. Third, with the

sign restrictions imposed in S, the full conditional distribution of the factor loadings in

each equation becomes a truncated multivariate normal distribution. To sample from

such a distribution, we use the algorithm in Botev (2017) that is based on quadratic

programming.

For notational convenience, stack y = (y′1, . . . ,y
′
T )′, f = (f ′1, . . . , f

′
T )′, h = (h′1, . . . ,h

′
T )′

and β = (β′1, . . . ,β
′
n)′. In addition, let yi,· = (yi,1, . . . , yi,T )′ denote the vector of observed

values for the i-th variable, i = 1, . . . , n. We similarly define hi,· = (hi,1, . . . , hi,T )′, i =

1, . . . , n+ r. Then, posterior draws can be obtained by sampling sequentially from:

1. p(f |y,β,L,h,µ,φ,σ2) = p(f |y,β,L,h);

2. p(β,L |y, f ,h,µ,φ,σ2) =
∏n

i=1 p(βi, li |yi,·, f ,hi,·);

3. p(h |y, f ,β,L,µ,φ,σ2) =
∏n+r

i=1 p(hi,· |y, f ,β,L,µ,φ,σ2);

4. p(σ2 |y, f ,β,L,h,µ,φ) =
∏n+r

i=1 p(σ
2
i |hi,·, µi, φi);

5. p(µ |y, f ,β,L,h,φ,σ2) =
∏n

i=1 p(µi |hi,·, φi, σ2
i );

6. p(φ |y, f ,β,L,h,µ,σ2) =
∏n+r

i=1 p(φi |hi,·, µi, σ2
i ).

Step 1. As mentioned above, since the factors f1, . . . , fT are conditionally independent

given other parameters, in principle one can sample each factor sequentially in a for-loop.

Here, however, we vectorize all the operations and sample them jointly in one step to

improve computational speed. More specifically, we first stack the VAR in (1)-(2) over

t = 1, . . . , T and write it as:

y = Xβ + (IT ⊗ L)f + uy, uy ∼ N (0,Σ),
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where X is the matrix of intercepts and lagged values and Σ = diag(Σ1, . . . ,ΣT ) with

Σt = diag(ehyt ). In addition, it follows from (3) that (f |h) ∼ N (0,Ω), where Ω =

diag(Ω1, . . . ,ΩT ) with Ωt = diag(ehft ).

Then, by standard linear regression results (see, e.g., Chan, Koop, Poirier, and Tobias,

2019, chapter 12), we have

(f |y,β,L,h) ∼ N (f̂ ,K−1
f ), (8)

where

Kf = Ω−1 + (IT ⊗ L′)Σ−1(IT ⊗ L), f̂ = K−1
f (IT ⊗ L′)Σ−1(y −Xβ). (9)

Note that the precision matrix Kf is a band matrix, i.e., it is sparse and all the nonzero en-

tries are arranged along the diagonal bands above and below the main diagonal. As such,

once can use the precision sampler of Chan and Jeliazkov (2009) to sample f efficiently.

Step 2. Next, we sample β and L jointly to improve sampling efficiency. Given the

latent factors f , the VAR becomes n unrelated regressions and we can sample β and L

equation by equation. Recall that yi,· = (yi,1, . . . , yi,T )′ is defined to be the T × 1 vector

of observations for the i-th variable; and that βi and li represent, respectively, the VAR

coefficients and the factor loadings in the i-th equation. Then, the i-th equation of the

VAR can be written as

yi,· = Xiβi + Fli + uyi,·,

where F = (f1,·, . . . , fr,·) is the T × r matrix of factors with fi,· = (fi,1, . . . , fi,T )′. The

vector of disturbances uyi,· = (ui,1, . . . , ui,T )′ is distributed as N (0,Ωhi,·), where Ωhi,· =

diag(ehi,1 , . . . , ehi,T ).8 Letting θi = (β′i, l
′
i)
′ and Zi = (Xi,F), we can further write the

VAR systems as

yi,· = Ziθi + uyi,·.

Let Ri ⊂ Rr be the support of li defined by the sign restrictions specified in the i-th row

8Note that zero restrictions on li can be easily handled by redefining li and F appropriately. For
example, if the first element of li is restricted to be zero, we can define l̃i to be the vector consisting of
the second to r-th elements of li and F̃ = (f2,·, . . . , fr,·). Then, we replace Fli by F̃̃li.
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of S. Then, using standard linear regression results, we obtain:

(θi |yi,·, f ,hi,·) ∼ N (θ̂i,K
−1
θi

)1(li ∈ Ri),

where

Kθi = V−1
θi

+ Z′iΩ
−1
hi,·

Zi, θ̂i = K−1
θi

(V−1
θi
θ0,i + ZiΩ

−1
hi,·

yi,·)

with Vθi = diag(Vβi ,Vli) and θ0,i = (β′0,i, l
′
0,i)
′. A draw from this truncated multivariate

normal distribution can be obtained using the algorithm in Botev (2017). The remaining

steps are standard and we leave the details to Appendix B. Some simulation results are

reported in Appendix D to show that the posterior sampler works well and the posterior

estimates track the true values closely.

It is worth noting that Proposition 2 only guarantees that the factors and factor load-

ings are identified up to permutations and sign changes. Hence, in practice one might

encounter the so-called label-switching problem. One way to handle this issue is to post-

process the posterior draws to sort them into the correct categories; see, e.g., Kaufmann

and Schumacher (2019) for such an approach. In our empirical application we impose sign

restrictions that satisfy Corollary 2—and consequently the factors and factor loadings are

point-identified.

Next, we document the runtimes of estimating the VAR-FSV of different dimensions to

assess how well the posterior sampler scales to higher dimensions. More specifically, we

report in Table 1 the computation times (in minutes) to obtain 10,000 posterior draws

from the VAR-FSV of dimensions n = 15, 30, 50 and sample sizes T = 300, 800. The

posterior sampler is implemented in MATLAB on a typical desktop with an Intel Core

i5-9600 @3.10 GHz processor and 16 GB memory. It is evident from the table that

even for high-dimensional applications with 50 variables, the VAR-FSV model with sign

restrictions imposed on the factor loadings can be estimated fairly quickly.

Table 1: The computation times (in minutes) to obtain 10,000 posterior draws from the
VAR-FSV model with n variables and T observations. All VARs have r = 4 factors and
p = 4 lags.

T = 300 T = 800
n = 15 n = 30 n = 50 n = 15 n = 30 n = 50

12.5 25.7 45.0 33.3 67.3 110.2
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5 Bayesian Model Comparison

This section first gives a brief overview on the theory of Bayesian model comparison via

the marginal likelihood. Then, we introduce an algorithm to evaluate the likelihood,

or more precisely the integrated likelihood marginal of the latent states, implied by the

VAR-FSV model. Finally, we present an adaptive importance sampling algorithm to

estimate the marginal likelihood under the VAR-FSV model.

Suppose we wish to compare a collection of models {M1, . . . ,MK}, where each model Mk

is defined by a likelihood function p(y |θk,Mk) and a prior on the model-specific param-

eter vector θk denoted by p(θk |Mk). The gold standard for Bayesian model comparison

is the Bayes factor in favor of Mi against Mj, defined as

BFij =
p(y |Mi)

p(y |Mj)
,

where

p(y |Mk) =

∫
p(y |θk,Mk)p(θk |Mk)dθk (10)

is the marginal likelihood under model Mk, k = i, j. This Bayes factor is related to the

posterior odds ratio between the two models:

P(Mi |y)

P(Mj |y)
=

P(Mi)

P(Mj)
× BFij,

where P(Mi)/P(Mj) is the prior odds ratio. It if clear that if both models are equally

probable a priori, i.e., p(Mi) = p(Mj), then the posterior odds ratio between the two

models is equal to the Bayes factor. Hence, the Bayes factor has a natural interpretation

and is easy to understand. For example, under equal prior odds, if BFij = 50, then model

Mi is 50 times more likely than model Mj given the data. For a more detailed discussion

of the Bayes factor and its role in Bayesian model comparison, see Koop (2003) or Chan,

Koop, Poirier, and Tobias (2019). From here onwards we suppress the model indicator.
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5.1 Integrated Likelihood Evaluation

To estimate the marginal likelihood, we first present an efficient way to evaluate the

likelihood, or more precisely the integrated likelihood marginal of the latent states, given

in (7) . For notational convenience, we rewrite (7) as

p(y |β,L,µ,φ,σ2) =

∫
p(y |β,L,h)p(h |µ,φ,σ2)dh, (11)

where the conditional density of y given h but marginal of f has the explicit expression

p(y |β,L,h) = (2π)−
Tn
2

T∏
t=1

|LΩtL
′ + Σt|−

1
2 e−

1
2

(yt−(In⊗x′t)β)′(LΩtL′+Σt)−1(yt−(In⊗x′t)β).

The second term of the integrand, p(h |µ,φ,σ2), is a T (n+ r)-variate Gaussian density

implied by the state equations specified in (4)-(5). Its analytical expression is given in

Appendix C, and in particular, its precision matrix is banded. Hence, both densities can

be evaluated quickly.

The main difficulty in evaluating the integrated likelihood in (11), however, is that it

requires integrating out all the latent log-volatilities, which involves solving a T (n +

r)-dimensional integral. In what follows, we adopt the importance sampling approach

developed for time-varying parameter VARs in Chan and Eisenstat (2018) to our setting.9

More specifically, given an importance sampling density g—that might depend on model

parameters and the data—we evaluate the integrated likelihood via importance sampling:

p̂(y |β,L,µ,φ,σ2) =
1

R1

R1∑
r=1

p(y |β,L,h(r))p(h(r) |µ,φ,σ2)

g(h(r); y,β,L,µ,φ,σ2)
, (12)

where h(1), . . . ,h(R1) are independent draws from g.

The choice of the importance sampling density g is vital as it determines the variance

of the estimator. In general, we would like to use an importance sampling density so

that it well approximates the integrand in (11). Our particular choice is motivated by

9There is a long tradition of using importance sampling to evaluate the integrated likelihood of stochas-
tic volatility models. Earlier papers, such as Durbin and Koopman (1997), Shephard and Pitt (1997),
Koopman and Hol Uspensky (2002), Frühwirth-Schnatter and Wagner (2008), McCausland (2012), have
focused mostly on univariate stochastic volatility models.
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the observation that there is, in fact, a theoretical zero-variance importance sampling

density—it is p(h |y,β,L,µ,φ,σ2), the conditional posterior distribution of h given the

other parameters but marginal of f . In practice, however, this density cannot be used as

an importance sampling density as it is non-standard (e.g., its normalizing constant is

unknown and it is unclear how one can efficiently generate samples from this density). But

this observation provides us guidance for selecting a good importance sampling density.

In particular, we aim to approximate this ideal importance sampling density using a

Gaussian density. This is accomplished as follows. We first develop an expectation-

maximization (EM) algorithm to locate the mode of log p(h |y,β,L,µ,φ,σ2), denoted

as ĥ. Then, we obtain the negative Hessian of this log-density evaluated at the mode,

denoted as Kh. The mode and the negative Hessian are then used, respectively, as the

mean vector and precision matrix of the Gaussian approximation. That is, the importance

sampling density is N (ĥ,K−1
h ). We leave the technical details to Appendix C. Below we

comment on a few computational details.

First, in the M-step of the EM algorithm, one needs to solve a T (n+r)-dimensional max-

imization problem, which is in general extremely computationally intensive. In our case,

however, we are able to obtain analytical expressions of the gradient and the Hessian of

the objective function (i.e., the Q-function), which allows us to implement the Newton-

Raphson method. Furthermore, one can show that the Hessian is a) negative definite

anywhere in RT (n+r), and b) a band matrix. The former property guarantees rapid con-

vergence of the Newton-Raphson method, while the latter property substantially speeds

up the computations.

Second, to construct the importance sampling estimator in (12), one needs to both eval-

uate and sample from the T (n + r)-dimensional Gaussian importance sampling density

M times. For very high-dimensional Gaussian densities, both operations are generally

computational costly. For our Gaussian importance sampling density, however, we can

show that its precision matrix is banded. As such, samples from this Gaussian density

can be obtained quickly using the precision sampler in Chan and Jeliazkov (2009). Eval-

uation of the density can be done just as quickly. We summarize the evaluation of the

integrated likelihood in Algorithm 1.
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Algorithm 1 Integrated likelihood estimation.

Given the parameters β, L, µ,φ and σ2, complete the following two steps.

1. Obtain the mean vector ĥ and precision matrix Kh of the Gaussian importance
sampling density detailed in Appendix C.

2. For r = 1, . . . , R1, simulate h(r) ∼ N (ĥ,K−1
h ) using the precision sampler in Chan

and Jeliazkov (2009), and compute the average

p̂(y |β,L,µ,φ,σ2) =
1

R1

R1∑
r=1

p(y |β,L,h(r))p(h(r) |µ,φ,σ2)

g(h(r); y,β,L,µ,φ,σ2)
.

5.2 Marginal Likelihood Estimation

Next, we discuss the marginal likelihood estimation of the VAR-FSV model using an

adaptive importance sampling approach called the improved cross-entropy method. This

method requires little explicit analysis from the user and is applicable to a wide variety of

problems (in contrast to the importance sampling estimator of the integrated likelihood

estimation presented in Algorithm 1 that requires a lot of analysis). More specifically,

suppose we wish to estimate the marginal likelihood p(y) ≡ p(y |Mk) given in (10) using

the following importance sampling estimator:

p̂(y)IS =
1

R2

R2∑
r=1

p(y |θ(r))p(θ(r))

g(θ(r))
, (13)

where θ(1), . . . ,θ(R2) are independent draws from the importance sampling density g(·).
In particular, for our FSV model, θ = {β,L,σ2,µ,φ}. While this importance sampling

estimator in theory is unbiased and simulation consistent for any g—as long as it domi-

nates p(y | ·)p(·), i.e., g(θ) = 0 ⇒ p(y |θ)p(θ) = 0—in practice its performance heavily

depends on the choice of g. Here we follow Chan and Eisenstat (2015) to use the improved

cross-entropy method to construct g optimally.10

10The original cross-entropy method was developed for rare-event simulation by Rubinstein (1997,
1999) using a multi-level procedure to construct the optimal importance sampling density. Chan and
Eisenstat (2015) later show that this optimal importance sampling density can be obtained more accu-
rately in one step using Markov chain Monte Carlo methods.
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To motivate the improved cross-entropy method, first note that the ideal zero-variance

importance sampling density is the posterior density p(θ |y). That is, if we use g∗(θ) =

p(θ |y) = p(y |θ)p(θ)/p(y) as the importance sampling density, then the associated

estimator in (13) has zero variance. Unfortunately, g∗ cannot be used in practice as

its normalization constant is precisely the marginal likelihood, the unknown quantity

we aim to estimate. This nevertheless provides a benchmark to construct an optimal

importance sampling density. More specifically, we aim to find a density that is ‘close’ to

this benchmark g∗ that can be used as an importance sampling density.

To that end, consider a parametric family G = {g(θ; v)} indexed by the parameter

vector v. We then find the density g(θ; v∗) ∈ G such that it is, in a well-defined sense,

the ‘closest’ to g∗. One convenient measure of closeness between densities is the Kullback-

Leibler divergence or the cross-entropy distance. More precisely, for two density functions

g1 and g2, the cross-entropy distance from g1 to g2 is defined as:

D(g1, g2) =

∫
g1(x) log

g1(x)

g2(x)
dx.

Given this measure of closeness, we obtain the density g(·; v) ∈ G such that D(g∗, g(·; v))

is minimized, i.e., v∗ce = argminvD(g∗, g(·; v)). It can be shown that solving the CE

minimization problem is equivalent to finding

v∗ce = argmax
v

∫
p(y |θ)p(θ) log g(θ; v)dθ.

In general this optimization problem is difficult to solve analytically as it involves a

high-dimensional integral. Instead, we consider its stochastic counterpart:

v̂∗ce = argmax
v

1

M

M∑
m=1

log g(θm; v), (14)

where θ1, . . . ,θM are posterior draws from p(θ |y) ∝ p(y |θ)p(θ). It is useful to note that

v̂∗ce is exactly the maximum likelihood estimate for v if we view g(θ; v) as the likelihood

function with parameter vector v and θ1, . . . ,θM as an observed sample. Since finding

the maximum likelihood estimator is a standard problem, solving (14) is typically easy.

For example, analytical solutions to (14) are available for the exponential family (e.g.,

Rubinstein and Kroese, 2004, p. 70).
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Next, we discuss the choice of the parametric family G. One convenient class of den-

sities is one in which each member g(θ; v) is a product of probability densities, e.g.,

g(θ; v) = g(θ1; v1)×· · ·×g(θB; vB), where θ = {θ1, . . . ,θB} and v = {v1, . . . ,vB}. One

main advantage of this choice is that we can then reduce the generally high-dimensional

maximization problem (14) into B separate low-dimensional maximization problems. For

example, for the our FSV model, we divide θ = {β,L,σ2,µ,φ} into 5 natural blocks,

and consider the parametric family

G =

{
gN (β; v1,β,v2,β)gN (L; v1,L,v2,L)

n+r∏
i=1

gIG(σ
2
i ; v1,σ2

i
, v2,σ2

i
)

n∏
i=1

gN (µ2
i ; v1,µi , v2,µi)

×
n+r∏
i=1

gN (φi; v1,φi , v2,φi)1 (|φi| < 1)

}
,

where gN and gIG are, respectively, the Gaussian and the inverse-gamma densities. Given

this choice of the parametric family, the maximization problem in (14) can be readily

solved (either analytically or using numerical optimization).

Given the optimal importance density, denoted as g(β,L,σ2,µ,φ; v∗), we construct the

following importance sampling estimator:

p̂(y) =
1

R2

R2∑
r=1

p(y |β(r),L(r),σ2(r),µ(r),φ(r))p(β(r),L(r),σ2(r),µ(r),φ(r))

g(β(r),L(r),σ2(r),µ(r),φ(r); v∗)
, (15)

where (β(1),L(1),σ2(1),µ(1),φ(1)), . . . , (β(R2),L(R2),σ2(R2),µ(R2),φ(R2)) are independent draws

from g(β,L,σ2,µ,φ; v∗) and p(y |β,L,σ2,µ,φ) is the integrated likelihood, which can

be estimated using the estimator in (12). We refer the readers to Chan and Eisenstat

(2015) for a more thorough discussion of this adaptive importance sampling approach.

We summarize the algorithm in Algorithm 2.

Note that Algorithm 2 has two nested importance sampling steps, and it falls within the

importance sampling squared (IS2) framework in Tran, Scharth, Pitt, and Kohn (2014).

We follow their recommendation to set R1, the simulation size of the inner importance

sampling loop (the importance sampling step for estimating the integrated likelihood),

adaptively so that the variance of the log integrated likelihood is around 1. See also the

discussion in Pitt, dos Santos Silva, Giordani, and Kohn (2012).
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Algorithm 2 Marginal likelihood estimation via the improved cross-entropy method.

The marginal likelihood p(y) can be estimated using the following steps.

1. Obtain M posterior draws and use them to solve the CE minimization problem in
(14) to obtain the optimal importance sampling density g(β,L,σ2,µ,φ; v∗).

2. For r = 1, . . . , R2, simulate (β(r),L(r),σ2(r),µ(r),φ(r)) ∼
g(β(r),L(r),σ2(r),µ(r),φ(r); v∗) and compute the average

p̂(y) =
1

R2

R2∑
r=1

p̂(y |β(r),L(r),σ2(r),µ(r),φ(r))p(β(r),L(r),σ2(r),µ(r),φ(r))

g(β(r),L(r),σ2(r),µ(r),φ(r); v∗)
,

where the integrated likelihood estimate p̂(y |β(r),L(r),σ2(r),µ(r),φ(r)) is computed
using Algorithm 1 with R1 independent draws.

6 Structural Analysis with the VAR-FSV

The VAR-FSV in (1)-(2) can be used to draw structural inference by employing standard

tools such as impulse response functions, forecast error variance decompositions and

historical decompositions. In particular, letting A(L) = In−A1L− · · · −ApL
p, where L

is the lag operator, the representation

yt = Φ(1)µ+ Φ(L)εt, (16)

where Φ(L) = A(L)−1 is well-defined assuming det A(z) 6= 0 for all |z| < 1, z ∈ C (i.e.,

the process {yt : t ∈ Z} is covariance-stationary).

Although εt does not contain structural shocks (since its elements are correlated), the

reduced-form representation (16) can be matched to a hypothetical structural represen-

tation of the form

yt = Φ(1)µ+ Φ̃t(L)ut, (17)

where ut is a vector of structural shock, and hence, its elements are uncorrelated. Note

that Φ̃t(L) is time-varying because Var(εt) = LΩtL
′ + Σt is time-varying; consequently,

hypothetical structural representations that can be matched to (16) will generally have

time-varying parameters.
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The standard structural VAR approach is to assume that (i) ut is n×1 and (ii) εt = Φ̃0,tut,

where Φ̃0,t is a n × n constant matrix with rank Φ̃0,t = n and Var(ut) = In. Then,

Φ̃t(L) = Φ(L)Φ̃0,t and Φ̃0,t satisfies

Φ̃0,tΦ̃
′
0,t = LΩtL

′ + Σt.

In this case, identification of Φ̃0,t requires additional restrictions since

Φ̌0,tΦ̌
′
0,t = LΩtL

′ + Σt

for all Φ̌0,t = Φ̃0,tRt, given an arbitrary orthonormal matrix Rt (i.e. satisfying R′tRt =

RtR
′
t = In).

An alternative way to obtain structural inference in our settings—similar to Korobilis

(2020)—is to assume that Φ̃t(L) is n× (r + n) and ut is (r + n)× 1, such that

Φ̃0,t =
(
LΩ

1
2
t Σ

1
2
t

)
, ut =

(
f̃t

ũyt

)
, (18)

where f̃t = Ω
− 1

2
t ft and ũyt = Σ

− 1
2

t uyt . In this case, Φ̃t(L) = Φ(L)Φ̃0,t is also n × (r +

n), which in departure from standard structural VARs leads to a ‘short’ system (Forni,

Gambetti, and Sala, 2019).

Identification of impulse response functions and forecast error variance decompositions in

short systems is generally problematic (Pagan and Robinson, 2022; Canova and Ferroni,

2022). However, in the formulation above, Φ̃0,t is identified due to Σt being restricted

to a diagonal matrix and L being identified by sign restrictions as described in Section

3. Hence, impulse response functions and forecast error variance decompositions to all

shocks in ut are identified, even though ut is generally not recoverable from past and

future observations of yt, as defined in Chahrour and Jurado (2021).

In our setting, the main interest lies in quantifying the effects of shocks in f̃t, and therefore,

sign restrictions on L play the role of endowing these shocks with economic meaning.

The remaining elements in ũyt are not of direct interest and we do not treat them as

economically meaningful shocks. Nevertheless, the restriction that Σt is diagonal plays a

crucial role in the overall identification strategy along with an economically meaningful
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interpretation of f̃t. We provide explicit expressions for computing impulse response

functions and forecast error variance decompositions in Appendix F.

Finally, computing historical decompositions requires ft and uyt (see Appendix F for

details). The fact that ut is not recoverable implies that historical decompositions may

not be point identified. In a Bayesian setting, however, the posterior distribution of a

historical decomposition at each horizon may still be constructed using draws from the

posterior distribution of the VAR-FSV parameters together with draws of ft.

In the algorithm developed in Section 4, draws of ft are a by-product of simulation, while

uyt is easily obtained as

uyt = A(L)yt − µ− Lft,

for each draw of µ,A1, . . . ,Ap,L, ft. Therefore, draws from the posterior distribution of

a HD are straightforward to compute.

In addition, ut can be regarded as being recoverable in the limit as n −→∞ from the VAR

residual εt (and therefore past and present yt) under a suitable assumption on the factor

loadings L. To see this, let L+ denote the Moore–Penrose inverse of L. By Assumption

2, rank L = r and L+ = (L′L)−1L′. It also follows that a right inverse (although not a

Moore-Penrose inverse) of Φ̃0,t is

Φ̃
−R
0,t =

(
Ω
− 1

2
t L+

Σ
− 1

2
t (In − LL+)

)
. (19)

Consequently,

Φ̃
−R
0,t Φ̃0,t =

(
Ir Ω

− 1
2

t L+Σ
1
2
t

0 In −Σ
− 1

2
t LL+Σ

1
2
t

)
. (20)

In the factor model literature, a standard assumption (e.g. Bai, 2003; Forni, Giannone,

Lippi, and Reichlin, 2009) is that n−1L′L −→ Λ as n −→ ∞, where Λ is a constant

(strictly) positive-definite matrix. It implies that the factors ft are pervasive in the sense

that they significantly affect most of the variables on impact.11 An immediate consequence

11It is worth emphasising, however, that this does not imply uyt is a vector of idiosyncratic errors, as
defined by Forni, Hallin, Lippi, and Reichlin (2000); Forni and Lippi (2001) in the context of generalised
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of the pervasiveness assumption, together the regularity condition that Var(εi,t) <∞ for

all i = 1, . . . , n, is L+Σ
1
2
t ũyt

m.s.−→ 0. Combining this result with (20) yields

Φ̃
−R
0,t εt − ut =

(
Φ̃
−R
0,t Φ̃0,t − In

)
ut

m.s.−→ 0. (21)

Consequently, ut is recoverable from εt in the limit.12

7 A Monte Carlo Study: Determining the Number

of Factors

In this section we conduct a series of simulation experiments to assess the adequacy of

using the proposed marginal likelihood estimator to determine the number of factors.

More specifically, we generate datasets from the VAR-FSV in (1)–(5), but we change the

error structure to εt = Lft +
√
θuyt , where θ measures the signal-to-noise ratio, following

Bai and Ng (2002). We set parameter values so that if θ = r, the idiosyncratic component

will then have the same variance as the common component. In particular, we generate

Lij ∼ N (0, 1) for i = 1, . . . , n and j = 1, . . . , r and set µi = 0 for i = 1, . . . , n, so that

the log-volatility processes associated with the idiosyncratic errors have 0 unconditional

mean.

The remaining parameters are generated as follows. The intercepts are drawn indepen-

dently from the uniform distribution on the interval (−10, 10), i.e., U(−10, 10). For the

VAR coefficients, the diagonal elements of the first VAR coefficient matrix are iid U(0, 0.5)

and the off-diagonal elements are from U(−0.2, 0.2); all other elements of the j-th (j > 1)

VAR coefficient matrices are iid N (0, 0.12/j2). Finally, for the log-volatility processes, we

set φi = 0.98 and σ2
i = 0.12 for i = 1, . . . , n+ r.

In this Monte Carlo study, we select the true number of factors r ∈ {1, 3, 5} and θ ∈
{1, 3, 5, 10}; and we consider the number of variables n ∈ {15, 30} and sample size T ∈
{300, 500, 800}. For each set of (r, θ, n, T ), we generate 100 datasets. For each dataset,

we estimate the VAR-FSV models with r = 1, . . . , 6 factors and compute the associated

dynamic factor models. In particular, the overall effect of uyt on yt is Φ(L)uyt , which is generally
pervasive, albeit with a delay.

12A more general result on recoverability with a fixed n is given in Chahrour and Jurado (2021).
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marginal likelihood values. For this Monte Carlo experiment, a total of 14,400 separate

MCMCs and marginal likelihood estimation are run (24 settings × 6 factor models ×
100 datasets). Among the 6 factor models for each dataset and parameter setting, we

select the one with the largest marginal likelihood value. Table 2 reports the selection

frequency.

Table 2: Selection frequency (%) of the number of factors r in 100 datasets. The DGP is
εt = Lft +

√
θuy

t .

n θ True r T r = 1 r = 2 r = 3 r = 4 r = 5 r = 6
15 1 1 300 0.90 0.10 0 0 0 0

500 0.96 0.04 0 0 0 0
800 0.99 0.01 0 0 0 0

3 3 300 0 0.13 0.83 0.04 0 0
500 0 0.02 0.97 0.01 0 0
800 0 0 0.99 0.01 0 0

5 5 300 0 0.01 0.12 0.49 0.38 0
500 0 0 0.01 0.25 0.74 0
800 0 0 0.01 0.05 0.94 0

10 5 300 0 0.07 0.3 0.46 0.16 0.01
500 0 0 0.1 0.48 0.42 0
800 0 0 0.02 0.11 0.87 0

30 1 1 300 0.76 0.24 0 0 0 0
500 0.97 0.02 0 0 0 0.01
800 1.00 0 0 0 0 0

3 3 300 0 0.02 0.86 0.11 0.01 0
500 0 0.01 0.98 0.01 0 0
800 0 0 1.00 0 0 0

5 5 300 0 0 0.01 0.18 0.80 0.01
500 0 0 0 0.02 0.97 0.01
800 0 0 0 0.01 0.99 0

10 5 300 0 0.01 0.1 0.36 0.53 0
500 0 0 0 0.16 0.84 0
800 0 0 0 0.02 0.98 0

The Monte Carlo results show that the marginal likelihood estimator generally performs

well in selecting the correct number of factors under a variety of settings. For example,

for n = 15, T = 300, r = 3 and θ = 3 (moderate signal-to-noise ratio), the marginal

likelihood estimator is able to pick the correct number of factors 83% of the times; for

the rest of the cases, the model with one fewer factor (13%) or one more factor (4%) is
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selected. In addition, as the sample size T increases to 500, the selection frequency of

the r = 3 factor model increases to 97%. More generally, the selection frequency of the

correct number of factors increases as the sample size T increases for all cases considered,

confirming that the marginal likelihood is a consistent model selection criterion.

8 Application: The Role of Financial Shocks in Eco-

nomic Fluctuations

We illustrate the proposed methodology by revisiting the structural analysis in Furlan-

etto, Ravazzolo, and Sarferaz (2019) that is based on a standard structural VAR. More

specifically, they use a 6-variable structural VAR to study the impacts of 5 structural

shocks—demand, supply, monetary, investment and financial shocks—on a number of

key economic variables, where these structural shocks are identified using sign restric-

tions on the contemporaneous impact matrix. The size of the VAR in their application is

typical among empirical works that use sign restrictions for identification because of the

computational burden.13

However, there are a number of reasons in favor of using a larger set of macroeconomic

and financial variables. First, in practice the mapping from variables in an economic

model to the data is often not unique. For example, as argued in (Loria, Matthes, and

Wang, 2021), the economic variable inflation could be matched to data based on the CPI,

PCE, or the GDP deflator, and it is not obvious which time series should be used. Instead

of arbitrarily choosing one inflation measure, it is more appropriate to include multiple

time series corresponding to the same economic variable in the analysis.

Second, one might be concerned about the problem of informational deficiency that arises

from using a limited information set. More specifically, influential papers such as Hansen

and Sargent (1991) and Lippi and Reichlin (1993, 1994) have pointed out that when

the econometrician considers a narrower set of variables than the economic agent, the

underlying model used by the econometrician is non-fundamental. That is, current and

past observations of the variables do not span the same space spanned by the structural

13For their 6-variable structural VAR, Furlanetto, Ravazzolo, and Sarferaz (2019) report estimation
time of about a week using a 12-core workstation.
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shocks. As a consequence, structural shocks cannot be recovered from the model. A

natural way to alleviate this concern of informational deficiency is to use a larger set of

relevant variables (see, e.g., Gambetti, 2021, for a recent review on non-fundamentalness).

In view of these considerations, we augment the 6-variable VAR with additional macroe-

conomic and financial variables, and consider a 20-variable VAR with factor stochastic

volatility identified using sign restrictions. There are two related papers that use large

VARs to study the role of financial shocks in economic fluctuations. First, Chan (2021)

considers a 15-variable structural VAR with a new asymmetric conjugate prior to identify

the financial shocks. Given the larger system and the large number of sign restrictions,

estimation time is about a week to obtain 1,000 admissible draws using the algorithm

of Rubio-Ramirez, Waggoner, and Zha (2010). In contrast, the proposed approach takes

less than a minute to obtain the same number of admissible draws, and is applicable to

even larger systems. Second, Korobilis (2020) uses a 15-variable VAR with a factor error

structure to identify the financial shocks, which can also be done quickly. The main ad-

vantage of our approach, however, is that the structural shocks obtained using our factor

stochastic volatility model are point-identified, whereas they are only set-identified under

a homoskedastic VAR. In practice, our approach can often provide sharper inference.

8.1 Data

We use a dataset that consists of 20 US quarterly variables, which are constructed from

raw time-series taken from from different sources, including the Federal Reserve Bank

of Philadelphia and the FRED database at the Federal Reserve Bank of St. Louis. For

easy comparison with the results in Furlanetto, Ravazzolo, and Sarferaz (2019), we use

the same sample period that spans from 1985:Q1 to 2013:Q2. The complete list of these

time-series and their sources are given in Appendix E.

We include the same 6 variables used in the baseline model in Furlanetto, Ravazzolo, and

Sarferaz (2019), namely, real GDP, GDP deflator, 3-month treasury rate, ratio of private

investment over output, S&P 500 index and a credit spread defined as the difference

between Moody’s baa corporate bond yield and the federal funds rate. In addition, we

also include 14 additional macroeconomic and financial variables, such as the ratio of

total credit over real estate value, labor market variables, mortgage rates, as well as
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other measures of inflation, interest rates and stock prices. These 20 variables are listed

in Table 3 and the details of the raw data are given in Appendix E.

8.2 Sign Restrictions and Impulse Responses

In this section we re-examine the empirical application in Furlanetto, Ravazzolo, and

Sarferaz (2019) that identifies 5 structural shocks using a structural VAR with sign re-

strictions on the contemporaneous impact matrix. We first use the proposed VAR-FSV

model to replicate their baseline results from a 6-variable VAR, but here we impose the

sign restrictions on the factor loadings instead of the impact matrix. We then consider a

larger VAR-FSV model with 20 variables to identify the same structural shocks.

Now, we first employ the same 6 variables and the associated sign restrictions used in

Furlanetto, Ravazzolo, and Sarferaz (2019), which are presented in the first six rows of

Table 3. The sign restrictions to identify the supply, demand, monetary, investment and

financial shocks are exactly the same as in Furlanetto, Ravazzolo, and Sarferaz (2019),

and we refer the readers to their paper for more details. Here we only note that in order

to distinguish investment and financial shocks from demand shocks, they are assumed

to have different effects on the ratio of investment over output. In particular, positive

investment and financial shocks have a positive effect on the ratio, motivating by the

idea that investment and financial shocks create investment booms. By contrast, positive

demand shocks reduce the ratio of investment over output, i.e., even though investment

level could increase in response to demand shocks, it does not increase as much as other

components of output.

We compute the impulse responses from the VAR-FSV with 5 factors, where the sign

restrictions are imposed on the factor loadings. Since Furlanetto, Ravazzolo, and Sar-

feraz (2019) use an improper/non-informative prior in their analysis, to make our results

comparable, we consider a proper but relatively vague prior by setting κ1 = κ2 = 1.14

We use the Gibbs sampler described in Section 4 to obtain 50,000 posterior, storing every

14The variables are expressed in level. As such, the prior means of the first own lags are all set to be
1, whereas those of other VAR coefficients are set to be 0. In addition, the prior mean of µi, the mean
of the idiosyncratic log-volatility for the i-th variable, is set to be log(0.1× Var(yi,·)). That is, a priori
about 10% of the sample variance is attributed to idiosyncratic component. Finally, the prior variance
Vµi is set to be 10 for i = 1, . . . , n.
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10-th draw, after a burn-in period of 5,000.

Table 3: Sign restrictions and identified structural shocks.

Supply Demand Monetary Investment Financial
GDP + + + + +
GDP deflator − + + + +
3-month tbill rate NA + − + +
Investment/output NA − NA + +
S&P 500 + NA NA − +
Spread NA NA NA NA NA
Spread 2 NA NA NA NA NA
Credit/Real estate value NA NA NA NA NA
Mortgage rates NA NA NA NA NA
Personal consumption expenditures + + + + +
Industrial production + + + + +
Industrial production: final + + + + +
CPI − + + + +
PCE index − + + + +
Employment NA NA NA NA NA
All employees: Manufacturing NA NA NA NA NA
1-year tbill rate NA + − + +
10-year tnote rate NA + − + +
DJIA + NA NA − +
NASDAQ + NA NA − +

Note: the variable spread is defined as the difference between Moody’s baa corporate bond yield and
the federal funds rate. Spread 2 is the difference between Moody’s baa corporate bond yield and
10-year treasury yield.

Figure 1 plots the impulse responses of the 6 variables to an one-standard-deviation finan-

cial shock. Despite the differences in methodology, the impulse responses are very similar

to those given in Furlanetto, Ravazzolo, and Sarferaz (2019). Consistent with the find-

ings in Furlanetto, Ravazzolo, and Sarferaz (2019), the results show that financial shocks

have a substantial impact on output, stock prices and investment, but have a limited

impact on inflation (measured by GDP deflator). Furthermore, even though the impact

on the spread is unrestricted, we find that its reaction to financial shocks is significantly

counter-cyclical. These results highlight one advantage of the proposed methodology: the

median impulse responses from the VAR-FSV are very similar to those obtained using

a standard structural VAR, but instead of using an accept-reject algorithm to obtain

admissible draws, the sign restrictions can be easily incorporated in the estimation, and

consequently, it can be done much faster.
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Figure 1: Impulse responses from a 6-variable VAR-FSV with 5 factors to an one-
standard-deviation financial shock. The shaded region represents the 16-th and 84-th
percentiles.

Next, we augment the 6-variable VAR with 14 additional macroeconomic and financial

variables. Many of these new variables are alternative data series corresponding to the

same economic variable. For example, in addition to GDP deflator as prices, we also

include CPI and PCE index as alternative measures. Similarly, Dow Jones Industrial

Average and NASDAQ indexes are added as alternative measures of stock prices. Fur-

thermore, other seemingly relevant variables, such as labor market and national accounts

variables, are also included to alleviate the concern of informational deficiency. The addi-

tional variables and the corresponding sign restrictions are listed in rows 7-20 of Table 3.

With n = 20 variables and r = 5 factors, this large VAR-FSV satisfies the condition that
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r 6 (n− 1)/2. In addition, it is easy to verify that the sign restrictions given in Table 3

satisfy the conditions in Corollary 2, and therefore the latent factors, which we interpret

as structural shocks, are point-identified. Given the large number of variables, it is crucial

to apply proper shrinkage on the VAR coefficients. Following the bulk of the literature

(e.g., Carriero, Clark, and Marcellino, 2015), we set κ1 = 0.04 and κ2 = 0.042—i.e., the

VAR coefficients associated with lags of other variables are shrunk more strongly to 0

than those on own lags. Again we obtain 50,000 posterior after a burn-in period of 5,000

to compute the impulse responses. The results are reported in Figure 2.

The impulse responses from this 20-variable VAR-FSV are qualitatively similar to those

from the smaller system, but the inference is much sharper. Specifically, the credible

intervals of the 6 impulse response functions are much narrower, highlighting the benefits

of incorporating more relevant information—more variables and sign restrictions as well

as a more informative prior—to sharpen inference. For example, the credible intervals

associated with the responses of investment and stock prices exclude zero for the first 32

quarters after the initial impact of a financial shock. This is in contrast to the much wider

credible intervals from the 6-variable VAR (the median impulse responses of stock prices

even become negative at longer horizons). The results from this large system therefore

better highlight the impact of a positive financial shock, which Furlanetto, Ravazzolo,

and Sarferaz (2019) define as “a shock that generates an investment and a stock market

boom.”
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Figure 2: Impulse responses from a 20-variable VAR-FSV with 5 factors to an one-
standard-deviation financial shock. The shaded region represents the 16-th and 84-th
percentiles.

Next, we plot in Figure 3 the median impulse responses of the 6 variables from the

remaining 4 structural shocks. These impulse responses are similar to those presented in

Figure 3 in Furlanetto, Ravazzolo, and Sarferaz (2019). In particular, we confirm that

supply shocks generate large effects not only on output, but also on investment and stock

prices. On the other hand, demand shocks have smaller effects on output, investment

and stock prices, at least for short to medium horizons, but they are the main driver of

prices. Finally, while we also find that monetary shocks have a protracted positive effect

on output, their effects on stock prices are more subdued.
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Figure 3: Median impulse responses from a 20-variable VAR-FSV with 5 factors to an
one-standard-deviation supply, demand, monetary, and investment shock.

8.3 Historical and Forecast Error Variance Decompositions

To quantify how much of the historical fluctuations in GDP and spread can be attributed

to each of the structural shocks, we compute the historical decompositions of these two

variables using the formulas derived in Appendix F. The results are reported in Figure 4

and Figure 5.
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Figure 4: Historical decompositions of GDP from a 20-variable VAR-FSV with 5 factors.
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Figure 5: Historical decompositions of spread from a 20-variable VAR-FSV with 5 factors.

These historical fluctuations from the VAR-FSV are in line with those obtained using

a standard structural VAR presented in Furlanetto, Ravazzolo, and Sarferaz (2019). In
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particular, financial shocks play a large role in explaining the historical fluctuations in

both GDP and spread, especially in the lead-up and aftermath of the Great Recession of

2007-2009.

Next, we quantify the amount of the prediction mean squared errors of 6 selected variables

accounted for by each of the 5 structural shocks at different forecast horizons. More

specifically, using the expressions developed in Appendix F, we compute the forecast

error variance decompositions of the variables and the results are presented in Table 4.

Table 4: Forecast error variance decompositions from a 20-variable VAR-FSV with 5
factors (as a percentage of the variation explained by the factors).

Horizon Supply Demand Monetary Investment Financial
GDP 1 0.08 0.13 0.45 0.11 0.23

5 0.12 0.11 0.46 0.08 0.23
20 0.16 0.10 0.46 0.06 0.22

GDP deflator 1 0.11 0.84 0.01 0.04 0.00
5 0.09 0.84 0.01 0.05 0.01
20 0.07 0.85 0.01 0.05 0.02

Interest rate 1 0.07 0.00 0.00 0.58 0.35
5 0.10 0.00 0.00 0.58 0.32
20 0.12 0.00 0.01 0.58 0.29

Investment 1 0.07 0.01 0.44 0.16 0.33
5 0.15 0.02 0.40 0.09 0.34
20 0.23 0.02 0.37 0.06 0.32

S&P 500 1 0.92 0.00 0.00 0.01 0.07
5 0.91 0.00 0.00 0.01 0.07
20 0.91 0.00 0.00 0.01 0.08

Spread 1 0.02 0.00 0.00 0.13 0.85
5 0.04 0.00 0.01 0.15 0.79
20 0.07 0.01 0.04 0.19 0.69

Overall, financial shocks play a large role in explaining the forecast error variances of the

majority of the variables. The two exceptions are prices (measured by GDP deflator),

which are mainly impacted by demand shocks, and stock prices (measured by S&P 500

index), which are mostly driven by supply shocks.
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9 Concluding Remarks

We have considered an order-invariant VAR with factor stochastic volatility and shown

how the presence of multivariate stochastic volatility allows for statistical identification

of the model. Furthermore, we have worked out sufficient conditions in terms of sign

restrictions on the impact of the structural shocks for point-identification of the corre-

sponding structural model. To estimate the proposed order-invariant VAR, we devel-

oped an efficient MCMC algorithm that can incorporate a large number of variables and

sign restrictions. In an empirical application involving 20 macroeconomic and financial

variables, we demonstrated the ability of our methods to produce more precise impulse

responses compared to a medium-sized structural VAR.
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Appendix A: Proofs of Propositions

In this appendix we provide the proofs of the propositions and corollaries stated in the

main text. To that end, we first consider the following two lemmas.

Lemma 1 (Magnus and Neudecker (2019), Theorem 2.13, pp. 43). A necessary and

sufficient condition for the matrix equation AXB = C to have a solution is that

AA+CB+B = C, (22)

where D+ denotes the Moore–Penrose inverse of D. In this case the general solution is

X = A+CB+ + Q−A+AQBB+ (23)

where Q is an arbitrary matrix of the appropriate dimension. In particular, if A has full

column rank and B has full row rank, then the unique solution is given by:

X = A+CB+. (24)

Proof of Lemma 1: The proof that (22) is the necessary and sufficient condition and

that the general solution has the form in (23) follows directly from Magnus and Neudecker

(2019). For uniqueness (24), note that if A and B have full column and row rank,

respectively, their Moore–Penrose inverses can be computed as:

A+ = (A′A)−1A′, B+ = B′(BB′)−1.

It then follows that A+A = I and BB+ = I, and therefore (23) reduces to (24).

The next lemma adapts a theorem in Anderson and Rubin (1956) to our setting with

heteroskedastic factors.

Lemma 2 (Anderson and Rubin (1956), Theorem 5.1, pp. 118). Under Assumption 2,

the common and idiosyncratic variance components are separately identified. That is, for

two observationally equivalent models such that Γt = LΩtL
′ + Σt = L∗Ω∗tL

∗′ + Σ∗t , we

have L∗Ω∗tL
∗′ = LΩtL

′ and Σ∗t = Σt.

Proof of Lemma 2: Suppose we have two observationally equivalent models such that
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Γt = LΩtL
′ + Σt = L∗Ω∗tL

∗′ + Σ∗t . We wish to show that L∗Ω∗tL
∗′ = LΩtL

′ and

Σ∗t = Σt. Since the off-diagonal elements of LΩtL
′ and of L∗Ω∗tL

∗′ are the corresponding

off-diagonal elements of Γt, it suffices to show that the diagonal elements of LΩtL
′ are

equal to the diagonal elements of L∗Ω∗tL
∗′. First note that Assumption 2 implies that

2r + 1 6 n. Furthermore, let

L =


L1

lr+1

L2

L3

 , L∗ =


L∗1

l∗r+1

L∗2

L∗3


where L1 and L2 are nonsingular square matrices of dimension r× r, lr+1 is the (r+1)-th

row, and L3 is of dimension (n−2r−1)×r (it can be null if n = 2r+1); L∗ is partitioned

into submatrices similarly. Then, we have

LΩtL
′ =


L1ΩtL

′
1 L1Ωtl

′
r+1 L1ΩtL

′
2 L1ΩtL

′
3

lr+1ΩtL
′
1 lr+1Ωtl

′
r+1 lr+1ΩtL

′
2 lr+1ΩtL

′
3

L2ΩtL
′
1 L2Ωtl

′
r+1 L2ΩtL

′
2 L2ΩtL

′
3

L3ΩtL
′
1 L3Ωtl

′
r+1 L3ΩtL

′
2 L3ΩtL

′
3


and L∗Ω∗tL

∗′ has the same form. Since L1Ωtl
′
r+1, L1ΩtL

′
2, lr+1ΩtL

′
2 are off-diagonal,

L1Ωtl
′
r+1 = L∗1Ω

∗
t l
∗′
r+1, L1ΩtL

′
2 = L∗1Ω

∗
tL
∗′
2 and lr+1ΩtL

′
2 = l∗r+1Ω

∗
tL
∗′
2 . Note that since

L1 and L2 are nonsingular, so is L1ΩtL
′
2. Next, since LΩtL

′ is of rank r, any square

submatrix of dimension larger than r is singular. In particular,

0 =

∣∣∣∣∣ L∗1Ω∗t l∗′r+1 L∗1Ω
∗
tL
∗′
2

l∗r+1Ω
∗
t l
∗′
r+1 l∗r+1Ω

∗
tL
∗′
2

∣∣∣∣∣ =

∣∣∣∣∣ L1Ωtl
′
r+1 L1ΩtL

′
2

l∗r+1Ω
∗
t l
∗′
r+1 lr+1ΩtL

′
2

∣∣∣∣∣
= (−1)rl∗r+1Ω

∗
t l
∗′
r+1|L1ΩtL

′
2|+ f(LΩtL

′).

Similarly, 0 = (−1)rlr+1Ωtl
′
r+1|L1ΩtL

′
2| + f(LΩtL

′). Since |L1ΩtL
′
2| 6= 0, we must have

lr+1Ωtl
′
r+1 = l∗r+1Ω

∗
t l
∗′
r+1. In the same fashion, we can show that the other diagonal

elements of LΩtL
′ are equal to those of L∗Ω∗tL

∗′.

Proof of Proposition 2: Suppose we have two observationally equivalent models such

that Γt = LΩtL
′ + Σt = L∗Ω∗tL

∗′ + Σ∗t . Under Assumption 2, Lemma 2 implies that

the common and the idiosyncratic variance components can be separately identified, i.e.,
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L∗Ω∗tL
∗′ = LΩtL

′ and Σ∗t = Σt.

For notational convenience, let ωt = vecd(Ωt) = (ω1,t, . . . , ωr,t)
′ and σt = vecd(Σt) =

(σ1,t, . . . , σn,t)
′. Consider the first identity LΩtL

′ = L∗Ω∗tL
∗′. By Lemma 1, the necessary

and sufficient condition to solve the system of equations for Ω∗t is

L∗D∗ΩtD
∗′L∗′ − LΩtL

′ = 0 (25)

where D∗ = [L∗]+L and [L∗]+ = (L∗′L∗)−1L∗′ since L∗ has full column rank. Let lij and

ldij denote, respectively, the (i, j) element of L and the product L∗D∗. Equation (25)

implies that
∑r

k=1 ωk,t(l
d
ikl

d
jk − likljk) = 0, i, j = 1, . . . , n. Under the assumption that

the elements in ωt are linearly independent (i.e., the only solution to δ′ωt = 0 for all

t is δ = 0), we must have L∗D∗ = ±L. Hence, L∗ is obtained once D∗ is determined.

We consider L∗D∗ = L. As will be clear later, the same conclusion applies for the case

L∗D∗ = −L.

We next turn to the determination of D∗. Since L∗ has full column rank, again by

Lemma 1, the unique solution to L∗Ω∗tL
∗′ = LΩtL

′ is Ω∗t = D∗ΩtD
∗′. In partic-

ular, since Ω∗t is diagonal, we have
∑r

l=1 ωl,td
∗
ild
∗
jl = 0 for i, j = 1, . . . , r, i 6= j and

t = 1, . . . , T . These restrictions can be more succinctly expressed as Ω̇Tbij = 0, where

bij = (d∗i1d
∗
j1, . . . , d

∗
ird
∗
jr)
′ and Ω̇T = (ω1, . . . ,ωT )′ is T × r. Given that the rank of Ω̇T

is r when the processes in ωt are linearly independent for t = 1, . . . , T , the only solu-

tion to such a set of T homogeneous linear equations is bij = 0 irrespective of i and j.

Therefore, each column of D∗ contains at most one nonzero element (otherwise for some

column k there exist nonzero elements dik and djk with i 6= j such that dikdjk 6= 0, con-

tradicting bij = 0). In this scenario, similar to Bertsche and Braun (2020), we can write

D∗ = P±PrSr, where Pr is one of the r! permutation matrices, P± = diag(±1, . . . ,±1)

is a reflection matrix that corresponds to one of the 2r ways to switch the signs of the r

columns, and Sr is an arbitrary diagonal scaling matrix of dimension r × r.

Next, we show that Sr must be an identity matrix. Using the fact that Ω∗t = D∗ΩtD
∗′, we

can write the observationally equivalent factors as f∗t = D∗ft. Without loss of generality,

we consider solely the scaling effect, i.e., D∗ = Sr = diag(s1, . . . , sr). Now, f∗t ∼ N (0,Ω∗t ),
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where

Ω∗t = Srdiag(ehn+1,t , . . . , ehn+r,t)S
′

r

= diag(ehn+1,t+2 log s1 , . . . , ehn+r,t+2 log sr)

≡ diag(eh
∗
n+1,t , . . . , eh

∗
n+r,t). (26)

Since we standardize the unconditional variances of the log stochastic volatility processes

to be one, we must have Eh∗n+j,t = E[hn+j,t + 2 log sj] = 0 + 2 log sj = 0 for j = 1, . . . , r,

which implies that sj = 1. Thus, Sr = Ir, and the only form D∗ can take is D∗ =

P±Pr.

Proof of Proposition 3: The proposition is equivalent to the claim that the only

feasible factor loadings submatrix L∗1 under the assumptions must satisfy L∗1 = L1D1,

where D1 = P±Pr1 . In what follows, we prove the claim by using a similar approach

as in the proof of Proposition 2. First notice that since L satisfies Assumption 2, any

observationally equivalent model must satisfy L∗Ω∗tL
∗′ = LΩtL

′. Applying the same

argument as in the proof of Proposition 2, the solution L∗ must be in the form L = L∗D∗,

and it follows that Ω∗t = D∗ΩtD
∗′. Partition D∗ conformably as D∗ = (D∗1,D

∗
2), where

D∗1 is r × r1 and D∗2 is r × r2. We thus have

Ω∗t = (D∗1,D
∗
2)

(
Ω1t 0

0 Ir2

)(
D∗′1

D∗′2

)
= D∗1Ω1tD

∗′
1 + D∗2D

∗′
2 . (27)

Again, since Ω∗t is diagonal, the off-diagonal elements of D∗1Ω1tD
∗′
1 +D∗2D

∗′
2 must be zero,

i.e.,
∑r1

l1=1 ωl1,td
∗
il1
d∗jl1 +

∑r
l2=r1+1 d

∗
il2
d∗jl2 = 0 for j > i and t = 1, . . . , T , where ωl1,t is the

l1-th element in ωt = (ω1,t, . . . , ωr1,t, 1, . . . , 1)′.

For a given pair (i, j), these restrictions can be expressed as Ω̈tbij = 0T , where Ω̈t =

(ω̇1, . . . , ω̇t)
′ is a T × (r1 + 1) matrix, ω̇t = (ω1,t, . . . , ωr1,t, 1)′ for t = 1, . . . , T , bij =

(d∗i1d
∗
j1, . . . , d

∗
ir1
d∗jr1 ,

∑r
l2=r1+1 d

∗
il2
d∗jl2)

′. Given that the rank of Ω̈t is r1 + 1 when the

processes in ω̇t are linearly independent, the only solution to such a set of T homo-

geneous linear equations is bij = 0r1 irrespective of i and j. Therefore, applying the

same argument as before, the condition that the first r1 restrictions in bij = 0r1—i.e.,

d∗i1d
∗
j1 = · · · = d∗ir1d

∗
jr1

= 0—implies that each column of D∗1 contains at most one element

that is different from 0.
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Next, we show that any nonzero elements can only be in the upper r1 rows of D∗1, which in

turn makes the lower r2 rows a zero submatrix. To that end, we partition D∗ conformably

and write (27) as:

Ω∗t =

(
D∗11 D∗12

D∗21 D∗22

)(
Ω1t 0

0 Ir2

)(
D∗′11 D∗′21

D∗′12 D∗′22

)

=

(
D∗11Ω1tD

∗′
11 + D∗12D

∗′
12 D∗11Ω1tD

∗′
21 + D∗12D

∗′
22

D∗21Ω1tD
∗′
11 + D∗22D

∗′
12 D∗21Ω1tD

∗′
21 + D∗22D

∗′
22

)
.

Since Ω∗t is diagonal, we must have

D∗21Ω1tD
∗′
21 + D∗22D

∗′
22 = Ir2 (28)

D∗11Ω1tD
∗′
21 + D∗12D

∗′
22 = 0 (29)

D∗21Ω1tD
∗′
11 + D∗22D

∗′
12 = 0

and D∗11Ω1tD
∗′
11+D∗12D

∗′
12 is diagonal. Using exactly the same argument in analyzing (27),

D∗11Ω1tD
∗′
11 + D∗12D

∗′
12 being diagonal implies a set of T homogeneous linear equations of

dimension r1 + 1. It follows that each column of D∗11 contains at most one nonzero

element. Since earlier we have proved the same result for D∗1 = (D∗′11,D
∗′
21)′, it must be

the case that all the nonzero elements are in D∗11, i.e., D∗21 = 0. Otherwise, there is a

least one row in D∗11 whose elements are all 0, say row k with k 6 r1, which implies that

[Ω∗t ](k,k) = [D∗11Ω1tD
∗′
11](k,k) + [D∗12D

∗′
12](k,k)

=

r1∑
l1=1

ωl1,td
∗
kl1
d∗kl1 +

r∑
l2=r1+1

d∗2kl2 = 0 +
r∑

l2=r1+1

d∗2kl2 = constant, (30)

where [A](i,j) denotes the (i, j)-th element of A. It is clear that (30) violates the assump-

tion that (vecd(Ω∗1t)
′, 1)′ are linearly independent for all t.

Now, using the fact that D∗21 = 0 in (28), it follows D∗22 is an orthogonal matrix. Next,

using the fact that D∗21 = 0 in (29), we have D∗12 = 0 since the orthogonal matrix D∗22

is invertible. Subsequently, the (1, 1)-th block of Ω∗t reduces to D∗11Ω1tD
∗′
11. From the

earlier conclusion that each column of D∗11 has at most one nonzero element and the

standardization requirement as shown in (26), it is clear that D∗11 must be of the form
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P±Pr1 . To summarize, we have shown that

L∗ = (L∗1,L
∗
2) = LD∗′ = (L1,L2)

(
P±Pr1 0

0 D∗′22

)
= (L1P±Pr1 ,L2D

∗′
22),

where D∗22 is an orthogonal matrix of dimension r2.

Proof of Corollary 1: The proof follows directly from the proof of Proposition 3. More

specifically, under the assumption r1 = r−1, D∗22 is an orthogonal matrix of dimension 1.

Thus the only admissible D∗22 is ±1. So the full matrix D∗ is also of the form P±Pr.
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Appendix B: Estimation Details

In this appendix we provide the estimation details for fitting the model in (1)–(5). More

specifically, posterior draws can be obtained by sampling sequentially from the following

distributions:

1. p(f |y,β,L,h,µ,φ,σ2) = p(f |y,β,L,h);

2. p(β,L |y, f ,h,µ,φ,σ2) =
∏n

i=1 p(βi, li |yi,·, f ,hi,·);

3. p(h |y, f ,β,L,µ,φ,σ2) =
∏n+r

i=1 p(hi,· |y, f ,β,L,µ,φ,σ2);

4. p(σ2 |y, f ,β,L,h,µ,φ) =
∏n+r

i=1 p(σ
2
i |hi,·, µi, φi);

5. p(µ |y, f ,β,L,h,φ,σ2) =
∏n

i=1 p(µi |hi,·, φi, σ2
i );

6. p(φ |y, f ,β,L,h,µ,σ2) =
∏n+r

i=1 p(φi |hi,·, µi, σ2
i ).

In Section 4 of the main text we describe the implementation details of Step 1 and Step2.

Below we give the details of the remaining steps.

Step 3: Sample h. Again given the latent factors f , the VAR becomes n unrelated regres-

sions and we can sample each vector of log-volatilities hi,· = (hi,1, . . . , hi,T )′ separately.

More specifically, we can directly apply the auxiliary mixture sampler in Kim, Shephard,

and Chib (1998) in conjunction with the precision sampler of Chan and Jeliazkov (2009)

to sample from (hi,· |y, f ,β,L,µ,φ,σ2) for i = 1, . . . , n + r. For a textbook treatment,

see, e.g., Chan, Koop, Poirier, and Tobias (2019) chapter 19.

Step 4: Sample σ2. This step can be done easily, as the elements of σ2 are conditionally

independent and, for i = 1, . . . , n+ r, each follows an inverse-gamma distribution:

(σ2
i |hi,·, µi, φi) ∼ IG(νi + T/2, S̃i),

where S̃i = Si + [(1 − φ2
i )(hi,1 − µi)

2 +
∑T

t=2(hi,t − µi − φi(hi,t−1 − µi))
2]/2, with the

understanding that µi = 0 for i > n.

Step 5: Sample µ. It is also straightforward to implement this step, as the elements of
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µ are conditionally independent and, for i = 1, . . . , n, each follows a normal distribution:

(µi |hi,·, φi, σ2
i ) ∼ N (µ̂i, K

−1
µi

),

where

Kµi = V −1
µi

+
1

σ2
i

[
1− φ2

i + (T − 1)(1− φi)2
]

µ̂i = K−1
µi

[
V −1
µi
µ0,i +

1

σ2
i

(
(1− φ2

i )hi,1 + (1− φi)
T∑
t=2

(hi,t − φihi,t−1)

)]
.

Step 6: To sample φi, i = 1, . . . , n+ r, note that

p(φi |hi,·, µi, σ2
i ) ∝ p(φi)g(φi)e

− 1

2σ2
i

∑T
t=2(hi,t−µi−φi(hi,t−1−µi))2

,

where g(φi) = (1− φ2
i )

1
2 e
− 1

2σ2
i

(1−φ2i )(hi,1−µi)2
and p(φi) is the truncated normal prior, with

the understanding that µi = 0 for i > n. The conditional density p(φi |hi,·, µi, σ2
i )

is non-standard, but a draw from it can be obtained by using an independence-chain

Metropolis-Hastings step with proposal distribution N (φ̂i, K
−1
φi

)1(|φi| < 1), where

Kφi = V −1
φi

+
1

σ2
i

T∑
t=2

(hi,t−1 − µi)2

φ̂h = K−1
φi

[
V −1
φi
φ0,i +

1

σ2
i

T∑
t=2

(hi,t−1 − µi)(hi,t − µi)

]
.

Then, given the current draw φi, a proposal φ∗i is accepted with probability min(1, g(φ∗i )/g(φi));

otherwise the Markov chain stays at the current state φi.
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Appendix C: Technical Details on Integrated Likeli-

hood Evaluation

In this appendix we provide the technical details for evaluating the integrated likelihood

outlined in Section 5.1. Recall that the integrated likelihood can be written as

p(y |β,L,µ,φ,σ2) =

∫
p(y |β,L,h)p(h |µ,φ,σ2)dh, (31)

where the first term in the integrant has the following expression

p(y |β,L,h) = (2π)−
Tn
2

T∏
t=1

|LΩtL
′ + Σt|−

1
2 e−

1
2

(yt−(In⊗x′t)β)′(LΩtL′+Σt)−1(yt−(In⊗x′t)β).

Next, we derive the joint density of the log-volatilities p(h |µ,φ,σ2). To that end, stack

the state equations (4)-(5) over t = 1, . . . , T :

Hφh = Hφmµ + uh, uh ∼ N (0,Sσ2),

where Sσ2 = diag(σ2
1/(1− φ2

1), . . . , σ2
n+r/(1− φ2

n+r), σ
2
1, . . . , σ

2
n+r, . . . , σ

2
1, . . . , σ

2
n+r)

′ and

mµ = 1T ⊗

(
µ

0

)
Hφ =


In+r 0 · · · 0

− diag(φ) In+r
. . .

...
...

. . . . . .
...

0 · · · − diag(φ) In+r

 .

Or equivalently

h = mµ + H−1
φ uh, H−1

φ uh ∼ N (0, (H′φS−1
σ2Hφ)−1),

as the determinant of the square matrix Hφ is one and is thus invertible. It follows that
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(h |µ,φ,σ2) ∼ N (mµ, (H
′
φS−1

σ2Hφ)−1) with log-density

log p(h |µ,φ,σ2) = −T (n+ r)

2
log(2π)− T

2

n+r∑
i=1

log σ2
i +

1

2

n+r∑
i=1

log(1− φ2
i )

− 1

2
(h−mµ)′H′φS−1

σ2Hφ(h−mµ).

Next, we introduce an importance sampling estimator to evaluate the integral in (31).

The ideal zero-variance importance sampling density in this case is the conditional density

of h given the data and other parameters but marginal of f , i.e., p(h |y,β,L,µ,φ,σ2).

But this density cannot be directly used as an importance sampling density as it is non-

standard. We instead approximate it using a Gaussian density, which is then used as the

importance sampling density.

An EM Algorithm to Obtain the Mode of p(h |y,β,L,µ,φ,σ2)

We first develop an EM algorithm to find the maximizer of the log marginal density

log p(h |y,β,L,µ,φ,σ2). To implement the E-step, we compute the following conditional

expectation for an arbitrary vector h̆ ∈ RT (n+r):

Q(h | h̆) = Ef |h̆
[
log p(h, f |y,β,L,µ,φ,σ2)

]
,

where the expectation is taken with respect to p(f |y,β,L, h̆,µ,φ,σ2) = p(f |y,β,L, h̆).

As discussed in Section 4 of the main text, the latent factors f1, . . . , fT are conditionally

independent given the data and model parameters. In fact, for t = 1, . . . , T , they have

the following Gaussian distributions:

(ft |y,β,L, h̆) ∼ N (f̂t,K
−1
ft

),

where

Kft = Ω̆
−1

t + L′Σ̆
−1

t L, f̂t = K−1
ft

L′Σ̆
−1

t (yt − (In ⊗ x′t)β).

Note that here we use h̆ = (h̆y
′

1 , h̆
f ′

1 , . . . , h̆
y′

T , h̆
f ′

T )′ = (h̆1,1, . . . , h̆n+r,1, . . . , h̆1,T , . . . , h̆n+r,T )′

to construct Σ̆t = diag(h̆yt ) = diag(eh̆1,t , . . . , eh̆n,t) and Ω̆t = diag(h̆ft ) = diag(eh̆n+1,t , . . . , eh̆n+r,t)

instead of h.
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Then, an explicit expression of Q(h | h̆) can be derived as follows:

Q(h | h̆) =− 1

2
(h−mµ)′H′φS−1

σ2Hφ(h−mµ)− 1

2
1′T (n+r)h

− 1

2

T∑
t=1

Ef |h̆
[
f ′tΩ

−1
t ft + (εt − Lft)

′Σ−1
t (εt − Lft)

]
+ c1

=− 1

2
(h−mµ)′H′φS−1

σ2Hφ(h−mµ)− 1

2
1′T (n+r)h−

1

2

T∑
t=1

tr
(

diag(e−hft )(f̂tf̂
′
t + K−1

ft
)
)

− 1

2

T∑
t=1

tr
(

diag(e−hyt )
(

(εt − Lf̂t)(εt − Lf̂t)
′ + LK−1

ft
L′
))

+ c1,

where εt = yt − (In ⊗ x′t)β and c1 is a constant not dependent on h.

In the M-step, we maximize the function Q(h | h̆) with respect to h. This can be done

using the Newton-Raphson method (see, e.g., Kroese, Taimre, and Botev, 2011). To

compute the gradient and Hessian of Q(h | h̆), let ẑyi,t denote the i-th diagonal element

of (εt − Lf̂t)(εt − Lf̂t)
′ + LK−1

ft
L′, i = 1, . . . , n. Similarly, let ẑfj,t denote the j-th di-

agonal element of (f̂tf̂
′
t + K−1

ft
), j = 1 . . . , r. Finally, define ẑ = (ẑ′1, . . . , ẑ

′
T )′, where

ẑt = (ẑy1,t, . . . , ẑ
y
n,t, ẑ

f
1,t, . . . , ẑ

f
r,t)
′. Then, we can rewrite Q(h | h̆) more compactly as

Q(h | h̆) = −1

2
(h−mµ)′H′φS−1

σ2Hφ(h−mµ)− 1

2
1′T (n+r)h−

1

2
ẑ′e−h.

Hence, the gradient is given by

gQ = −H′φS−1
σ2Hφ(h−mµ)− 1

2

(
1T (n+r) − e−h � ẑ

)
,

and the Hessian is

HQ = −H′φS−1
σ2Hφ −

1

2
diag

(
e−h � ẑ

)
, (32)

where � denotes the entry-wise product. Since the determinant |H′φS−1
σ2Hφ| = |Sσ2 |−1

is strictly positive and the diagonal elements of diag
(
e−h � ẑ

)
are positive, the Hessian

HQ is negative definite for all h ∈ RT (n+r). This guarantees fast convergence of the

Newton-Raphson method. In addition, the Hessian is a band matrix. This property can

be used to further speed up computations with sparse and band matrix routines.

Given the E- and M-steps above, the EM algorithm can be implemented as follows. We

49



initialize the algorithm with h = h(0) for some constant vector h(0). At the j-th iteration,

we obtain gQ and HQ, where f̂t and Kft , t = 1, . . . , T, are evaluated using h(j−1). Then,

we compute

h(j) = argmax
h
Q(h |h(j−1))

using the Newton-Raphson method. We repeat the E- and M-steps until some con-

vergence criterion is met, e.g., the norm between consecutive h(j) is less than a pre-

determined tolerance value. At the end of the EM algorithm, we obtain the mode of the

density p(h |y,β,L,µ,φ,σ2), which is denoted by ĥ. We summarize the EM algorithm

in Algorithm 3.

Algorithm 3 EM algorithm to obtain the mode of p(h |y,β,L,µ,φ,σ2).

Suppose we have an initial guess h(0) and error tolerance levels ε1 and ε2, say, ε1 = ε2 =
10−4. The EM algorithm consists of iterating the following steps for j = 1, 2, . . .:

1. E-Step: Given the current value h(j−1), compute Kft , f̂t, t = 1, . . . , T, and ẑ

2. M-Step: Maximize Q(h |h(j−1)) with respect to h by the Newton-Raphson method.
That is, set h(0,j−1) = h(j−1) and iterate the following steps for k = 1, 2, . . .:

(a) Compute gQ and HQ using Kft , f̂t, t = 1, . . . , T, and ẑ obtained in the E-step,
and set h = h(k−1,j−1)

(b) Update h(k,j−1) = h(k−1,j−1) −H−1
Q gQ

(c) If, for example, ‖h(k,j−1) − h(k−1,j−1)‖ < ε1, terminate the iteration and set
h(j) = h(k,j−1).

3. Stopping condition: if, for example, ‖h(j) − h(j−1)‖ < ε2, terminate the algorithm.

Computing the Hessian of log p(h |y,β,L,µ,φ,σ2)

After obtaining the mode ĥ of the log density log p(h |y,β,L,µ,φ,σ2), next we compute

the Hessian evaluated at ĥ. Here we describe two approaches to do so. In the first

approach, we provide an approximation of the Hessian using the EM algorithm. The

resulting matrix is banded and is guaranteed to be negative definite. In the second

approach, we directly compute the Hessian of log p(h |y,β,L,µ,φ,σ2). In our experience

the two approaches give very similar results, but the first approach is more numerically
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stable.

In what follows, we start with the first approach. Note that by Bayes’ theorem, we have

p(h |y,β,L,µ,φ,σ2) =
p(h, f |y,β,L,µ,φ,σ2)

p(f |h,y,β,L,µ,φ,σ2)
.

If we take the log of both sides and then take expectation with respect to p(f |h,y,β,L),

we obtain the identity

log p(h |y,β,L,µ,φ,σ2) = Q(h |h) +H(h |h), (33)

where H(h |h) = −Ef |h [log p(f |h,y,β,L,µ,φ,σ2)] = −Ef |h [log p(f |h,y,β,L,µ)].

It follows that the Hessian of log p(h |y,β,L,µ,φ,σ2) evaluated at ĥ is simply the sum

of the Hessians of Q and H with h = ĥ. Note that the Hessian of Q(h | ĥ) comes out as

a by-product of the EM algorithm; an analytical expression is given in (32). We use it

as an approximation of the Hessian of Q(h |h) evaluated at h = ĥ. Next, we derive an

analytical expression for H(h |h):

H(h |h) = −Ef |h [log p(f |h,y,β,L,µ)]

=
Tr

2
log(2π)− 1

2

T∑
t=1

log |Kft|+
1

2

T∑
t=1

Eft|h

[
(ft − f̂t)

′Kft(ft − f̂t)
]

= −1

2

T∑
t=1

log |L′diag(e−hyt )L + diag(e−hft )|+ c2

= −1

2

T∑
t=1

log |W′diag(e−ht)W|+ c2,

where c2 is a constant not dependent on h and W =

(
L

Ir

)
. In the above derivation we

have used the fact that under p(ft |h,y,β,L,µ), the quadratic form (ft − f̂t)
′Kft(ft − f̂t)

is a chi-squared random variable and its expectation does not depend on h (and thus

absorbed into the constant c2).
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To compute the Hessian of H, we first note that

∂

∂hi,t
Kft =

∂

∂hi,t
W′diag(e−ht)W =

∂

∂hi,t

n+r∑
j=1

e−hj,twjw
′
j = −e−hi,twiw

′
i,

∂

∂hi,s
Kft = 0, s 6= t,

where w′j is the j-th row of W. Next, using standard results of matrix differentiation,

we obtain

∂

∂hi,t
H(h |h) = −1

2
tr

(
K−1

ft

∂Kft

∂hi,t

)
=

1

2
e−hi,tw′iK

−1
ft

wi,

∂2

∂h2
i,t

H(h |h) = −1

2

(
e−hi,tw′iK

−1
ft

wi + e−hi,tw′iK
−1
ft

∂Kft

∂hi,t
K−1

ft
wi

)
= −1

2
e−hi,tw′iK

−1
ft

wi(1− e−hi,tw′iK
−1
ft

wi),

∂2

∂hi,t∂hj,t
H(h |h) =

1

2
e−(hi,t+hj,t)w′iK

−1
ft

wjw
′
jK
−1
ft

wi, i 6= j,

∂2

∂hi,t∂hj,s
H(h |h) = 0, s 6= t.

Hence, the Hessian is block diagonal (and hence banded). More specifically, the Hessian

of H(h |h) can be written in the following matrix form

HH = −1

2
Z′ � (IT (n+r) − Z),

where Z = diag(Z1, . . . ,ZT ) with Zt = diag(e−ht)WK−1
ft

W′.

Finally, let HQ denote the Hessian of Q(h |h) evaluated at h = ĥ. Then, the negative

Hessian of the log marginal density of h evaluated at h = ĥ is simply Kh = −(HQ+HH),

which is used as the precision matrix of the Gaussian approximation. Note that since

both HQ and HH are band matrices, so is Kh.
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The second approach directly computes the Hessian of the log marginal density:

log p(h |y,β,L,µ,φ,σ2) = c3 + log p(y |β,h,L) + log p(h |µ,φ,σ2),

= c4−
1

2

T∑
t=1

log |LΩtL
′ + Σt|︸ ︷︷ ︸

T1(h)

−1

2

T∑
t=1

ε′t(LΩtL
′ + Σt)

−1εt︸ ︷︷ ︸
T2(h)

−1

2
(h−mµ)′H′φS−1

σ2Hφ(h−mµ)︸ ︷︷ ︸
T3(h)

,

where εt = yt − (In ⊗ x′t)β, and c3 and c4 are constants not dependent on h. Next we

derive the Hessians of the functions T1, T2 and T3.

Let W̃ =

(
L′

In

)
. Then, Gt ≡ LΩtL

′ + Σt = W̃′diag(eht)W̃. Using a similar derivation

of HH in the EM algorithm, it is easy to see that the Hessian of T1(h) is given by:

HT1(h) = −1

2
Z̃′ � (IT (n+r) − Z̃),

where Z̃ = diag(Z̃1, . . . , Z̃T ) with Z̃t = diag(eht)W̃G−1
t W̃′. It is also clear that the

Hessian of T3(h) is simply

HT3(h) = −H′φS−1
σ2Hφ.

Next, we derive the Hessian of T2(h) below. First note that

∂

∂hi,t
Gt =

∂

∂hi,t
W̃′diag(eht)W̃ =

∂

∂hi,t

n+r∑
j=1

ehj,tw̃jw̃
′
j = ehi,tw̃iw̃

′
i,

∂

∂hi,s
Gt = 0, s 6= t,

where w̃′j is the j-th row of W̃. Next, using standard results of matrix differentiation,
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we obtain

∂

∂hi,t
T2(h) =

1

2
ε′tG

−1
t

∂Gt

∂hi,t
G−1
t εt =

1

2
ehi,tε′tG

−1
t w̃iw̃

′
iG
−1
t εt =

1

2
ehi,t(ε′tG

−1
t w̃i)

2,

∂2

∂h2
i,t

T2(h) =
1

2

(
ehi,t(ε′tG

−1
t w̃i)

2 − 2ehi,t(ε′tG
−1
t w̃i)ε

′
tG
−1
t

∂Gt

∂hi,t
G−1
t w̃i

)
=

1

2
ehi,t(ε′tG

−1
t w̃i)

2
(
1− 2ehi,tw̃′iG

−1
t w̃i

)
,

∂2

∂hi,t∂hj,t
T2(h) = −e(hi,t+hj,t)(ε′tG

−1
t w̃i)(ε

′
tG
−1
t w̃j)(w̃

′
jG
−1
t w̃i), i 6= j,

∂2

∂hi,t∂hj,s
T2(h) = 0, s 6= t.

More specifically, the Hessian of T2(h) can be written in the following matrix form

HT2(h) =
1

2
Z̆′ � (IT (n+r) − 2Z̃),

where Z̆ = diag(Z̆1, . . . , Z̆T ) with Z̆t = diag(eht)W̃G−1
t εtε

′
tG
−1
t W̃′. Finally, the Hessian

from direct computation is simply HDirect = HT1(h) +HT2(h) +HT3(h). Since HT1(h),HT2(h)

and HT3(h) are all band matrices, so is HDirect.

54



Appendix D: Additional Monte Carlo Results

In this appendix we present results on two artificial data experiments to illustrate the

estimation accuracy of the VAR-FSV model under DGPs with and without stochastic

volatility. In the first experiment, we generate a dataset from the VAR-FSV in (1)–(5)

with n = 10, T = 500, r = 3 factors and p = 4 lags. We then estimate the model

using the posterior sampler outlined in Section 4. The first dataset is generated as

follows. First, the intercepts are drawn independently from the uniform distribution on

the interval (−10, 10), i.e., U(−10, 10). For the VAR coefficients, the diagonal elements

of the first VAR coefficient matrix are iid U(0, 0.5) and the off-diagonal elements are

from U(−0.2, 0.2); all other elements of the j-th (j > 1) VAR coefficient matrices are

iid N (0, 0.12/j2). All elements of the factor loadings matrix are iid standard normal:

Lij ∼ N (0, 1) for i = 1, . . . , n and j = 1, . . . , r. Finally, for the log-volatility processes,

we set µi = −1, φi = 0.98 and σi = 0.1 for i = 1, . . . , n, and φn+j = 0.98, σn+j = 0.1 for

j = 1, . . . , r.

The results of the artificial data experiments are reported in Figures 6-8. It is evident

from the figures that the posterior sampler works well and the posterior means track the

true values closely.

-2 0 2

True L

-3

-2

-1

0

1

2

3

E
st

im
at

e

-10 0 10

True intercepts

-15

-10

-5

0

5

10

15

E
st

im
at

e

-0.5 0 0.5

True VAR coefficients

-0.5

0

0.5

E
st

im
at

e

Figure 6: Scatter plots of the posterior means of the factor loadings (left panel), intercepts
(middle panel) and VAR coefficients (right panel) against the true values from a DGP
with stochastic volatility.
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Figure 7: Time series plots of the posterior means of the factors fi,·, i = 1, 2, 3, from a
DGP with stochastic volatility.
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Figure 8: Time series plots of the posterior means of the stochastic volatilities hi,·, i =
1, 5, 10, from a DGP with stochastic volatility.

In the second experiment, we generate data from the same VAR-FSV but with sev-
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eral stochastic volatility components turned off. In particular, we set hi,t = 0 for

i = 1, 2, 3, 4, 5, and hn+j,t = 0 for j = 2, 3. That is, the idiosyncratic errors of the

first five variables, as well as the last two factors, are homoscedastic. We then fit the

data using the (mis-specified) fully heteroscedastic model. The results are reported in

Figures 9-11. When the DGP does not have full stochastic volatility, some elements of

the factor loading matrix L are harder to pin down, since they are not point-identified.

But it is interesting to note that the estimates of the stochastic volatility are still able to

track the true values fairly closely. The estimates of the VAR coefficients are also close

to the true values.
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Figure 9: Scatter plots of the posterior means of the factor loadings (left panel), intercepts
(middle panel) and VAR coefficients (right panel) against the true values from a DGP
with partial stochastic volatility.
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Figure 10: Time series plots of the posterior means of the factors fi,·, i = 1, 2, 3, from a
DGP with partial stochastic volatility.
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Figure 11: Time series plots of the posterior means of the stochastic volatilities hi,·,
i = 1, 5, 10, from a DGP with partial stochastic volatility.

58



Appendix E: Data

This appendix provides the details of the raw data used to construct the variables in the

empirical application. In particular, Table 5 lists the variables and their sources. The

sample period is from 1985:Q1 to 2013:Q2.

Table 5: Description of variables used in the empirical application.
Variable Description Source
GDP Log of real GNP/GDP Federal Reserve Bank of Philadelphia
GDP Deflator Log of price index of GNP/GDP Federal Reserve Bank of Philadelphia
3-month treasury bill 3-month treasury bill rate Federal Reserve Bank of St. Louis
Investment Log of real gross private domestic investment Federal Reserve Bank of St. Louis
S&P 500 Log of S&P 500 Yahoo Finance
Total credit Log of loans to non-financial private sector Board of Governors of the Federal

Reserve System
Mortgages Log of home mortgages of households and Federal Reserve Bank of St. Louis

non-profit organizations
Real personal consumption expenditures Log of real personal consumption expenditures Federal Reserve Bank of St. Louis
Real estate value Log of real estate at market value of households Federal Reserve Bank of St. Louis

and non-profit organizations
Corporate bond yield Moody’s baa corporate bond yield Federal Reserve Bank of St. Louis
10-year treasury note 10-year treasury constant maturity rate Federal Reserve Bank of St. Louis
Federal funds rate Federal funds rate Federal Reserve Bank of St. Louis
Mortgage rate 30-year fixed rate mortgage average Federal Reserve Bank of St. Louis
CPI Log of consumer price index Federal Reserve Bank of St. Louis
PCE Log of price index of personal consumption Federal Reserve Bank of St. Louis

expenditure
Employment Log of employment level Federal Reserve Bank of St. Louis
All employees: manufacturing Log of all employees in the manufacturing sector Federal Reserve Bank of St. Louis
Industrial production Log of industrial production index Federal Reserve Bank of St. Louis
Industrial production: final products Log of industrial production: final products index Federal Reserve Bank of St. Louis
1-year treasury bill 1-year treasury constant maturity rate Federal Reserve Bank of St. Louis
Dow Jones Industrial Average Log of Dow Jones Industrial Average index Google Finance
Nasdaq Composite Log of Nasdaq Composite Federal Reserve Bank of St. Louis
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Appendix F: Structural Analysis Tools

In this appendix we provide details on various structural analysis tools for the VAR-FSV

similar to those designed for the structural VAR. In what follows, we describe methods to

construct structural impulse response functions, forecast error variance decompositions

and historical decompositions.

To derive expressions of responses of yt to a one-time impulse in ft, we first rewrite the

VAR(p) in (1) as an equivalent VAR(1) as follows:

Yt = A0 + AYt−1 + Et,

where

Yt =


yt

yt−1

...

yt−p+1

 , A0 =


a0

0
...

0

 , Et =


εt

0
...

0

 , A =



A1 A2 · · · Ap−1 Ap

In 0 · · · 0 0

0 In 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 In 0


.

By successive substitution for Yt−s, this VAR(1) has a vector moving average represen-

tation (see, e.g., Section 4.1 of Kilian and Lütkepohl, 2017):

Yt =
∞∑
s=0

AsA0 +
∞∑
s=0

AsEt−s = (Inp −A)−1A0 +
∞∑
s=0

AsEt−s. (34)

Left-multiplying (34) by J ≡
(
In,0n×n(p−1)

)
, which is of dimension n× np, we have

yt = (In −A1 − · · · −Ap)
−1a0 +

∞∑
s=0

JAsJ′JEt−s

= µy +
∞∑
s=0

Φsεt−s,

where µy = (In−A1− . . .−Ap)
−1a0 and Φs = JAsJ′ = [As]1:n,1:n is the first n×n block
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of As. Note that the coefficient matrices Φs can also be calculated recursively as

Φ0 = In, and Φs =
s∑
j=0

Φs−jAj, s = 1, 2, . . .

with Aj = 0 for j > p. Finally, using the factor structure in (2) and standardizing the

factors via f̃t = Ω
− 1

2
t ft with Ωt = diag(ehn+1,t , . . . , ehn+r,t) so that f̃t ∼ N (0, Ir), we thus

obtain

yt = µy +
∞∑
s=0

ΦsLΩ
1
2
t−sf̃t−s +

∞∑
s=0

Φsu
y
t−s. (35)

Since the latent factors act as structural shocks in our setup, in what follows we analyze

how the system responds to unit shocks in f̃t. More specifically, we use the expression

in (35) to derive structural impulse responses, forecast variance decomposition and his-

torical decomposition.

Structural Impulse Responses

We first derive an expression for the response of yi,t+l, the i-th element in yt+l, to unit

shocks in f̃t = (f̃1,t, . . . , f̃r,t)
′ l period ago:

θij,l,t ≡
∂yi,t+l

∂f̃j,t
,

so that for each pair (l, t), Θl,t = (θij,l,t) is of dimension n × r. By differentiating (35)

with respect to f̃t, it is straightforward to see that the impulse response functions are

given by:

Θl,t = ΦlLΩ
1
2
t =

[
Al
]

1:n,1:n
LΩ

1
2
t .

Since the variances of the latent factors are time-varying, these impulse response functions

are technically also time-varying. However, the effect of the variance only scales the

responses proportionally—the size of a unit shock changes over time. In practice we

report only the impulse responses at a particular time t, e.g., t = T with Θl,T = ΦlLΩ
1
2
T .
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Forecast Error Variance Decompositions

Next, we develop an expression to account for the proportion of the forecast error variance

or the mean squared prediction error (MSPE) that is due to the variation in the latent

factors. To that end, let yt+l | t denote the optimal conditional forecast of yt+l given the

information up to time t. Then, using (35) it is follows that

yt+l − yt+l | t =
l−1∑
s=0

ΦsLΩ
1
2
t+l−sf̃t+l−s +

l−1∑
s=0

Φsu
y
t+l−s.

If we define Ξl,t = ΦlΣ
1
2
t , then the MSPE can be expressed as

MSPEt(l) = E[(yt+l − yt+l | t)(yt+l − yt+l | t)
′]

=
l−1∑
s=0

ΦsLΩ
1
2
t+l−sE[̃ft+l−sf̃

′
t+l−s]Ω

1
2
t+l−sL

′Φ′s +
l−1∑
s=0

ΦsE[uyt+l−su
y′
t+l−s]Φ

′
s

=
l−1∑
s=0

Θs,t+l−sΘ
′
s,t+l−s +

l−1∑
s=0

Ξs,t+l−sΞ
′
s,t+l−s ≡ MSPEf

t (l) + MSPEu
t (l),

where we have used the assumption that ut and f̃s are mutually independent for all leads

and lags. Hence, we have decomposed the MSPE into two components: one that can be

attributed to the latent factors and the other to the idiosyncratic shocks.

Since in our setup both the variances of the factors and the idiosyncratic shocks are

time varying, the expression for MSPE depends on t. In practice, we focus on t = T

and compute MSPET (l). Let θij,s,T+l−s denote the (i, j) element of Θs,T+l−s. Then, the

contribution of the j-th factor to the MSPE of yi,t, i = 1, . . . , n, at horizon l is

MSPEj,f
i,T (l) =

l−1∑
s=0

θ2
ij,s,T+l−s.

Hence, we can further decompose the MSPE of yi,t attributed to the factors as

MSPEf
i,T (l) =

r∑
j=1

MSPEj,f
i,T (l) =

r∑
j=1

(
l−1∑
s=0

θ2
ij,s,T+l−s

)
.
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It follows that the ratio MSPEj,f
i,T (l)/MSPEf

i,T (l) measures the contribution of the j-th

factor in forecasting the i-the variable at time T l periods ahead as a fraction of the

MSPE attributed to the factors.

Historical Decompositions

Next, we develop expressions for historical decompositions. To that end, let ẏt denote

the demeaned yt, i.e., ẏt = yt−µy. Then, it follows from (35) that one may approximate

ẏt using ̂̇yt =
t−1∑
s=0

ΦsLft−s +
t−1∑
s=0

Φsu
y
t−s.

For a covariance-stationary system, the approximation error becomes negligible for a

sufficiently large t. To quantify how much the j-th factor explains the historically observed

fluctuation in the i-th variable, let

̂̇y(j),f

i,t =
t−1∑
s=0

(
e′n,iΦsLer,j

) (
e′r,jf t−s

)
, ̂̇yu

i,t =
t−1∑
s=0

e′n,iΦsu
y
t−s,

where em,k denotes the m × 1 vector with a 1 in the k-th coordinate and 0 elsewhere.

Then, the historical decomposition of the i-th element of ̂̇yt can be expressed as

̂̇yi,t =
r∑
j=1

̂̇y(j),f

i,t + ̂̇yu

i,t.

Hence, we have expressed ̂̇yi,t as the summation of r+ 1 terms: the variations in yi,t that

can be attributed to the r factors and an additional ‘residual’ term.
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