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Abstract

We develop an efficient sampling approach for handling complex missing data pat-

terns and a large number of missing observations in conditionally Gaussian state

space models. Two important examples are dynamic factor models with unbal-

anced datasets and large Bayesian VARs with variables in multiple frequencies. A

key observation underlying the proposed approach is that the joint distribution of

the missing data conditional on the observed data is Gaussian. Furthermore, the

inverse covariance or precision matrix of this conditional distribution is sparse, and

this special structure can be exploited to substantially speed up computations. We

illustrate the methodology using two empirical applications. The first application

combines quarterly, monthly and weekly data using a large Bayesian VAR to pro-

duce weekly GDP estimates. In the second application, we extract latent factors

from unbalanced datasets involving over a hundred monthly variables via a dynamic

factor model with stochastic volatility.
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1 Introduction

Large-scale time-series models are increasingly used in empirical macroeconomics to ex-

ploit the wide availability of large datasets. This trend promises a more timely and

comprehensive analysis but also brings new challenges. First, large datasets are typically

compiled from multiple sources, and consequently, they often involve complex missing

data patterns. One prominent example is mixed-frequency data to incorporate real-

time information, as opposed to the traditional approach of using only variables at the

same (lower) frequency. For instance, Aruoba, Diebold, and Scotti (2009) combine daily,

weekly, monthly and quarterly variables to construct a business conditions index to track

economic activity. Schorfheide and Song (2015) use GDP, which is only available quar-

terly, and other quarterly and monthly variables to obtain GDP estimates at the monthly

frequency. In both cases, the high-frequency observations of the low-frequency variables

are treated as missing data. As such, there are a large number of missing observations.

Second, extracting information from large datasets generally requires large-scale time-

series models. Factor models have been the workhorse for this purpose, and thanks to the

seminal work of Bańbura, Giannone, and Reichlin (2010) and Koop (2013), large Bayesian

vector autoregressions (VARs) have now become a popular alternative. In addition, since

there is a large body of empirical evidence that shows allowing for various flexible features,

such as heteroskedasticity, heavy-tailed distributions and outliers detection, are vitally

important for improving in-sample model-fit, and out-of-sample forecast performance

(see, e.g., Clark, 2011; D’Agostino, Gambetti, and Giannone, 2013; Cross and Poon, 2016;

Stock and Watson, 2016; Chan, 2020), these features are increasingly incorporated into

dynamic factor models and large Bayesian VARs (recent examples include Kastner and

Huber, 2020; Antolin-Diaz, Drechsel, and Petrella, 2021; Carriero, Clark, Marcellino, and

Mertens, 2022). While there are many recent advances in speeding up the estimation

of these flexible large-scale models with complete data, efficient algorithms that can

handle complex missing data patterns with a large number of missing observations are

by comparison underdeveloped.

We tackle these challenges by developing an efficient sampling approach for drawing all

the missing observations in one step. To make our approach widely applicable, it is devel-

oped under a general framework of conditionally Gaussian state space models. As such,

it applies to many of the popular large-scale models, such as dynamic factor models with
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stochastic volatility or mixed-frequency VARs with non-Gaussian errors. In addition, the

setup can easily handle a wide variety of complex missing data patterns, including unbal-

anced panels, mixed-frequency settings, and a ‘ragged edge’ at the end of the sample due

to non-synchronous data releases. Thanks to the modular nature of Markov chain Monte

Carlo (MCMC) methods, the proposed approach can be straightforwardly implemented

in conjunction with any efficient samplers for conditionally Gaussian state space models

with complete data. This paper therefore complements existing works on fast estimation

of flexible large-scale models and extend them to missing data settings.

We first derive the mean and precision (i.e., inverse covariance) matrix of the joint distri-

bution of the missing observations conditional on the observed data (as well as the model

parameters and latent variables), which fully characterize the Gaussian distribution. Fur-

thermore, we show that the precision matrix of this conditional distribution is sparse—in

fact, for many of the common missing data patterns, it is banded, i.e., it is sparse, and

its non-zero elements are arranged along a diagonal band. These special structures can

be exploited to vastly speed up computations. In particular, the precision-based sampler

of Chan and Jeliazkov (2009) can be applied to draw all the missing observations in one

step. This approach is much more efficient compared to standard Kalman-filter-based

methods, especially when there are a large number of missing observations or when the

state vector is high-dimensional.1 In addition, it is straightforward to implement: one

only needs to represent the data vector into observed and missing data by defining some

appropriate selection matrices. The proposed approach can easily handle many complex

missing data patterns, such as settings with variables in multiple frequencies.

In addition, our setup can also accommodate settings in which additional information is

available to help sharpen inference on the missing observations. This feature is crucial in

mixed-frequency applications where linear combinations of high-frequency missing obser-

1The precision-based sampling approach of Chan and Jeliazkov (2009) and McCausland, Miller, and
Pelletier (2011) are designed for linear Gaussian state space models with complete data. It builds upon
earlier work on Gaussian Markov random fields (Rue, 2001) and nonparametric regression (Chib and
Jeliazkov, 2006; Chib, Greenberg, and Jeliazkov, 2009). Due to its ease of implementation and compu-
tational efficiency, this approach is increasingly used in a wide range of empirical applications. Recent
examples include modeling trend inflation (Chan, Koop, and Potter, 2013; Chan, 2017; Hou, 2020),
time-varying Phillips curve (Fu, 2020) and dividend growth (Pettenuzzo, Sabbatucci, and Timmermann,
2023); estimating the output gap (Grant and Chan, 2017a,b); macroeconomic forecasting (Cross and
Poon, 2016; Cross, Hou, and Poon, 2019); and fitting various moving average models (Chan, 2013; Chan,
Eisenstat, and Koop, 2016; Dimitrakopoulos and Kolossiatis, 2020; Zhang, Chan, and Cross, 2020) and
dynamic factor models (Kaufmann and Schumacher, 2019; Beyeler and Kaufmann, 2021).
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vations need to be mapped to the observed values of low-frequency variables. Our paper

is related to the recent work by Eckert, Kronenberg, Mikosch, and Neuwirth (2020) and

Hauber and Schumacher (2021), who also consider a precision-based sampling approach

for settings with missing observations. However, they focus on dynamic factor models

and the latter does not consider mixed-frequency settings. In contrast, our approach is

more general and is applicable to any conditionally Gaussian state space models under a

wide variety of missing data patterns.

We conduct a series of Monte Carlo experiments to illustrate the numerical accuracy and

computation speed of the proposed precision-based approach. In particular, we estimate

mixed-frequency VARs using the proposed samplers and standard filtering methods under

a variety of settings. We show that the proposed precision-based approach is much

more computationally efficient compared to traditional Kalman-filter-based methods. In

addition, it scales well to high-dimensional settings, making it possible to estimate VARs

with a large number of low-frequency variables.

To demonstrate the versatility of the proposed precision-based approach, we consider

two empirical macroeconomic applications with widely different missing data patterns.

In the first application, we use a large mixed-frequency Bayesian VAR with stochastic

volatility to generate weekly estimates of real GDP. These high-frequency GDP estimates

are useful for a range of purposes, such as monitoring the current state of the economy and

delivering timely nowcasts of key macroeconomic variables. To obtain the weekly GDP

estimates, we fit a Bayesian VAR using 22 variables in 3 different frequencies: 16 weekly

variables, 5 monthly variables and the quarterly real GDP. All variables are modeled at

the weekly frequency, and the weekly observations of the monthly and quarterly variables

are treated as missing data. Even though the missing data pattern is complex—e.g.,

there are different numbers of weeks in different months and quarters—and there are a

large number of missing observations, the proposed approach is computationally efficient

and easy to implement.

In the second application, we use a dynamic factor model with stochastic volatility to

extract latent factors in real-time from the FRED-MD datasets of McCracken and Ng

(2016). Each data vintage of FRED-MD contains 128 monthly variables, but many have

missing values from two sources: missing observations at the beginning of the sample

for some recently constructed variables and missing values at the end of the sample due
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to publication lags. We implement the proposed approach to sample the missing ob-

servations under the dynamic factor model and obtain the latent factors. Our results

show that the first factor tracks the broad economic conditions well, even during the pro-

nounced downturn at the onset of the COVID-19 pandemic and the subsequent rebound.

In addition, our results suggest that using only variables without missing values can po-

tentially misrepresent the dynamics of the latent factors, highlighting the importance of

incorporating the information from variables with missing values.

The remainder of the paper is organized as follows. Section 2 discusses the proposed

precision-based sampling approach for drawing the missing observations in a general state

space framework. Section 3 conducts a series of Monte Carlo experiments comparing the

proposed sampling approach against standard Kalman-filter based techniques in a variety

of mixed-frequency settings. Section 4 demonstrates how the proposed sampling approach

can be applied to two popular empirical macroeconomic applications. Finally, Section 5

concludes.

2 A General State Space Framework

This section introduces the proposed precision-based approach for sampling the missing

data conditional on a variety of information sets under a general state space framework.

More specifically, we first derive the joint conditional distribution of the missing data

given the observed data and model parameters, which we show is Gaussian. We then

discuss an efficient algorithm to generate samples from this typically high-dimensional

Gaussian distribution. In addition, since in many applications, such as mixed-frequency

settings, one has additional information on the missing data, we demonstrate how this

additional information can be incorporated to update the conditional distribution of the

missing data.
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2.1 The Conditional Distribution of the Missing Data

Our general setup is the following conditionally Gaussian state space model for an n× 1

vector of variables yt = (y1,t, . . . , yn,t)
′ over t = 1, . . . , T :

yt = Wtαt + Xtβ + εt, εt ∼ N (0n,Σt), (1)

αt = γ + Φ1αt−1 + · · ·+ Φqαt−q + εαt , εαt ∼ N (0k,Ωt), (2)

where 0m denotes an m × 1 vector of zeros, β is a vector of time-invariant parameters,

αt is a vector of time-varying parameters, Σt and Ωt are the covariance matrices for the

observation and state equations, respectively. The covariate matrices Wt and Xt could

include lagged values of yt. This framework encompasses a wide range of commonly-used

models, including dynamic factor models and vector autoregressions.2

Note that it also includes many different types of error processes as special cases. For

instance, one can specify Σt as the multivariate stochastic volatility processes in Cogley

and Sargent (2005), Primiceri (2005), Carriero, Clark, and Marcellino (2016) or Kastner

(2019). In addition, one can also consider various types of non-Gaussian errors, such as the

t distribution by setting Σt = λtQ, where Q is a covariance matrix and λt ∼ IG(ν/2, ν/2),

or an outlier component of the type in Stock and Watson (2016) by specifying Σt = o2tQ,

where ot follows a 2-part distribution with a point mass at 1 and a uniform distribution

on the interval (2, 10). Naturally, any combination of the above multivariate stochastic

volatility processes or non-Gaussian errors, such as those in Chan (2020) and Carriero,

Clark, Marcellino, and Mertens (2022), is also possible.

We are interested in settings in which some elements of yt are missing. More specifically,

let yot denote the not × 1 subvector of observed values in yt, and let ymt represent the

nmt × 1 subvector of missing values in yt such that not + nmt = n. Note that here not and

2We are interested in settings in which some elements of yt are missing. Throughout this paper we
assume that missingness depends on the data only through the observed subvector in yt, or what is
known as the ‘missing at random’ assumption (Little and Rubin, 2019). For other approaches that do
not assume missing at random, see Bai and Ng (2021) and the references therein. Under this missing at
random setting, one can relax the assumption of serially independent measurement errors εt in (1) by re-
defining the state vector αt to include the serially correlated measurement errors. Alternatively, one can
incorporate this serial correlation by deriving the covariance matrix of the joint data y = (y′1, . . . ,y

′
T ),

as is done in the application in Section 4.2 involving a dynamic factor model with autoregressive mea-
surement errors. As shown in Ng and Scanlan (2023), allowing for dynamics in measurement errors can
provide substantially more accurate imputed values of the missing data.
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nmt can be time-varying, and hence this setup can accommodate a wide range of missing

data patterns, such as unbalanced panels and ragged edge. In addition, for settings with

variables of mixed frequencies, it is common to express the time index in the highest

frequency and treat some of the low-frequency variables as missing. For example, in

models with both monthly and quarterly variables, the monthly values of the quarterly

stock variables are only observed every 3 months and the rest are treated as missing.3

Finally, let N o =
∑T

t=1 n
o
t and Nm =

∑T
t=1 n

m
t denote the total numbers of observed and

missing values with N o + Nm = Tn. For later reference, stack y = (y′1, . . . ,y
′
T )′ ∈ RTn,

yo = (yo′1 , . . . ,y
o′
T )′ ∈ RNo

and ym = (ym′1 , . . . ,y
m′
T )′ ∈ RNm

vectors.

In principle one could rewrite the measurement equation (1) in terms of only the observed

values yo. However, this approach would typically result in a non-standard state space

model that is difficult to estimate efficiently. One popular alternative is data augmenta-

tion, i.e., treating the missing values ym as latent variables to be augmented or sampled.

Once we obtain ym from its conditional distribution given the observed values yo, y is

completely observed and we can then leverage the many efficient methods for estimat-

ing large-scale state space models for complete data. This crucial step of sampling ym

is typically done using standard Kalman filtering and smoothing algorithms. However,

the main drawback of this approach is that it tends to be computationally intensive in

high-dimensional settings when there are a large number of missing observations. This

significant computational burden is a key obstacle in practice for using high-dimensional

state space models with missing data, despite the increasing popularity of large-scale dy-

namic factor models and VARs. In addition, when the missing data pattern is complex,

the implementation of Kalman filter based algorithms also becomes more cumbersome. To

overcome these computational and implementation issues, we develop an efficient method

to jointly sample ym given yo, the latent Gaussian states α, and model parameters and

other latent variables, which we denote as θ. The proposed method is conceptually simple

and easy to implement, even with complex missing data patterns.

In what follows, we first derive the joint conditional distribution of ym given yo. To that

end, we write y in terms of yo and ym:

y = Soyo + Smym, (3)

3For flow variables, their observed values can be viewed as additional information that can be mapped
to the missing high-frequency values; this case will be further discussed in the next subsection.
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where So and Sm are, respectively, Tn×N o and Tn×Nm selection matrices. In particular,

[So,Sm] is a permutation matrix that has exactly one entry of 1 in each row and each

column, and 0 elsewhere. It follows that both So and Sm are of full column rank.

As a simple illustration, suppose T = 2, n = 3, and y3,1, y1,2 and y3,2 are missing. Then,

yo = (y1,1, y2,1, y2,2)
′, ym = (y3,1, y1,2, y3,2)

′ and

y1,1

y2,1

y3,1

y1,2

y2,2

y3,2


=



1 0 0

0 1 0

0 0 0

0 0 0

0 0 1

0 0 0


︸ ︷︷ ︸

So

y1,1y2,1

y2,2

+



0 0 0

0 0 0

1 0 0

0 1 0

0 0 0

0 0 1


︸ ︷︷ ︸

Sm

y3,1y1,2

y3,2

 .

For a second illustration, suppose y1,t is only observed every 3 periods at t = 3, 6, 9, . . . ,

whereas y2,t, . . . , yn,t are observed every period for t = 1, . . . , T . Then, So is block-

diagonal consisting of diagonal blocks So1,S
o
2, . . . ,S

o
T , i.e., So = diag(So1,S

o
2, . . . ,S

o
T ) and

Sm = diag(sm1 , s
m
2 , . . . , s

m
T ), where Sot = In and smt = ∅ if t is divisible by 3; otherwise

Sot =

[
0′n−1

In−1

]
, smt =

[
1

0n−1

]
.

In general, the selection matrices So and Sm are sparse and can be constructed easily

even for complex missing data patterns.

Next, we aim to stack (1) over t = 1, . . . , T , and we consider two cases. If the right-hand

side of (1) does not contain any lagged values of yt, then, using the expression in (3), one

can rewrite the model more compactly as

Soyo + Smym = Wα+ Xβ + ε, ε ∼ N (0Tn,Σ), (4)

where α = (α′1, . . . ,α
′
T )′ and Σ = diag(Σ1, . . . ,ΣT ). If the right-hand side of (1) contains

lagged values of yt (e.g., in the case of VARs), then, moving the lagged values to the right-

hand side and using the expression in (3), the model can be expressed more generally
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as

Goyo + Gmym = Wα+ Xβ + ε, ε ∼ N (0Tn,Σ), (5)

where Go and Gm are appropriately defined according to the specification—typically

they are products of certain difference matrices and selection matrices, as illustrated in

Example 2.

For both cases, the system can be written in the form in (5). All the algorithms that

follow can be directly applied to this stacked system. Furthermore, we assume Gm has

full column rank, which is satisfied for most commonly-used models (and can be easily

verified in practice). Below we provide two examples to show how a dynamic factor model

and a VAR(p) can be expressed in the form of (5).

Example 1 Consider the following dynamic factor model with stochastic volatility:

yt = A1ft + εt, εt ∼ N (0n,Σt),

ft = Φ1ft−1 + · · ·+ Φqft−q + εft , εft ∼ N (0k,Ωt),

where Σt = diag(eh1,t , . . . , ehn,t), Ωt = diag(ehn+1,t , . . . , ehn+k,t) are diagonal matrices with

time-varying variances, and yt is split into two subvectors yot and ymt . Using the identity

in (3), the observation equation of this dynamic factor model can be expressed in the

form in (5) as:

Soyo + Smym = HA1f + ε, ε ∼ N (0Tn,Σ),

where HA1 = (IT ⊗A1), Σ = diag(Σ1, . . . ,ΣT ) and ⊗ denotes the Kronecker product.

One can consider a more general dynamic factor model in which the observation equation

contains lagged values of the dynamic factors, say, ft−1, . . . , ft−p. In this case one can

simply redefine the matrix HA1 to include them in the observation equation.

Example 2 The next example is a VAR(p) with an outlier component:

yt = b0 + B1yt−1 + B2yt−2 + · · ·+ Bpyt−p + εt, εt ∼ N (0n,Σt), (6)

where Σt = o2tQ, Q is a covariance matrix and ot follows a 2-part distribution with a

point mass at 1 and a uniform distribution on the interval (2, 10). Then, stacking (6)

9



over t = 1, . . . , T , we obtain

HBy = cB + ε, ε ∼ N (0Tn,Σ), (7)

where

cB =



b0 +
∑p

j=1 Bjy1−j

b0 +
∑p

j=2 Bjy2−j
...

b0 + Bpy0

b0

...

b0


, HB =



In 0n×n · · · · · · · · · · · · · · · 0n×n

−B1 In 0n×n · · · · · · · · · · · · 0n×n

−B2 −B1 In 0n×n · · · 0n×n
...

. . . . . . . . . . . . . . .
...

−Bp · · · −B1 In 0n×n
...

0n×n
. . . . . . . . .

...
...

. . . . . . . . . . . .
...

0n×n · · · 0n×n −Bp · · · −B2 −B1 In


. (8)

Again, using the identity in (3), we obtain

HBSoyo + HBSmym = cB + ε, ε ∼ N (0Tn,Σ),

which is in the form of (5) with Go = HBSo, Gm = HBSm, X = ITn and β = cB.4

Using the expression in (5), next we derive the conditional distribution of ym given yo,

α, and other latent variables and model parameters, which we collectively denote as θ.

Intuitively, since the joint distribution of (yo,ym) is Gaussian conditional on α and θ,

the conditional distribution of ym given yo,α and θ is also Gaussian by the properties

of the Gaussian distribution. More precisely, it follows from (5) that p(ym |yo,α,θ) can

be expressed as

p(ym |yo,α,θ) ∝ exp

{
−1

2
(Gmym + Goyo −Wα−Xβ)′Σ−1 (Gmym + Goyo −Wα−Xβ)

}
∝ exp

{
−1

2

[
ym′Gm′Σ−1Gmym − 2ym′Gm′Σ−1(Wα+ Xβ −Goyo)

]}
.

4For notational convenience, in the derivation we condition on the initial conditions y0, . . . ,y1−p.
These initial conditions could potentially have missing data. There are two ways to deal with these
missing values. First, they can be sampled in a separate step conditional on y and the model parame-
ters. Since p is much smaller than T in most applications, this extra step is typically computationally
trivial. Alternatively, one can jointly sample the missing data in the initial conditions and the sam-
ple by redefining y and the associated matrices. The details of this alternative approach are given in
Appendix D.
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Next, let Kym = Gm′Σ−1Gm, which is an Nm ×Nm non-singular matrix—since Gm has

full column rank—and is thus invertible. Furthermore, let µym = K−1ymGm′Σ−1(Wα +

Xβ − Goyo). Then, by completing the square in ym, one can write the conditional

distribution of ym as

p(ym |yo,α,θ) ∝ exp

{
−1

2

(
ym′Kymym − 2ym′Kymµym

)}
∝ exp

{
−1

2

(
ym − µym

)′
Kym

(
ym − µym

)}
.

Thus, we have shown that the joint conditional distribution of the missing data given the

observed data is Gaussian with mean vector µym and precision matrix Kym :

(ym |yo,α,θ) ∼ N
(
µym ,K−1ym

)
. (9)

Since both Gm and Σ are band matrices, so is the precision matrix Kym . Therefore, we

can use the precision-based sampler of Chan and Jeliazkov (2009) to draw ym efficiently.

We summarize the sampler in Algorithm 1.

Algorithm 1 Sampling (ym |yo,α,θ) ∼ N
(
µym ,K−1ym

)
.

Given µym and Kym , complete the following steps.

1. Obtain the Cholesky factor C of Kym such that Kym = CC′.

2. Solve C′v = x for v by backward substitution, where x ∼ N (0Nm , INm).

3. Return ym = µym + v.

This paper focuses on Bayesian estimation using MCMC methods. But the above results

are also useful for other estimation methods. For example, the conditional distribution

in (9) can be used in conjunction with the expectation-maximization algorithm to obtain

the maximum likelihood estimate of θ.

The setup so far is suitable for applications with missing data patterns such as unbalanced

panels and ragged edges. In many situations, however, the researcher has additional

information on the missing data. A prominent example is a mixed-frequency model in

which the high-frequency observations of the low-frequency flow variables are treated
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as missing data, and these missing observations are linked to multiple low-frequency

observations. Next, we show how one can incorporate additional information to update

the conditional distribution of the missing data.

2.2 Conditioning on Additional Information

The previous section discussed how one can efficiently sample the vector of missing data

ym conditional on the observed data yo, the Gaussian states α and the model parameters

and other latent variables θ. Additional information is available in many applications,

and it is often desirable or necessary to incorporate the new information into the analysis.

For example, in a mixed-frequency setting with both monthly and quarterly variables, a

common approach is to treat the monthly observations of the quarterly flow variables as

missing, and these missing values are then mapped to the observed values via some inter-

temporal constraints. Another example is ragged edge settings where the latest values

of some variables are not yet released, but high-quality nowcasts (e.g., from surveys of

professional forecasters) are available. Below we show how one can modify the proposed

sampling approach to handle various settings with additional information.

To keep the proposed framework general that can handle a wide variety of information

settings, suppose there is an additional M×1 vector of observables, say, z, that is available

for sharpening the inference on ym. We consider two types of mappings that connect z

to ym. In the first case, suppose z can be mapped to the missing data exactly via the

linear system:

z = Mym, (10)

where M is anM×Nm matrix specifying theM exact linear relationships. We refer to this

type of additional information as hard constraints. One important example is the inter-

temporal constraints for mixed-frequency settings based on a log-linear approximation

proposed in Mariano and Murasawa (2003, 2010). More specifically, suppose ymi,t is the

missing monthly value of the i-th variable at month t. Let zi,t/3 denote the corresponding

observed quarterly value (note that zi,t/3 is only observed for every third month). Then,

a standard log-linear approximation to an arithmetic average of the quarterly variable
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can be expressed as:

zi,t/3 =
1

3
ymi,t +

2

3
ymi,t−1 + ymi,t−2 +

2

3
ymi,t−3 +

1

3
ymi,t−4 (11)

for t = 3, 6, 9, . . .. By stacking (11) and defining M appropriately, the exact linear

restrictions in (11) can be written in the form in (10). For balanced monthly and quarterly

variables, M = Nm/3.

Even though the mapping considered in (11) is technically based on a log-linear approxi-

mation, in most applied work it is treated as an exact linear relationship. A more appro-

priate approach might be to explicitly allow for measurement or approximation errors. In

addition, there are other situations where allowing for measurement errors is appropriate

(e.g., mapping nowcasts from professional forecasters to the underlying endogenous vari-

ables). Hence, we consider an alternative mapping that includes measurement errors of

the form:

z = Mym + εz, εz ∼ N (0M ,O), (12)

where O is a fixed diagonal covariance matrix that encodes the magnitude of the mea-

surement errors. We refer to this type of additional information as soft constraints.

After providing a general setting to incorporate additional information, next we discuss

how the sampling of the missing data can be modified given this new information set.

First, we consider the case of hard constraints. Recall that the missing data conditional

only on the observed data and model parameter is Gaussian as specified in (9). Therefore,

sampling the missing data conditioning on the exact linear restrictions in (10) amounts

to drawing from the degenerate Gaussian distribution N
(
µym ,K−1ym

)
1(Mym = z), where

1(·) is the indicator function. There are efficient algorithms that can be used to sample

from N
(
µym ,K−1ym

)
so that Mym = z, such as Algorithm 2.6 in Rue and Held (2005)

and Algorithm 2 in Cong, Chen, and Zhou (2017). In particular, we can first sample

u ∼ N
(
µym ,K−1ym

)
using Algorithm 1. Then, we update the condition set augmented

with z = Mym by computing

ym = u + K−1ymM′(MK−1ymM′)−1(z−Mu).

It can be shown that ym has the distribution (ym |yo,α,θ,Mym = z). Algorithm 2

describes an efficient implementation in Rue and Held (2005) that avoids explicitly com-
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puting the inverse of Kym or MK−1ymM′. Using this implementation, the additional com-

putational cost for conditioning on z = Mym is relatively low for M � Nm. For large

M , this algorithm would involve a few large, dense matrices, and the computations could

be more intensive.

Algorithm 2 Sampling (ym |yo,α,θ, z = Mym) with hard constraints, where
(ym |yo,θ) ∼ N

(
µym ,K−1ym

)
.

Given the parameters µym and Kym , complete the following steps.

1. Obtain the Cholesky factor C of Kym such that Kym = CC′.

2. Sample u ∼ N
(
µym ,K−1ym

)
using Algorithm 1.

3. Solve CC′U = M′ for U by forward and backward substitution.

4. Solve MUV = U′ for V.

5. Return ym = u + V′(z−Mu).

Next, we consider the case of soft constraints. Essentially, we update the conditional

distribution of the missing data ym given the new information specified in (12). Therefore,

one can view the original Gaussian distribution of ym in (9) as the ‘prior distribution’ and

the new information in (12) as the ‘likelihood’. Then, by standard Bayesian updating,

we obtain

(ym |yo,α,θ, z) ∼ N
(
µym ,K

−1
ym

)
, (13)

where

Kym = M′O−1M + Kym , µym = K
−1
ym

(
M′O−1z + Kymµym

)
.

Since for most applications the matrices M,O and Kym are all banded, so is the precision

matrix Kym . Hence, the precision-based sampler in Algorithm 1 can be directly applied

to sample ym efficiently; we simply replace Kym and µym by Kym and µym , respectively.

Compared to Algorithm 2 for the case of hard constraints, sampling from (13) is much

faster and scales well to high-dimensional settings. For approximate inter-temporal re-

strictions such as Mariano and Murasawa (2003, 2010), the latter sampler is naturally

preferable. For other exact inter-temporal restrictions, empirically one can approximate

these hard constraints by setting the diagonal elements of O to be very small (e.g., 10−8).
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2.3 Joint Sampling of the Missing Data and Gaussian States

So far we have focused on sampling the missing data ym conditional on the observed

data yo and the Gaussian states α. Ideally one would like to draw (ym,α) together from

their joint distribution, because grouping variables into larger blocks makes the posterior

sampler more efficient in terms of lower autocorrelations in the MCMC draws. Below

we show how one can sample from the joint distribution p(ym,α |yo,θ); drawing from

p(ym,α |yo,θ, z) with additional information z can be done similarly.

To that end, first note that the joint distribution of (ym,α) can be decomposed as

p(ym,α |yo,θ) = p(ym |yo,θ)p(α |yo,ym,θ).

Hence, one can sample (α,ym) jointly by first drawing ym ∼ p(ym |yo,θ) marginally of α.

Then, given the sampled missing data ym, one obtains α from the conditional distribution

p(α |yo,ym,θ). Since the second step can be done using standard algorithms, in what

follows we focus on the first step.

Stack the state equation (2) over t = 1, . . . , T :

Hαα = mα + εα, εα ∼ N (0Tk,Ω),

where Ω = diag(Ω1, . . . ,ΩT ),

mα =



γ +
∑q

j=1 Φjα1−j

γ +
∑q

j=2 Φjα2−j
...

γ + Φqα0

γ
...

γ


, Hα =



Ik 0k×k · · · · · · · · · · · · · · · 0k×k

−Φ1 Ik 0k×k · · · · · · · · · · · · 0k×k

−Φ2 −Φ1 Ik 0k×k · · · 0k×k
...

. . . . . . . . . . . . . . .
...

−Φq · · · −Φ1 Ik 0k×k
...

0k×k
. . . . . . . . .

...
...

. . . . . . . . . . . .
...

0k×k · · · 0k×k −Φp · · · −Φ2 −Φ1 Ik


.

Since Hα is a square matrix with unit determinant, it is invertible and we have α =

H−1α mα + H−1α ε
α. Substitute this expression into (5), we obtain

Goyo + Gmym = WH−1α mα + Xβ + ε̃, ε̃ ∼ N (0Tn, Σ̃), (14)
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where ε̃ = ε + WH−1α ε
α and Σ̃ = Σ + WH−1α ΩH−1′α W′. The representation in (14) is

conceptually convenient, because it implies that the conditional distribution of ym given

yo and θ but marginal of α is also Gaussian:

(ym |yo,θ) ∼ N
(
µ̃ym , K̃−1ym

)
,

where

K̃ym = Gm′Σ̃
−1

Gm, µ̃ym = K̃−1ymGm′Σ̃
−1

(WH−1α mα + Xβ −Goyo).

However, since Σ̃ is a dense Tn× Tn matrix, in order for this approach to be practical,

we need to find an efficient way to compute Gm′Σ̃
−1

Gm and Gm′Σ̃
−1

(WH−1α mα+Xβ−
Goyo) that does not require brute-force inversion of Σ̃. Fortunately, one can use the

Woodbury formula to obtain

Σ̃
−1

=
(
Σ + WH−1α ΩH−1′α W′)−1

= Σ−1 −Σ−1WH−1α
(
Ω−1 + H−1′α W′Σ−1WH−1α

)−1
H−1′α W′Σ−1

= Σ−1 −Σ−1W
(
H′αΩ−1Hα + W′Σ−1W

)−1
W′Σ−1.

Note that in the above expression the matrix H′αΩ−1Hα + W′Σ−1W is banded because

Hα and W are banded and Ω and Σ are block-diagonal. Hence, one can compute K̃ym

and µ̃ym efficiently. Finally, given K̃ym and µ̃ym , one can sample (ym |yo,θ) using the

algorithm in Chan and Jeliazkov (2009).

In general, the precision matrix K̃ym is not banded. Consequently, sampling from

(ym |yo,θ) is typically more computationally intensive than sampling from (ym |yo,α,θ).

The gain, however, is higher computational efficiency in terms of lower autocorrelations

of the MCMC draws, as the former approach allows for joint sampling of (ym,α). There

is therefore a trade-off between computational time and computational efficiency.

3 A Monte Carlo Study

In this section we conduct a series of Monte Carlo experiments to assess the speed and

accuracy of the proposed precision-based methods for drawing the latent missing ob-
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servations relative to Kalman-filter based methods. In the first subsection we consider

mixed-frequency settings in which the missing data are the high-frequency observations

of the low-frequency variables. We then consider unbalanced panels in the following

subsection.

All datasets are generated from the following VAR:

yt = b0 + B1yt−1 + B2yt−2 + · · ·+ Bpyt−p + εt, εt ∼ N (0n,Σ),

where yt = (yo′t ,y
m′
t )′ is an n×1 vector of mixed-frequency data, yot is an no×1 vector of

(observed) high-frequency variables and ymt is an nm×1 vector of (missing) high-frequency

observations of the low-frequency variables. In addition, low-frequency variables zi,t/3, i =

1, . . . , nm, are observed at t = 3, 6, 9, . . ., which can be used to inform the values of the

missing ymt via (10) or (12). For the baseline case we set p = 5. Furthermore, we generate

the model parameters as follows. We set b0 = 0.01 × 1n. The diagonal elements of the

first VAR coefficient matrix are iid uniform U(0, 0.5) and the off-diagonal elements are

U(−0.2, 0.2). All elements of the higher VAR coefficient matrix are iid N (0, 0.052/l2),

where l is the lag length. The error covariance matrix Σ is generated from the inverse-

Wishart distribution IW(n+ 10, 0.07In + 0.031n1
′
n).

For each simulated dataset r = 1, . . . , R, we estimate the missing observations ymt using

4 methods: the precision-based sampler with the hard inter-temporal constraints in (10),

the precision-based sampler with the soft constraints in (12), the simulation smoother

of Carter and Kohn (1994) as implemented in the code provided by Schorfheide and

Song (2015), and the simulation smoother of Durbin and Koopman (2002).5 For both

the simulation smoothers of Carter and Kohn (1994) and Durbin and Koopman (2002),

we impose the hard constraints. For the precision-based sampler with soft constraints,

we set the diagonal elements of the measurement error covariance matrix O to be 10−8.

Hence, we view it as an approximation of the hard constraints so that results from the 4

methods are comparable.

5The implementation in Schorfheide and Song (2015) uses a compact state-space representation to
draw the missing observations. This representation removes the monthly observations from the state
vector that appears in the measurement equation. Consequently, it reduces the dimension of the state
vector and is generally more efficient. In contrast, the simulation smoother of Durbin and Koopman
(2002) requires the model in a standard companion form (see Appendix B for details) that results in a
higher dimensional state vector.
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Finally, we implement a standard normal prior for the VAR coefficients and an inverse-

Wishart prior for the error covariance matrix. More specifically, let β = vec
(
[b0,B1, . . . ,Bp]

′)
denote the k × 1 vector of all VAR coefficients with k = n(np+ 1). Then, the priors are

β ∼ N (0k, Ik) and Σ ∼ IW(5, In).

3.1 Missing Observations of Low-Frequency Variables

We consider DGPs of different dimensions with T = 300: small (n = 6, no = 5, nm = 1),

medium (n = 11, no = 10, nm = 1) and large (n = 16, no = 15, nm = 1). We also

investigate settings with a larger number of unobserved variables with nm = 5. For each

design, we generate R = 100 datasets from the mixed-frequency VAR as described above.

We then fit each dataset using a Gibbs sampler that draws sequentially the missing

observations and model parameters. In particular, we use 4 different methods to sample

the missing observations. To assess the accuracy of the different methods, we compute

the mean squared error (MSE) of the estimated missing observations against the actual

values. More specifically, for each dataset with missing observations y
m(i)
1 , . . . ,y

m(i)
T ,

i = 1, . . . , R,, and each method with posterior mean vector ŷm(i,j), j = 1, . . . , 4, we

compute MSEi(ŷ
m(i,j)) =

∑T
t=1 ||y

m(i)
t − ŷ

m(i,j)
t ||2/T , where || · || is the `2-norm. We

further summarize the accuracy by averaging over the R MSEs for each design, and the

results are reported in Table 1.

We also report the computation time, based on 15,000 MCMC draws with a burn-in

period of 5,000 draws.6 Since all four methods aim to draw from the same distribution—

namely, the conditional distribution of the missing observations given the observed data

and model parameters—in principle they should give the same MSEs. Indeed, they give

very similar MSEs in our simulations; the small discrepancies are mainly due to numerical

and simulation errors. In terms of runtime, it is clear that the proposed precision-based

methods are more computationally efficient compared to the Kalman-filter based method

across a range of settings.

6The computation time is based on a standard desktop with an Intel Xeon W-2223 @ 3.6GHz processor
and 16 GB of RAM and the code is implemented in MATLAB.
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Table 1: Mean squared errors of the estimated missing observations and computation
time using four methods: the proposed precision-based method with hard inter-temporal
constraints (P-hard), the precision-based method with soft inter-temporal constraints (P-
soft), the simulation smoother of Carter and Kohn (1994) implemented in Schorfheide and
Song (2015) (CK) and the simulation smoother of Durbin and Koopman (2002) (DK).

MSE Computation time (minutes)
nm no P-hard P-soft DK CK P-hard P-soft DK CK
1 5 0.004 0.004 0.004 0.005 0.7 0.6 7 5
1 10 0.004 0.004 0.004 0.004 3 3 31 9
1 15 0.004 0.004 0.004 0.004 13 13 61 16
5 5 0.005 0.005 0.005 0.005 8 4 23 24
5 10 0.005 0.005 0.005 0.005 16 12 51 35
5 15 0.004 0.004 0.004 0.005 38 35 106 51

Table 1 reports the runtime of full MCMC estimation. When the dimension of the VAR

increases, the computational complexity of simulating the VAR coefficients dominates,

and it might give the impression that the runtime of the four methods converges. To

better understand how the proposed methods perform across a wider range of settings,

next we compare only the runtime of sampling the missing observations.

First, Figure 1 reports the runtime of sampling ten draws of the missing observations

using the four methods for a range of no and nm. Since the differences in computation

time are substantial, they are shown in log scale. It is clear that both precision-based

methods compare favorably to the Kalman-filter based methods, and both scale well to

high dimensional settings. In addition, the variant with soft restrictions is especially

efficient when there are a large number of variables with missing observations.
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Figure 1: Computation time of obtaining 10 draws against no and nm, the numbers of
observed and partially unobserved variables, respectively, with T = 300 and p = 5. The
four methods are: precision-based sampler with hard inter-temporal constraints (P-hard),
precision-based sampler with soft constraints (P-soft), the simulation smoother of Carter
and Kohn (1994) implemented in Schorfheide and Song (2015) (CK) and the simulation
smoother of Durbin and Koopman (2002).
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Figure 2: Computation time of obtaining 10 draws against T and p, the numbers of
time periods and lags, respectively, with nm = 5 and no = 10. The four methods are:
precision-based sampler with hard inter-temporal constraints (P-hard), precision-based
sampler with soft constraints (P-soft), the simulation smoother of Carter and Kohn (1994)
implemented in Schorfheide and Song (2015) (CK) and the simulation smoother of Durbin
and Koopman (2002).

20



Next, Figure 2 reports the runtime of sampling ten draws of the missing observations

for a range of sample sizes T and lag lengths p. While both precision-based methods

perform well, the version with soft constrains does substantially better and scales well

to very large T and p. It is also worth mentioning that to apply the Kalman filter, one

needs to redefine the states so that the observation equation depends only on the current

(redefined) state. When p is large, the dimension of this new state vector is large. That is

one reason why the Kalman-filter based methods become more computationally intensive

when p is large. In contrast, the computational costs of the precision-based methods

remain low even for long lag lengths.

3.2 Unbalanced Panels

In this section we illustrate the performance of the proposed precision-based methods

in settings involving unbalanced panels where different variables are missing in different

time periods. To that end, we conduct a series of simulations using a medium-size VAR

(n = 13, no = 10, nm = 3) with a sample size of T = 300. We simulate the data using

the same DGP as described above, but here we assume that the low-frequency variables

are also missing for selected time periods (i.e., in addition to their missing high-frequency

observations). More specifically, the first low-frequency variable is completely missing for

the first 30 periods; the second is missing from t = 150, . . . , 180; and the third is missing

for the last 30 periods.

Table 2: Mean squared errors of the estimated missing observations and computation
time averaging over R = 100 replications using four methods: the proposed precision-
based method with hard inter-temporal constraints (P-hard), the precision-based method
with soft inter-temporal constraints (P-soft), the simulation smoother of Carter and Kohn
(1994) implemented in Schorfheide and Song (2015) (CK) and the simulation smoother
of Durbin and Koopman (2002) (DK).

MSE Computation time (minutes)
nm no P-hard P-soft DK CK P-hard P-soft DK CK
3 10 0.004 0.004 0.004 0.009 8 7 40 14

Table 2 reports the MSEs and computation time for estimating the missing observations

of the three low-frequency variables. Similar to the previous simulated experiments, here

we also find that the MSEs across the four methods are very similar. As before, the
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proposed precision-based methods are computationally more efficient than both Kalman-

filter based simulation smoothers.

Next, Figure 3 plots the posterior means of the missing observations of the low-frequency

variables obtained using the four methods against the actual simulated data. In the figure

we highlight the time periods in which each low-frequency variable is completely missing.

All four methods produce very similar posterior estimates of the missing observations

during these periods as expected. We therefore conclude that the precision-based methods

can handle any arbitrary missing data pattern as well as standard filtering and smoothing

methods, but they are more computationally efficient.

Figure 3: Posterior means of the low-frequency variables obtained using four meth-
ods: the proposed precision-based method with hard inter-temporal constraints (P-hard),
the precision-based method with soft inter-temporal constraints (P-soft), the simulation
smoother of Carter and Kohn (1994) implemented in Schorfheide and Song (2015) (CK)
and the simulation smoother of Durbin and Koopman (2002) (DK). The box in each panel
highlights the time periods in which the low-frequency variable is completely missing.
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4 Empirical Applications

We demonstrate the proposed precision-based approach via two empirical applications

involving two popular large-scale models and widely different missing data patterns. In

the first application, we use a large mixed-frequency VAR with stochastic volatility to

generate weekly estimates of real GDP. In the second application, we extract latent factors

from unbalanced datasets using a dynamic factor model with stochastic volatility.

4.1 A Weekly State-Space Mixed-Frequency VAR

In the first application we illustrate how the proposed precision-based approach can be

used to estimate a Bayesian VAR with 22 variables in weekly, monthly and quarterly

frequencies. Following the seminal work by Schorfheide and Song (2015), we model all

variables at the highest observed frequency, and treat the high-frequency observations

of the low-frequency variables as missing data. One key advantage of this approach is

that it produces interpolated (historical) estimates of the low-frequency variables at a

higher frequency. For example, Schorfheide and Song (2015) use monthly and quarterly

variables to obtain monthly GDP estimates, which are required as inputs for a variety of

applications. In addition, this approach can also deliver more timely nowcasts by incor-

porating information in higher-frequency variables. Recent applications of this approach

include Brave, Butters, and Justiniano (2019) and Koop, McIntyre, Mitchell, and Poon

(2020, 2022).

We extend this line of work by including weekly macroeconomic and financial variables.

By modeling all variables in weekly frequency, we are able to obtain weekly GDP esti-

mates. Fitting a large mixed-frequency VAR, however, is computationally intensive as

there are a large number of missing observations. Moreover, since the missing data pat-

tern is irregular (e.g., each quarter or month does not always have the same number of

weeks), the implementation of conventional methods is also more complex. In contrast,

the proposed method can easily handle the irregular missing data pattern and it scales

well to high dimensions.

The US dataset consists of 16 weekly variables (including raw steel production, retail

sales, initial claims for unemployment benefits and various financial variables), 5 monthly
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variables (such as industrial production, CPI and labor market variables) and 1 quarterly

variable (real GDP) from January 2013 to August 2022. Seven of the weekly variables

are obtained from Lewis, Mertens, Stock, and Trivedi (2022), which they use to construct

their Weekly Economic Index (WEI); other variables are sourced from the FRED database

at the Federal Reserve Bank of St. Louis. More details about the data can be found in

Appendix A.

Since our sample includes the COVID-19 pandemic, it is empirically important to allow for

some form of heteroskedasticity or non-Gaussian errors, as demonstrated in recent papers

such as Hartwig (2021), Lenza and Primiceri (2022) and Carriero, Clark, Marcellino, and

Mertens (2022). We therefore incorporate the common stochastic volatility of Carriero,

Clark, and Marcellino (2016) into a mixed-frequency VAR as follows:

yt = b0 + B1yt−1 + B2yt−2 + · · ·+ Bpyt−p + εt, εt ∼ N (0, ehtΣ),

where yt = (yo′t ,y
m′
t )′ is an n× 1 vector of mixed-frequency data, and yot and ymt are the

vectors of observed and missing variables, respectively. Note that the error covariance

matrix is scaled by the common log-volatility ht, which is modeled as a stationary AR(1)

process:

ht = φht−1 + uht , uht ∼ N (0, σ2
h),

for t = 2, . . . , T , where |φ| < 1 and the initial condition is specified as h1 ∼ N (0, σ2
h/(1−

φ2)). Here the unconditional mean of the AR(1) process is assumed to be zero for iden-

tification.7

Next, we describe the priors on the model parameters β = vec([b0,B1, . . . ,Bp]
′), Σ, φ

and σ2
h. Specifically, we assume the following independent priors:

β ∼ N (β0,Vβ), Σ ∼ IW(ν0,S0), φ ∼ N (φ0, Vφ)1(|φ| < 1), σ2
h ∼ IG(η0, S0),

where 1(·) denotes the indicator function. The prior mean vector and covariance matrix

7In preliminary work we also implemented a version of the model with the more flexible Cholesky
stochastic volatility of Cogley and Sargent (2005) and Carriero, Clark, and Marcellino (2019), in which
each variable has its own stochastic volatility process. However, given the large number of missing
observations, we found that it was hard to pin down some of the stochastic volatility processes in
simulations. In contrast, the common stochastic volatility worked well. An additional advantage of the
common stochastic volatility is that it is order-invariant, whereas the Cholesky stochastic volatility is
not.
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of the VAR coefficients, β0 and Vβ respectively, are chosen in the spirit of the Minnesota

prior pioneered by Doan, Litterman, and Sims (1984) and Litterman (1986). More specif-

ically, we set β0 = 0k to shrink the coefficients to zero. For the prior covariance matrix

Vβ, it is assumed to be diagonal such as

Var(Bl,ii) =
κ1
l2
, l = 1, . . . , p, i = 1, . . . , n,

Var(Bl,ij) =
κ2s

2
i

l2s2j
, l = 1, . . . , p, i, j = 1, . . . , n, i 6= j,

Var(b0,i) = 100s2i , i = 1, . . . , n,

where Bl,ij is the (i, j) element of Bl, s
2
r denotes the sample variance of the residuals

from an AR(4) model for the variable r for r = 1, . . . , n. To implement cross-variable

shrinkage, i.e., shrinking coefficients on lags of other variables more strongly to zero than

on own lags, we set κ1 = 0.04 and κ2 = 0.01. Finally, we set ν0 = n+ 3,S0 = In, η0 = 10

and S0 = 0.004 so that the prior means of Σ and σ2
h are 0.5In and 0.0212.

We model all variables in weekly frequency, and the missing observations of the monthly

or quarterly variables are linked to their corresponding observed values via inter-temporal

constraints similar to those in Mariano and Murasawa (2003, 2010). Compared to stan-

dard mixed-frequency settings involving only quarterly and monthly variables, the inter-

temporal constraints here are more complex, as there might be different numbers of

weeks in different months or quarters. More specifically, given the releasing date t of a

monthly/quarterly variable, let nwi,t denote the number of weeks between t and the last re-

leasing date. Then, each observed monthly/quarterly variable zi,t is linked to the missing

observations ymi,t via the inter-temporal constraint:

zi,t =

2nw
i,t−1∑
s=1

(
1(s 6 nwi,t)

s

nwi,t
+ 1(s > nwi,t)

2nwi,t − s
nwi,t

)
ymi,t−s+1 + εzi,t,

where εzi,t ∼ N (0, oi) captures the log-linear approximation error, and we set oi = 10−8.

The mixed-frequency VAR is estimated using MCMC methods. In particular, given the

model parameters and the common stochastic volatility, we use the proposed sampler as

described in Section 2 to sample the missing observations of the monthly and quarterly

variables. Then, given these missing observations, standard algorithms can be used to
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sample the model parameters and the common stochastic volatility.8 To gauge the effi-

ciency of the posterior sampler, we compute the inefficiency factors associated with the

missing data and the model parameters. All inefficiency factors are less than 100 (see

Appendix C for details), and they are comparable to those of large VARs without missing

data.

The raw weekly GDP growth estimates are rather volatile, which is expected given that

they are measured in weekly frequency. For easier comparison and interpretation, we

convert these weekly estimates to the more familiar quarterly growth rates. More specif-

ically, given the estimated week-on-week GDP growth rates ymt,j, t = 1, . . . , T, we use the

inter-temporal constraints to convert them to quarterly growth rates:

y∗t,j =

nw
j∑

s=1

s

nwj
ymt−s,j +

2nw
j −1∑

s=nw
j +1

2nwj − s
nwj

ymt−s,j, (15)

where we fix nwj = 13 weeks. Hence, y∗t,j may be interpreted as the cumulative GDP

growth over the past 13 weeks. Figure 4 plots the posterior means and the associated

68% credible interval of the these aggregate weekly GDP growth rates. In the graph

we also mark the observed quarterly GDP growth rates in black crosses. As expected,

all the observed quarterly GDP values lie on the aggregate weekly GDP estimates—the

inter-temporal constraints ensure that the weekly GDP estimates are aggregated to the

observed quarterly value.

The most prominent feature of the aggregate weekly GDP estimates is the drastic drop

at the onset of the COVID-19 pandemic and the subsequent rebound. In particular, the

US real GDP decreased by about 37% in 2020:Q2 when the pandemic forced widespread

business closures. When the economy gradually opened up in 2020:Q3, GDP bounced

back sharply by about 30%. One key advantage of modeling GDP in weekly frequency

is that, in between the quarterly GDP release dates, the model is able to provide GDP

estimates on a weekly basis by incorporating information in other weekly and monthly

variables.

8For example, the common stochastic volatility can be sampled using the methods in Carriero, Clark,
and Marcellino (2016) or Chan (2020). The VAR coefficients is jointly Gaussian and can be sampled
jointly or equation by equation as in Carriero, Chan, Clark, and Marcellino (2022).
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Figure 4: Aggregate weekly estimates of GDP growth over a quarter. The solid line de-
notes the posterior means of the aggregate weekly GDP growth (annualized), the shaded
area is the associated 68% credible intervals, and the crosses denote the actual observed
quarterly GDP values.

Next, we compare the aggregate weekly GDP estimates to two high-frequency indica-

tors that are designed to track real economic activity. The first is the Weekly Economic

Index of Lewis, Mertens, Stock, and Trivedi (2022), which is updated weekly by the Fed-

eral Reserve Bank of New York. The second is the Business Conditions Index of Aruoba,

Diebold, and Scotti (2009), which is maintained by the Federal Reserve Bank of Philadel-

phia. While both indicators incorporate a range of macroeconomic and financial variables

at high observation frequency, they are latent factors from dynamic factor models. In

contrast, our mixed-frequency VAR provides GDP estimates directly and are easier to

interpret.

We obtain the Weekly Economic Index and Business Conditions Index in weekly frequency

from the Federal Reserve Banks of New York and Philadelphia, respectively. They are

then converted to quarterly growth using (15) for easier comparison. Figure 5 plots the

aggregate weekly GDP estimates as well as the two indicators. It is clear from the figure

that the aggregate weekly GDP track the Business Conditions Index closely, even during

the extreme turning points in 2020:Q2 and 2020:Q3.9 In contrast, the Weekly Economic

9While the Business Conditions Index is constructed so that its average value is zero, the average
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Index displays noticeably different dynamics during the onset of the COVID-19 pandemic

and the immediate rebound. In particular, the Weekly Economic Index suggests that the

US economy experienced a sluggish recovery from the widespread lock-down in 2020:Q2.

In contrast, the aggregate weekly GDP and the Business Conditions Index indicate a

sharper rebound. One potential driver for this difference is that both the aggregate weekly

GDP and the Business Conditions Index incorporate quarterly GDP data, whereas the

Weekly Economic Index does not. Consequently, the latter could potentially capture only

the economic activity of specific sectors of the US economy, whereas the former two track

the whole US economy through the information in the GDP data.
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Figure 5: Plots of the aggregate weekly GDP estimates (solid line), the Weekly Eco-
nomic Index of Lewis, Mertens, Stock, and Trivedi (2022) (dash line) and the Business
Conditions Index of Aruoba, Diebold, and Scotti (2009) (dash-dotted line).

4.2 A Dynamic Factor Model with Unbalanced Datasets

To demonstrate the versatility of the proposed approach, in the second application we

consider a different type of missing data pattern in the context of another popular model

for handling large datasets: a dynamic factor model. More specifically, we extract com-

mon factors from the FRED-MD datasets of McCracken and Ng (2016) using a dynamic

GDP growth is about 2% over the sample period. Hence, there are differences in the level of the two
series.
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factor model with stochastic volatility. We focus on the COVID-19 pandemic period and

estimate the common factors in real-time using vintages from March 2020 to September

2022. Each vintage contains 128 monthly variables, but many of these variables have

missing values. These missing values mainly come from two sources: missing observa-

tions at the beginning of the sample for some more recently constructed variables and

missing values at the end of the sample due to publication lags, which is often referred

to as ragged edge.

Let yt = (yo′t ,y
m′
t )′ denote the n × 1 vector of monthly variables, where yot is the not -

vector of observed variables and ymt is the nmt -vector of variables with missing values at

time t. Furthermore, let ft represent the k × 1 vector of latent dynamic factors. Due to

the COVID-19 outliers, we incorporate stochastic volatility in both the factors and the

idiosyncratic errors and consider the following dynamic factor model:

yt = Aft + εt,

εt = Ψ1εt−1 + · · ·+ Ψpεt−p + ut, ut ∼ N (0n,Σt),

ft = Φ1ft−1 + · · ·+ Φqft−q + εft , εft ∼ N (0k,Ωt),

where Ψ1, . . . ,Ψp,Φ1, . . . ,Φq are diagonal matrices, Σt = diag(eh1,t , . . . , ehn,t) and Ωt =

diag(ehn+1,t , . . . , ehn+k,t). The n + k log-volatility processes are assumed to follow inde-

pendent random walks:

hi,t = hi,t−1 + εhi,t, εhi,t ∼ N (0, σ2
h,i), i = 1, . . . , n+ k,

where the initial conditions h1,0, . . . , hn+k,0 are treated as unknown parameters. Following

Antolin-Diaz, Drechsel, and Petrella (2021), we set p = q = 2.

Using the PCp criterion proposed in Bai and Ng (2002), McCracken and Ng (2016) find

that the optimal number of factors is 8 for their datasets. We therefore set k = 8. For

identification purposes, the factor loading matrix A is assumed to be lower triangular with

the diagonal elements set to be 1. We then pick the first 8 variables carefully to aid the

interpretation of the latent factors. In particular, we draw on the results in McCracken

and Ng (2016) and use the variables that load most heavily on each of the factors.10

10These 8 variables are ‘usgood’, ‘t10yffm’, ‘cusr0000sac’, ‘aaa’, ‘gs5’, ‘ipcongd’, ‘S&P: indust’ and
’exszusx’. These variables do not have missing values in the vintages we consider.
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Their results show that the first factor explains a significant portion of the variation in

industrial production and many labor market variables, suggesting that it captures the

broad economic conditions. The second factor explains particularly well the variations in

interest rate spreads, whereas the third and fourth factors have good explanatory power

for variations in prices and interest rates, respectively.

Next, we specify the prior distributions on the model parameters. Let a denote the

free elements of the factor loadings matrix A, and let ψ and φ represent the vectors

consisting of the diagonal elements of Ψi, i = 1, . . . , p and Φj, j = 1, . . . , q, respectively.

Then, consider the following independent priors on a, ψ and φ:

a ∼ N (a0,Va), ψ ∼ N (ψ0,Vψ)1(|ψ| < 1), φ ∼ N (φ0,Vφ)1(|φ| < 1),

where the indicator functions ensure the elements ψi and φj, i = 1, . . . , np, j = 1, . . . , kq,

are less then 1 in absolute value. We set the prior means a0,ψ0 and φ0 to be zero, and

the prior covariance matrices to be Va = Ir with r = rn − r(r + 1)/2, Vψ = 0.01Inp

and Vφ = 0.01Inq. Finally, for the parameters in the stochastic volatility equations, we

assume

σ2
h,i ∼ IG(νh,i, Sh,i), hi,0 ∼ N (mh,i, Vhi,0), i = 1, . . . , n+ k,

where we set mh,i = 0, Vhi,0 = 0.01, νh,i = 3 and Sh,i = 1 so that the prior means of hi,0

and σ2
h,i are 0 and 0.5, respectively.

This dynamic factor model with an unbalanced panel can be estimated using MCMC

methods. More specifically, given the model parameters and the latent factors, we simu-

late the missing values using the proposed sampler as described in Section 2. Then, given

the sampled missing values, the model parameters and latent factors can be drawn from

their full conditional distributions using standard algorithms; see, e.g., see Antolin-Diaz,

Drechsel, and Petrella (2021) and Chan (2022). To assess the efficiency of the posterior

sampler, we compute the inefficiency factors associated with the missing data and the

model parameters (see Appendix C for details). In particular, all inefficiency factors

are less than 100, and they are comparable to those of a dynamic factor model with a

balanced panel.

We estimate the dynamic factor model using FRED-MD data vintages from March 2020

to September 2022 that cover the COVID-19 pandemic period. For each data vintage, we
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first transform the series according to the recommendation in McCracken and Ng (2016).

Following common practice, we then standardize each series so that it has 0 mean and unit

variance. As mentioned earlier, each vintage contains 128 monthly variables, but many

have missing values at the beginning or at the end of the sample. For comparison, we

also estimate a version of the dynamic factor model using only variables without missing

values, i.e., in each vintage we omit any variables that have missing values. Across the

data vintages we consider, on average about 24 variables have missing values and are

omitted from the estimation of the factors.

Figure 6: Filtered estimates of the first factor from the dynamic factor model with bal-
anced and unbalanced datasets. The black line denotes the posterior means of the first
factor obtained using all 128 variables (with missing data), and the gray shaded area rep-
resents the associated 68% credible intervals. The blue line denotes the posterior means
obtained using only variables without missing values, and the blue shaded area represents
the associated 68% intervals.

Figure 6 plots the filtered estimates of the first factor from the dynamic factor model

with balanced and unbalanced datasets. These two estimates are broadly similar, and

they track well the pronounced downturn at the onset of the COVID-19 pandemic and

the subsequent rebound, confirming that the first factor captures the broad economic

conditions. However, they also show noticeable differences, especially at the peak and

trough associated with the economy-wide reopening after the lock-down. In particular,

the factor estimates obtained using all 128 variables show a less severe down-turn (−16.4

vs −18.8) and a more pronounced uptick afterward (5.7 vs 4.3). These differences may

be attributed to the missing values in a number of orders and inventories variables,
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such as new orders for consumer goods (‘acogno’) and for capital goods (‘andenox’) at

the beginning of the sample and total business inventories (‘businvx’) at the end of the

sample.

Figure 7: Filtered estimates of the second, third and fourth factors from the dynamic
factor model with balanced and unbalanced datasets. The black line denotes the posterior
means of the factor obtained using all 128 variables (with missing data), and the gray
shaded area represents the associated 68% credible intervals. The blue line denotes the
posterior means obtained using only variables without missing values, and the blue shaded
area represents the associated 68% intervals.

Next, we report in Figure 7 the filtered estimates of the second, third and fourth factors.

There are more substantial differences between the factor estimates obtained using the

balanced vs unbalanced datasets. In particular, the most striking differences are those

for the fourth factor, which explains variations in interest rates particularly well. These

differences might reflect the fact that many of the variables with missing values load

heavily on the fourth factor. For example, a number of new private housing permits
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variables have missing values, and they presumably contain useful information on interest

rates. Ignoring those variables is likely to give an incomplete picture on the development

of interest rates.11

All in all, these results suggest that omitting variables that have missing values from the

empirical analysis can potentially misrepresent the dynamics of broad economic conditions

and co-movements in interest rates or prices. This further underlines the utility of the

proposed approach to impute missing values that is flexible and works well in large-scale

models.

5 Conclusion

We have introduced a novel and efficient approach—that is applicable to any condition-

ally Gaussian state space models and datasets with arbitrary missing data patterns—

for sampling all the missing observations in one step. We have showed via a series of

Monte Carlo simulations that the proposed approach is more computationally efficient

than standard Kalman-filter based methods under a wide variety of settings. We also

demonstrated how the proposed approach can be applied to two empirical macroeco-

nomic applications involving a large mixed-frequency VAR and a dynamic factor model

with unbalanced datasets. Both empirical applications illustrated the usefulness of in-

corporating more information (from high-frequency indicators or variables with missing

values) into macroeconomic analysis.

11Filtered estimates of the fifth to eighth factors are reported in Appendix C. We also find substantial
differences in the estimates from the balanced vs unbalanced datasets.

33



Appendix A: Dataset for the Mixed-Frequency VAR

This appendix provides details of the 22-variable dataset of the mixed-frequency VAR

application. Specifically, Table 3 describes the 22 variables and their transformations.

The first seven weekly variables are obtained from Lewis, Mertens, Stock, and Trivedi

(2022), and the rest are sourced from the FRED database. The sample period is from

January 2013 to August 2022.

Table 3: The list of variables and the corresponding transformation used in the mixed-
frequency VAR application.
Variable Frequency FRED mnemonic Transformation

Fuels Weekly - 100∆ln
(

xt
xt−52

)
Raw Steel Production Weekly - 100∆ln

(
xt

xt−52

)
Retail Sales Average Weekly - Level

Electric Utility Output Weekly - 100∆ln
(

xt
xt−52

)
US Railroad Traffic Weekly - 100∆ln

(
xt

xt−52

)
Continued Claims Weekly CCSA lnxt
Initial Claims Weekly ICSA lnxt

US Regular All Formulations Gas Price Weekly GASREGW 100∆ln
(

xt
xt−52

)
Crude Oil Prices Weekly WCOILWTICO lnxt
National Financial Conditions Index Weekly NFCI Level

S&P 500 Weekly S&P 500 100∆ln
(

xt
xt−1

)
Yield on 1-year U.S. Treasury Weekly DGS1 Level
Yield on 10-year U.S. Treasury Weekly DGS10 Level
Moody’s Seasoned Baa Corporate Bond Yield Weekly WBAA Level
Moody’s Seasoned Aaa Corporate Bond Yield Weekly WAAA Level
VIX Weekly VIXCLS Level

Industrial Production Monthly INDPRO 100∆ln
(

xt
xt−1

)
Consumer Price Index for All Urban Consumers Monthly CPIAUCSL 100∆ln

(
xt
xt−1

)
Unemployment Rate Monthly UNRATE Level

All Employees, Total Nonfarm Monthly PAYEMS 100∆ln
(

xt
xt−1

)
Average Weekly Hours: Manufacturing Monthly AWHMAN xt

10

Real Gross Domestic Product Quarterly GDPC1 400∆ln
(

xt
xt−1

)

34



Appendix B: The Durbin-Koopman Simulation Smoother

To implement the Durbin-Koopman simulation smoother, we first need to rewrite the

VAR(5) into its companion form:

st = F0 + F1st−1 + vt, vt ∼ N (05n,Ω), (16)

where st = (y
′
t,y

′
t−1,y

′
t−2,y

′
t−3,y

′
t−4) is the 5n× 1 state vector and

Ω =

[
Σ 0n×4n

04n×n 04n×4n

]
, F0 =

[
b0

04n×1

]
, F1 =


B1 B2 B3 B4 B5

In 0n 0n 0n 0n

0n In 0n 0n 0n

0n 0n In 0n 0n

0n 0n 0n In 0n

 .

When both the high- and low-frequency variables are observed, the measurement equation

is given by

yt = Λ1st. (17)

When only the high-frequency variables are observed, it becomes

yot = Λ2st. (18)

The matrices Λ1 and Λ2 incorporate the inter-temporal constraints:

Λ1 =

[
Ino 0nm 0no 0nm 0no 0nm 0no 0nm 0no 0nm

0nm
1
3
Inm 0no

2
3
Inm 0no Inm 0no

2
3
Inm 0no

1
3
Inm

]
,

Λ2 =
[

Ino 0nm 0no 0nm 0no 0nm 0no 0nm 0no 0nm

]
.

We follow Jarociński (2015) and implement the Durbin-Koopman simulation smoother

on (16), (17) and (18).
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Appendix C: Additional Results

This appendix presents additional empirical results from the two applications. We first

report in Figure 8 the filtered estimates of factors 5-8 in the dynamic factor model using

both balanced and unbalanced FRED-MD datasets.

Figure 8: Filtered estimates of the fifth to eighth factors from the dynamic factor model
with balanced and unbalanced datasets. The black line denotes the posterior means of
the factor obtained using all 128 variables (with missing data), and the gray shaded area
represents the associated 68% credible intervals. The blue line denotes the posterior
means obtained using only variables without missing values, and the blue shaded area
represents the associated 68% intervals.

Next, Figures 9-11 report the inefficiency factors of the MCMC samples from the two em-

pirical applications. Specifically, Figure 9 plots the inefficiency factors of the missing data

and model parameters from the weekly state-space mixed-frequency VAR. To present the

information more succinctly, boxplots of the inefficiency factors are used. Each boxplot
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summarizes the quantiles of each group of model parameters or latent variables. The

middle line of each box denotes the median, while the lower and upper lines represent,

respectively, the 25- and the 75-percentiles. The whiskers extend to the maximum and

minimum. For example, the boxplot associated with ym indicates that the median of

the inefficiency factors of the missing data is about 65, and the maximum is about 90.

Similarly, the boxplot associated with β shows that 75% of the inefficiency factors of the

VAR coefficients are below 60, with the maximum being just below 100.

Figure 9: Boxplots of the inefficiency factors corresponding to the posterior draws of
the missing data ym and model parameters, β,h and Σ, from the weekly state-space
mixed-frequency VAR.

Figures 10 and 11 plot the inefficiency factors from the dynamic factor model with an un-

balanced panel and a balanced panel, respectively. Again, each of the boxplot summarizes

the quantiles of each group of model parameters or latent variables.

37



Figure 10: Boxplots of the inefficiency factors corresponding to the posterior draws of the
missing data ym and model parameters, f , A, h, σ2

h,ψ and φ from the dynamic factor
model with an unbalanced panel.

Figure 11: Boxplots of the inefficiency factors corresponding to the posterior draws of f ,
A, h, σ2

h, ψ and φ from the dynamic factor model with a balanced panel.
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Appendix D: Joint Sampling of the Missing Data in

the Sample and the Initial Conditions

In VAR applications, the initial conditions y0, . . . ,y1−p often contain missing values. This

appendix describes an alternative approach of jointly sampling the missing data in both

the sample and the initial conditions. It amounts to redefining a few relevant matrices

to include the initial conditions. Then, the algorithms described in the main text can be

directly applied.

To that end, redefine y = (y′1−p, . . . ,y
′
0,y

′
1, . . . ,y

′
T )′ to denote the (T+p)n×1 vector of ini-

tial conditions and sample observations. Similarly, let yo and ym represent, respectively,

the N o-vector of observables and the Nm-vector of missing data, with N o+Nm = (T+p)n.

Next, we can write y in terms of yo and ym: y = Soyo + Smym, where So and Sm are,

respectively, (T + p)n × N o and (T + p)n × Nm selection matrices. Then, stacking (6)

over t = 1, . . . , T , we obtain

HBy = cB + ε, ε ∼ N (0Tn,Σ), (19)

where cB = 1T ⊗ b0, ε = (ε′1, . . . , ε
′
T )′, Σ = diag(Σ1, . . . ,ΣT ), and

HB =



−Bp · · · −B1 In 0n×n · · · · · · 0n×n

0n×n −Bp · · · −B1 In 0n×n · · · 0n×n
...

. . . . . . . . . . . . . . .
...

0n×n · · · 0n×n −Bp · · · −B1 In 0n×n

0n×n · · · · · · 0n×n −Bp · · · −B1 In


.

Note that (19) has exactly the same form as (7), with the new definitions of y, cB and HB.

As such, the algorithms in the main text can be directly applied to sample the missing

data ym in y. For example, the joint conditional distribution of the missing data given the

observed data is (ym |yo,α,θ) ∼ N
(
µym ,K−1ym

)
, where Kym = Gm′Σ−1Gm, µym =

K−1ymGm′Σ−1(cB −Goyo), with Go = HBSo and Gm = HBSm.
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