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Abstract

We introduce a new class of stochastic volatility models with autoregressive mov-

ing average (ARMA) innovations. The conditional mean process has a flexible

form that can accommodate both a state space representation and a conventional

dynamic regression. The ARMA component introduces serial dependence which

renders standard Kalman filter techniques not directly applicable. To overcome

this hurdle we develop an efficient posterior simulator that builds on recently devel-

oped precision-based algorithms. We assess the usefulness of these new models in an

inflation forecasting exercise across all G7 economies. We find that the new models

generally provide competitive point and density forecasts compared to standard

benchmarks, and are especially useful for Canada, France, Italy and the US.
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1 Introduction

Following the seminal work of Box and Jenkins (1970), autoregressive moving average

(ARMA) models have become the standard tool for modeling and forecasting univariate

time series. More recently, coefficient instability in macroeconomic time series models

has been widely acknowledged (see, e.g., Stock and Watson, 1996; Ludbergh et al., 2003;

Marcellino, 2004; Stock and Watson, 2007; Cross and Poon, 2016). For example, Stock

and Watson (2007) show that US CPI inflation is best modeled by an unobserved com-

ponents model in which both the transitory and trend equations allow for time-varying

volatility. It is therefore necessary to modernize the ARMA framework by allowing for

the possibility of a time-varying second moment.

There are two popular approaches to achieve this objective: autoregressive conditional

heteroscedasticity models of Engle (1982)—or their generalized counterparts introduced in

Bollerslev (1986) called GARCH models—and stochastic volatility (SV) models (Taylor,

1994). In a recent paper, Clark and Ravazzolo (2015) put these two classes of models

head-to-head in a forecasting exercise involving a few key US macroeconomic time series.

They find that stochastic volatility models generally provide superior point and density

forecasts across all variables. Thus, SV seems to be a more appropriate specification, at

least for macroeconomic forecasting. In addition, given the historical success of ARMA

models and their more recent time-varying extensions, one might expect a more flexible

class of dynamic models with ARMA and SV errors could further improve the forecast

performance. This idea is partially investigated by Chan (2013), who shows that MA-SV

errors are useful in forecasting US inflation. Nonetheless, it remains to be seen whether

more general ARMA-SV errors can further enhance forecast accuracy.1

With this idea in mind, our objective in this paper is to investigate the forecast perfor-

mance of a new class of ARMA-SV models. By allowing the conditional mean process to

have a flexible state space representation, our general framework is able to accommodate

numerous popular specifications, such as unobserved components and time varying pa-

rameter models, as special cases. For example, since the unobserved components model of

Stock and Watson (2007) assumes that the stationary component is serially independent,

our proposed models provide a natural extension of Stock and Watson (2007) that allows

the stationary component to follow an ARMA process.2 In addition, we also extend the

1Nakatsuma (2000) develops a posterior simulator for estimating ARMA-GARCH models. Thus,
our paper can also be viewed as filling an important gap in completing the econometricians toolbox of
possible ARMA error models.

2If the conditional mean process has an AR structure with a sufficiently long lag length, the residuals
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recent work of Chan (2013) to allow for a more flexible error structure. Since it is well-

known that inflation experience varies across countries and it is more persistent in some

countries than others (see, e.g., Mitchell, Robertson, and Wright, 2019), it is useful for

forecasters to have models with a wide range of flexible error structures.

A second contribution of our paper is to develop an efficient posterior simulator to es-

timate this new class of models. A major computational hurdle is that the ARMA

component introduces serial dependence into the measurement equation, which makes

standard Kalman filter techniques not directly applicable. To overcome this issue, one

may seek a suitable transformation of the data to make the errors serially independent

(Chib and Greenberg, 1994). Here we take a different route and build upon recent ad-

vances in precision-based algorithms for state space models, which have been shown to be

computationally more efficient than Kalman filter based methods (Chan and Jeliazkov,

2009; McCausland et al., 2011). The key to our efficiency gain is that despite having

a full covariance matrix implied by the ARMA structure, we can work with only band

matrices, which substantially speed up the computations. In this way, we are able to

overcome the computational challenge of having a full covariance matrix and maintain

the same type of advantages obtained by Chan (2013).

A third contribution of our paper is that we provide a substantive forecasting exercise

involving two commonly used inflation measures: CPI and the GDP deflator, across the

G7 economies. Since inflation plays a key role in modern monetary policy, any forecast

improvement over the standard set of benchmark models will have substantive practical

significance. While there does not appear to be a single best model that dominates across

all countries, we find that the proposed ARMA-SV models generally provide superior out-

of-sample point and density forecasts, and are especially useful for Canada, France, Italy

and the US. From an empirical perspective, given that our study includes state-of-the-art

models such as UC-SV and UC-MA-SV, our analysis can be viewed as an extension of

the results presented in Stock and Watson (2007) and Chan (2013).

The rest of the paper is structured as follows. Section 2 presents the general ARMA-

SV framework, discusses how this embeds a variety of popular model specifications, and

develops an efficient posterior simulator to estimate this new class of models. In Section 3,

we discuss our application of forecasting CPI and GDP deflator inflation measures in each

obtained from the model typically do not exhibit a high level of autocorrelation. However, by allowing
the errors to be serially correlated, the AR coefficients in the mean equation often become smaller in
absolute values and a shorter lag length seems sufficient. See, for example, the findings in Chan (2018)
that compares estimates of VAR coefficients with and without an MA component.
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of the G7 countries. We further provide a comparison with the Survey of Professional

Forecasters for US data in Section 4. Finally, we conclude in Section 5.

2 Stochastic Volatility Models with ARMA Errors

In this section we first introduce a class of stochastic volatility models with ARMA

errors and provide some theoretical motivation. We then outline our computational

approach to estimate this class of models efficiently using recent advances in precision-

based algorithms.

First let yt denote a variable of interest at date t, where t = 1, . . . , T . Then, the general

state space representation of the ARMA(p, q)-SV framework is given by:

yt = µt + εyt , (1)

εyt = φ1ε
y
t−1 + · · ·+ φpε

y
t−p + ut + ψ1ut−1 + · · ·+ ψqut−q, ut ∼ N (0, eht), (2)

ht = ht−1 + εht , εht ∼ N (0, σ2
h), (3)

where the error terms ετt and ut are independent across all leads and lags. We assume

for simplicity that the initial conditions ε0 = · · · = ε−p = u0 = · · · = u−q = 0. One can

treat these initial innovations as parameters to be estimated if desired, and the estimation

procedures discussed in the next section can be straightforwardly extended to allow for

this possibility. For typical situations where T is much larger than p and q, whether these

initial conditions are modeled explicitly or not makes little difference in practice.

In the measurement equation (1) above, we leave the time-varying conditional mean

µt unspecified. By choosing a suitable time-varying process for µt, our framework can

accommodate a variety of popular model specifications. Two such examples are:

1. The autoregressive model:

µt = ρ0 +
m∑
i=1

ρiyt−i (4)

2. The unobserved components model:

τt = τt−1 + ετt , ετt ∼ N (0, σ2
τ ), (5)
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Of course, many other models can be considered as well, such as the standard linear

regression model with constant or time-varying coefficients.

Equation (2) specifies an ARMA(p, q) error structure, where the variance exp(ht) follows

a stochastic volatility process — i.e., the log-volatility ht evolves according to the random

walk in Equation (3). Moreover, the ARMA(p, q) process is assumed to be stationary

and invertible. Specifically, rewrite (2) in terms of two polynomials:

φ(L)εyt = ψ(L)ut,

where φ(L) = 1 − φ1L − · · · − φpL
p, ψ(L) = 1 + ψ1L + · · · + ψqL

q and L is the lag

operator. Then, we assume that all roots of φ(L) and ψ(L) are outside of the unit circle

for stationarity and invertibility, respectively (Chib and Greenberg, 1994).

Under our framework, yt is decomposed into a (typically) non-stationary process µt and a

stationary error process εyt , which we model as ARMA(p, q). The theoretical justification

of the latter choice is the well-known Wold decomposition theorem, which states that

any zero mean covariance-stationary time series has an infinite moving average represen-

tation. An implication of this theorem is that any covariance-stationary process can be

approximated arbitrarily well by a sufficiently high order ARMA model.

A second motivation of our framework in (1)–(3) is that it can include many state-of-

the-art forecasting models for inflation as special cases. In other words, we can embed

many seemingly different models within a unifying framework. One prominent example

is the UCSV model of Stock and Watson (2007), which has become the benchmark for

forecasting inflation. In our framework it amounts to assuming the conditional mean

µt to follow a random walk process with SV, and turning off both the AR and MA

components—i.e., setting φi = ψj = 0 for all i = 1, . . . , p and j = 1, . . . , q. One seemingly

restrictive assumption in the UCSV model is that the transitory component of inflation

or the inflation gap is in fact serially independent. More recent papers have allowed

for some form of serial dependence in the transitory component and showed that these

extensions better forecast inflation. For example, Chan (2013) proposes a variant where

the transitory component has an MA structure. By contrast, Clark and Doh (2014)

considers a version in which the inflation gap follows an AR(1) process. Both of these

variants of the UCSV model can naturally be included within the proposed framework.
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2.1 Estimation

We estimate the model with Bayesian methods and simulate the joint distributions of

interest through an efficient Metropolis-within-Gibbs sampler that builds upon recent

developments in precision-based algorithms. The main challenge is that due to the ARMA

error structure, the covariance matrix of the joint distribution for y = (y1, . . . , yT )′ is a full

matrix. Therefore, in order to use the conventional Kalman filter, the original data need

to be transformed so that the transformed errors are serially independent. Here, however,

we extend the results in Chan (2013) and employ a direct approach using precision-based

algorithms. Specifically, for the case of MA errors, Chan (2013) exploits the fact that

the implied inverse covariance matrix or the precision matrix is banded—i.e., it has few

non-zero elements and they are arranged along the main diagonal. Consequently, fast

band matrix routines can be used to speed up computations. For the general ARMA

case, unfortunately, both the covariance and precision matrices are full, and we cannot

use the previous results directly. However, by a careful manipulation of the ARMA error

structure, we show in the following sections that one can work with only banded matrices

and achieve the associated efficiency gains.

2.1.1 Likelihood Evaluation

The classic work of Chib and Greenberg (1994) provides a method to evaluate the likeli-

hood of ARMA models using a recursive system of equations to transform the data. Here

we present a direct, more computationally efficient method to evaluate the likelihood

based on fast band matrix routines. Since the likelihood function is the joint distribution

of the data, we seek so stack the system of equations in (1)–(3) over t = 1, . . . , T . To this

end, note that (2) can be written as:

Hφε
y = Hψu, u ∼ N (0,Ωu), (6)

where εy = (εy1, . . . , ε
y
T )′, u = (u1, . . . , uT )′, Ωu = diag(eh1 , . . . , ehT ), Hφ is a T × T

difference matrix and Hψ is a T × T lower triangular matrix with ones along the main

diagonal and ψj on the j-th lower diagonal, j = 1, . . . , q. For example, if we have an

6



ARMA(2,2) error structure then Hφ and Hψ are defined to be:

Hφ =



1 0 0 0 · · · 0

−φ1 1 0 0 · · · 0

−φ2 −φ1 1 0 · · · 0

0 −φ2 −φ1 1 · · · 0
...

...
. . . . . . . . .

...

0 0 · · · −φ2 −φ1 1


, Hψ =



1 0 0 0 · · · 0

ψ1 1 0 0 · · · 0

ψ2 ψ1 1 0 · · · 0

0 ψ2 ψ1 1 · · · 0
...

...
. . . . . . . . .

...

0 0 · · · ψ2 ψ1 1


.

Since Hφ is a lower triangular matrix with ones along the main diagonal, |Hφ| = 1 for

any φ = (φ1, . . . , φp)
′. Thus, Hφ is invertible and (6) can be written as:

εy = H−1φ Hψu. (7)

Finally, stacking (1) over all dates and substituting (7) gives:

y = µ+ H−1φ Hψu, (8)

where µ = (µ1, . . . , µT )′. By a change of variable, it follows that:

(y |φ,ψ,µ,h) ∼ N (µ,Ωy),

where ψ = (ψ1, . . . , ψp)
′, h = (h1, . . . , hT )′ and Ωy = H−1φ Hψ Ωu (H−1φ Hψ)′. Thus, the

log-likelihood function is given by:

log p(y |φ,ψ,µ,h) = −T
2

log(2π)− 1

2

T∑
t=1

ht −
1

2
(y − µ)′Ω−1y (y − µ). (9)

Evaluation of the log-likelihood function requires the computation of the T ×T inverse of

the matrix Ωy. In general, this is an intensive procedure, requiring O(T 3) operations. For

the case of only MA errors, Chan (2013) uses the fact that Ωy is a band matrix to speed

up computations. For example, the Cholesky decomposition of a T×T band matrix takes

O(T ) operations, which is substantially less than the O(T 3) operations required for the

same operation on a full matrix of the same size.3

For our general ARMA case, however, both Ω−1y and Ωy are full. The key to overcom-

ing the computational hurdle is to show that the matrices H−1φ and Hψ commute, i.e.,

3For a textbook treatment see Chapter 4 in Golub and Van Loan (2013).
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H−1φ Hψ = HψH−1φ . We prove this claim in Appendix A. Using this result, we show

that we can evaluate the log-likelihood in (9) using only band matrix operations, thus

preserving the computational gains. More specifically, rewrite (8) as:

ỹ = µ̃+ H−1φ u, (10)

where ỹ = H−1ψ y and µ̃ = H−1ψ µ. Thus, by a change of variable:

(ỹ |φ,ψ,µ,h) ∼ N (µ,Sỹ) ,

where S−1ỹ = H′φΩ
−1
u Hφ and the log-likelihood for ỹ is:

log p(ỹ | µ̃,h,φ,ψ) ∝ −1

2

T∑
t=1

ht −
1

2
(ỹ − µ̃)′S−1ỹ (ỹ − µ̃). (11)

The fact that Sỹ is invertible stems from noting that |Hφ| = 1 for any vector φ and

that |Ωu| = e
∑T
t=1 ht > 0 for any h1, . . . , hT . Moreover, since Ωu is a diagonal matrix,

its inverse is simply given by taking the reciprocal of the diagonal elements, i.e., Ω−1u =

diag
(
e−h1 , . . . , e−hT

)
.

To summarize, we can employ a simple 3-step procedure to evaluate the log-likelihood in

(9) using the equivalent representation in (11). First, we obtain the Cholesky decompo-

sition Cỹ of the band matrix Sỹ, which involves O(T ) operations. Second, we implement

forward substitution and backward substitution to get:

A = C′ỹ\(Cỹ\(ỹ − µ̃)),

which, by definition, is equivalent to A = C−1
′

ỹ (C−1ỹ (ỹ − µ̃)) = S−1ỹ (ỹ − µ̃).4

Finally, we compute:

B = −1

2
(ỹ − µ̃)′A = −1

2
(ỹ − µ̃)′S−1ỹ (ỹ − µ̃)

Thus, conditional on µ,φ,ψ and h, the log-likelihood function (11) can be efficiently

evaluated without implementing the Kalman filter.

4Note that given a non-singular square matrix B and a conformable vector c, B\c denotes the unique
solution to the linear system Bz = c. That is, B\c = B−1c. When B is lower triangular, this linear
system can be solved quickly by forward substitution. When B is upper triangular, it can be solved by
backward substitution. Forward and backward substitutions are implemented in standard packages such
as Matlab, Gauss and R. In Matlab, for example, it is done by mldivide(B, c) or simply B\c.
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2.1.2 Posterior Simulation

After discussing an efficient way to evaluate the likelihood function, we now outline

an efficient posterior sampler for estimating the ARMA-SV model presented in (1)–(3).

In our empirical application we will consider the forecast performance of various nested

specifications where the conditional mean µt follows a non-stationary random walk process

as in (5) (UC-ARMA-SV) or an stationary AR process (AR-ARMA-SV). In this section

we restrict our focus to the UC-ARMA-SV model, noting that the estimation for all

alternative models considered in this paper can be obtained in a similar manner.

The UC-ARMA-SV model is given by (1)–(3) and (5). As mentioned before, the main

computational hurdle is that the ARMA structure implies a full error covariance matrix

Ωy; the precision matrix Ω−1y in this case is full as well. Consequently, sampling both the

trend τ = (τ1, . . . , τT )′ and log-volatilities h become more difficult. However, by a careful

manipulation of the ARMA error structure, it is still possible to sample the latent states

τ and h using fast band matrix routines.

To complete the model specification, we initialize the transition equations for the trend

and log-volatilities with τ1 ∼ N (τ0, σ
2
0τ ) and h1 ∼ N (h0, σ

2
0h), where τ0, σ

2
0τ , h0, and σ2

0h

are known constants. The priors for φ,ψ, σ2
τ and σ2

h are assumed to be independent. In

particular, we set:

σ2
τ ∼ IG(ντ , Sτ ), σ2

h ∼ IG(νh, Sh),

φ ∼ N (φ0,Vφ)1l(φ ∈ Aφ), ψ ∼ N (ψ0,Vψ)1l(ψ ∈ Aψ),

where IG denotes the inverse-gamma distribution, 1l(·) is the indicator function that takes

the value of one if the argument is true and the value of 0 otherwise, Aφ and Aψ are the

stationary and invertible regions, respectively. Then, posterior draws can be obtained by

sequentially sampling from:

1. p(τ |y,h,φ,ψ, σ2
τ , σ

2
h);

2. p(h |y, τ ,φ,ψ, σ2
τ , σ

2
h);

3. p(σ2
τ , σ

2
h |y,h, τ ,φ,ψ) = p(σ2

h |h)p(σ2
τ | τ );

4. p(ψ |y, τ ,h,φ, σ2
h, σ

2
τ );

5. p(φ |y, τ ,h,ψ, σ2
h, σ

2
τ ).
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Derivations of all the conditional densities and other technical details are given in Ap-

pendix B. In particular, we discuss there an efficient way to sample τ using band matrix

algorithms.

3 Application to Inflation Forecasting

In this section we assess the proposed ARMA-SV models to forecast two commonly used

inflation measures, namely, CPI and the GDP deflator, in each of the G7 countries. In

the inflation forecasting exercise, we compute both point and density forecasts from the

proposed models and compare them to a few popular benchmarks.

3.1 Data and Preliminary Analysis

The inflation data are sourced from the Federal Reserve Economic Data database at

the Federal Reserve Bank of St. Louis. CPI inflation indexes are available monthly

while GDP deflator indexes are available quarterly. For CPI inflation, we compute the

quarterly average of the indexes before transforming them into quarterly rates. Finally,

given the quarterly inflation index, zt, we compute the annualized inflation rate as yt =

400 log(zt/zt−1). We use raw inflation data that are not seasonally adjusted. All our time

series end in 2016Q4. But due to data availability, they have different starting dates. In

particular, while most CPI series start in 1960Q2, Canada’s is only available from 1961Q1

and Germany’s from 1970Q2.

Before reporting the forecasting results, we first perform a preliminary analysis to under-

stand when a specification is expected to work better for an inflation series. In particular,

we focus on the expected differences between the proposed ARMA-SV models and the

MA-SV models in Chan (2013). Since the SV component is common in both classes

of models, expected differences in forecast performance boil down to cases in which the

ARMA error structure is preferable to the simpler case with MA errors only.

One way to gain insights into these differences is by comparing the conditional autoco-

variance under the two classes of models. To that end, let µ = (µ1, . . . , µT )′ and note that

the MA(q)-SV is a simplified version of the ARMA(p,q)-SV model in equations (1)-(3)

in which φi = 0, i = 1, . . . , p in equation (2). The conditional autocovariance of the
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MA(q)-SV model is given by

γ(j) =


∑q

k=0 ψ
2
ke
ht−k , for j = 0,∑q−j

k=0 ψk+jψke
ht−k , for j = 1, . . . , q,

0, for j > q,

(12)

where ψ0 = 1. The conditional autocovariance for the ARMA(p,q)-SV model is more

complicated, and we compute them recursively using

γ(j)−
p∑
i=1

γ(j − i)φi =


∑q

k=0 ψkθke
ht−k , for j = 0,∑q−j

k=0 ψk+jθke
ht−k , for j ∈ [1,max(p, q + 1)) ,

0, for j > max(p, q + 1),

(13)

where ψ0 = 1 and θk denotes the k-th element of the lag polynomial θ(L) = ψ(L)
φ(L)

. Notice

that if we have no AR terms, i.e. φi = 0, i = 1, . . . , p, then θk = ψk and the autocovariance

function in equation (13) is equivalent to that in equation (12). This equivalence is in

spite of the fact that both models possess stochastic volatility. Thus any differences in

covariance structure is entirely due to the presence of AR terms.

3.2 Competing Models

The primary benchmark model is taken to be a stationary AR(m) model—as in (4)—with

homoscedatic variance. The reason for using this benchmark is two-fold. First, it is still

a competitive model among both univariate and multivariate models. Second, given the

parsimonious structure of the model, any finding that it provides competitive forecasts

has practical significance.

In addition to the homoscedastic AR(m) model, we also consider a more general class

of heteroscedastic autoregressive (AR) and unobserved components (UC) models. These

include specifications with and without SV, MA-SV and ARMA-SV errors. In each

country, the lag length is selected via the Bayesian information criteria (BIC). The results

from these tests are summarized in the Online Appendix.

In each case we limit the ARMA-SV component to the observation equation. While

the extension to ARMA-SV errors in the state equation is conceptually straight forward

to implement, this specification allows for a more direct comparison with the broader
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literature (see, e.g., Stock and Watson, 2007; Chan, 2013; Chan et al., 2013). In total,

this constitutes 10 models, each of which is summarized in Table 1.

Table 1: A list of competing models.

Model Description

AR(m) Autoregressive model with homoscedastic errors
AR(m)-SV Autoregressive model with SV errors
AR(m)-MA-SV Autoregressive model with MA-SV errors
AR(m)-ARMA-SV Autoregressive model with ARMA-SV errors
AR(m)-ARMA Autoregressive model with ARMA errors
UC Unobserved components model with homoscedastic errors
UC-SV Unobserved components model with SV errors
UC-MA-SV Unobserved components model with MA-SV errors
UC-ARMA-SV Unobserved components model with ARMA-SV errors
UC-ARMA Unobserved components model with ARMA errors

3.3 Priors and Initial Conditions

In each of the UC models we set the initial value of τt as τ1 ∼ N (τ0, σ
2
0τ ), where τ0, h0, σ

2
0τ .

In particular, we set τ0 = 0 and σ2
0τ = 5. Similarly, we initialize UC models with SV with

h1 ∼ N (h0, σ
2
0h), where h0 = 0 and σ2

0h = 5. Moreover, we set ντ = νh = 10, Sτ = 0.18

and Sh = 0.45. These values imply prior means Eσ2
τ = 0.02 and Eσ2

h = 0.05.

For the AR models, we set an independent truncated prior for the conditional mean

coefficients. In particular, the prior mean is the zero vector and the variance is Vρ =

5 × In, where In denotes the identity matrix of size n. The posterior distribution of

this model is then obtained by following the procedure in Section 2.1.2, where Step 1 is

replaced with draws from p(ρ |y,h,φ,ψ, σ2
τ , σ

2
h), with ρ = (ρ1, · · · , ρm)′. To this end,

note that by following similar steps in Section 2.1.2, the conditional posterior distribution

is:

(ρ |y,h,φ,ψ, σ2
τ , σ

2
h) ∼ N (ρ̂,Dρ)1l(ρ ∈ Aρ), (14)

where Dρ = (Vρ + H′φΩ
−1
u Hφ)−1, ρ̂ = DρH

′
φΩ
−1
u Hφỹ, and the truncated region en-

sures all roots lay outside of the unit circle. Samples from this truncated density are

then obtained using the acceptance-rejection method discussed in Section 2.1.2 using the

proposal density N (ρ̂,Dρ).

Finally, following Chan (2013) we set the moving average order in the MA-SV model

variants to be one. For consistency, we also set each of the specifications with ARMA(p, q)
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errors to be ARMA(1,1).

3.4 Forecasting Setup

We conduct a pseudo out-of-sample forecasting exercise in which we consider both point

and density forecasts. In each exercise, we divide the data into three sub-samples. The

first part contains the first m observations that are used to initialize the AR(m) models.

This guarantees that all AR and UC model variants have the same initial observation.

The second part is the estimation period, which consists of an expanding window of

observations, starting with the next 40 observations. The third part is the hold-out

period, which contains the remaining observations that are used to assess the forecast

performance of the model.

To see how the forecasts are conducted, let y1:t denote the data from the estimation

period and ŷt+k represent the vector of k-steps-ahead forecasts with k = 1, 4, 8, 12 and

16. Density forecasts are obtained by the predictive density: f (yt+k|y1:t), and point

forecasts are taken to be the mean of this density: ŷt+k = E [yt+k|y1:t]. These forecasts

are conducted with predictive simulation. For concreteness, suppose we want to produce

a 4-step ahead forecast of US CPI inflation from 1975Q1 to 1976Q1. Then, given the

MCMC draws up to 1975Q1 along with the relevant transition equations, we simulate

the future states up to time 1975Q4. The conditional expectation of this equation is then

taken to be the point forecast and the observed data is used to evaluate implied density

to produce a density forecast. The exercise is then repeated using data from 1975Q2 up

to the end of the hold-out period, i.e. 2012Q4.

In each period, the parameter estimates are based on 45,000 draws from the posterior

simulator discussed in Section 2.1, after discarding the first 5,000 draws as a burn-in

period.

3.4.1 Forecast Metrics

The accuracy of the point and density forecasts are respectively assessed using the mean

square forecast error (MSFE) and the log predictive likelihood (LPL). Specifically, the
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MSFE for the i-th variable at forecast horizon k is defined as:

MSFEi,k =
1

T − k − T0 + 1

T−k∑
t=T0

(yoi,t+k − E(yi,t+k |y1:t))
2,

where yoi,t+k is the observed value of yi,t+k and T0 is the start of the evaluation period.

Since a smaller forecast error corresponds to a smaller MSFE, a relatively smaller MSFE

indicates better forecast performance. As mentioned in the previous section, we use a

stationary AR(m) model as the benchmark. To facilitate our discussion when presenting

the results we therefore standardize the MSFE of each model to the MSFE of the AR(m)

model. Hence, if a model produces a RMSFE less than one, then this indicates better

forecast performance relative to the AR(m), and vice versa.

To evaluate the density forecasts, the metric we use is the sum of log predictive likelihoods

(LPL), defined as:

LPLi,k =
T−k∑
t=T0

log p(yi,t+k = yoi,t+k |y1:t),

where p(yi,t+k = yoi,t+k |y1:t) is the predictive likelihood. For this metric, a larger value

indicates better forecast performance. To facilitate our forecast comparison, we also

standardize the LPL relative to the AR(m) benchmark. In this case we subtract the LPL

of the benchmark from the LPLs of other models. Hence, if a given model produces a

positive relative LPL, then it outperforms the benchmark, and vice versa.

3.5 Empirical Results

To facilitate the discussion, we separately present the point and density forecast results

in the following two subsections.

3.5.1 Point Forecasts

We compute the MSFEs under the ten models listed in Table 1 for forecasting the CPI and

GDP deflator inflation of the G7 countries across 5 forecast horizons. To give an overall

impression of the performance of the proposed models, we summarize the point forecast

results using boxplots of MSFEs relative to the AR benchmark (values less than 1 indicate

better forecast performance than the benchmark). The results are reported in Figure 1.

Each boxplot summarizes 35 numbers (i.e., 7 countries and 5 forecast horizons): the
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central line marks the median; the bottom and top edges of the box indicate, respectively,

the 25th and 75th percentiles; and the whiskers extend to the minimum and maximum

values.
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Figure 1: Boxplots of MSFEs relative to the AR benchmark across G7 countries and
forecast horizons. Values less than 1 indicate better forecast performance than the bench-
mark.

For forecasting CPI inflation, all models perform substantially better than the benchmark—

all the 75th percentiles of relative MSFEs are less than one. Overall, the best forecasting

model is the UC-ARMA-SV model with a median relative MSFE of 0.79. Moreover,

models with ARMA errors tend to forecast better than their counterparts with seri-

ally uncorrelated errors, highlighting the empirical relevance of the ARMA structure.

For GDP deflator inflation, all models also tend to forecast better than the benchmark,

though the gains in forecast performance are smaller. In this case the overall best model

is the UC-ARMA model. Again, this underscores the importance of allowing for serially

correlated errors.

We also separately report the forecasting performance of the models for each G7 country

and each forecast horizon, and they are presented in the Online Appendix. While there

is no single model that dominates other models across all countries, the UC-ARMA-SV

model tends to do very well, especially for longer forecast horizons (i.e., k = 8, 12, 16).

Even when it is not the best forecasting model, its performance is close to the best.

Since our major innovation is the estimation of models with ARMA-SV errors, it is useful
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to compare the relative forecast performance of these models to those made by their nested

variants: models with ARMA, SV, and MA-SV errors. In the case of CPI forecasts,

models with ARMA-SV errors provide the best point forecasts across all horizons for

Canada, France and Italy. They also do quite well for the UK data, and at longer

horizons for the US. Similar, though a bit weaker, results hold for the case of GDP

deflator inflation. In particular, models with ARMA-SV errors provide the best forecasts

for France for all forecast horizons, and for the US except one-step-ahead. They also

provide good medium-term forecasts for Italy and long-term forecasts for both Canada

and Germany.

Taken together, these forecasting results show that models with ARMA-SV errors provide

good point forecasts for both CPI and GDP deflator inflation across the G7 countries. In

particular, with few exceptions they are able to improve on the point forecast performance

gained by the simpler UC-SV model in Stock and Watson (2007) and the MA-SV model

in Chan (2013).

3.5.2 Density Forecasts

Next, we report the results on the density forecasts of CPI and GDP deflator inflation

across G7 countries. More specifically, we compute the sums of log predictive likelihood

values of the nine models relative to the AR benchmarks. In this case positive values indi-

cate better forecast performance than the benchmark. The overall results are summarized

in Figure 2.

It is evident that most models perform substantially better than the benchmark—almost

all the 25th percentiles of relative log predictive likelihoods are positive. In line with

the point forecast results, the best overall model for forecasting CPI inflation is the UC-

ARMA-SV model. This again highlights the empirical importance of allowing for the

ARMA structure in inflation forecast. For forecasting GDP deflator inflation, the best

model is the UC-SV, although the AR-ARMA-SV also performs very well. Consistent

with the results in the literature, models with stochastic volatility errors tend to provide

substantially better density forecasts compared to their homoscedastic counterparts.
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Figure 2: Boxplots of sums of log predictive likelihoods relative to the AR benchmark
across G7 countries and forecast horizons. Positive values indicate better forecast perfor-
mance than the benchmark.

We also separately present the forecasting performance of the models for each G7 country

and each forecast horizon, and they are given in the Online Appendix. While there is

no single model that outperforms all other models across countries and forecast horizons,

models with ARMA-SV errors tend to provide better forecasts than those with only

stochastic volatility, ARMA or homoscedastic errors. This is especially true in forecasting

the GDP deflator inflation in the US, or CPI inflation in France.

4 Comparison with Survey-Based Forecasts

Recent research on US inflation dynamics has shown that forecasts from professional fore-

casters are often superior compared to conventional model-based forecasts. For instance,

Faust and Wright (2013) show that survey-based point forecasts are more accurate than a

range of state-of-the-art econometric models, including the UC-SV model, over the period

1985Q1 to 2011Q4 (see also Ang et al., 2007; Croushore, 2010; Faust and Wright, 2009).

In light of these results, it is interesting to see how the forecasts from our ARMA-SV

error specifications compare to these survey-based forecasts.

To that end, we compare the forecast performance of the AR-ARMA-SV and UC-ARMA-
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SV models against those given by the Survey of Professional Forecasters (SPF). Estab-

lished in 1968, the SPF is the oldest quarterly survey of macroeconomic forecasts in the

United States. The current version of the survey contains forecasts for more than 23 key

macroeconomic indicators, including both CPI and GDP deflator based inflation mea-

sures.5 The first survey to include CPI and GDP deflator inflation was 1992 Q1.6 The

survey specifically asks participants to provide forecasts for the seasonally adjusted, annu-

alized rate of both headline CPI inflation and the chain-weighted GDP price index. These

survey participants are predominantly from the business sector, all make their living via

forecasting, and consequently have strong incentives to do it accurately. The survey is

consequently more accurate than other commonly used surveys such as the Livingston

and Michigan Surveys (Thomas, 1999), making it a highly competitive benchmark.

We use real-time data on CPI and GDP deflator sourced from the Real-time Data

Set for Macroeconomists (RTDSM) database at the Federal Reserve Bank of Philadel-

phia (Croushore and Stark, 2001, 2003). Both CPI and GDP deflator index levels are

seasonally adjusted. The first vintages of CPI and GDP deflator are 1993Q4 and 1997Q4,

respectively, and the data start from 1947Q2 to 2016Q4 for both inflation time series.

The transformation of the variables is the same as those used in the G7 countries: the

quarterly inflation rate is calculated by the first difference of the log inflation deflator.

We report the root mean square forecast errors (RMSFEs) for the one- and four-quarter-

ahead CPI and GDP deflator inflation forecasts from the SPF and our ARMA-SV error

models in Table 2. The evaluation periods for the CPI and GDP deflator forecasts are

respectively 1993Q4-2016Q4 and 1997Q2-2016Q4 due to the data availability. The main

conclusion is that forecasts from the SPF outperform both of our model-based forecasts.

We thus confirm previous findings that survey-based forecasts are highly competitive and

tend to beat forecasts from univariate models.

Table 2: Root MSFEs for one- and four-step-ahead CPI and GDP deflator inflation
forecasts.

CPI GDP deflator
k = 1 k = 4 k = 1 k = 4

SPF 1.83 1.99 0.87 0.92
AR-ARMA-SV 2.43 2.56 1.01 1.16
UC-ARMA-SV 2.39 2.74 1.00 1.08

5Documentation for the SPF is provided by the Federal Reserve Bank of Philadelphia:
https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters.

6Prior to 1992 participants were asked to forecast the GNP implicit price deflator.
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5 Concluding Remarks

We have introduced a new class of dynamic models with ARMA-SV errors, provided de-

tails on how to estimate them, and shown that they can be useful in forecasting inflation.

The main difficulty in estimating such models is that the ARMA component induces serial

dependence in the measurement errors, making the standard Kalman filter not directly

applicable. We showed that this could be overcome by carefully designing the order of

matrix operations. Moreover, by exploiting the model structure, we were able to develop

an efficient algorithm that avoids the forward and backward recursions in the Kalman

filter. To illustrate the usefulness of the models, we assessed their forecast performance

of two commonly used inflation measures: CPI and the GDP deflator, in each of the G7

countries. More specifically, we presented both out-of-sample point and density forecast

performance to various nested AR and UC models.

While there was no clearly dominant model across each of the countries, the AR-ARMA-

SV model provided highly competitive forecasts of both inflation measures. In particular,

they provided the best one-step-ahead point forecasts of CPI in all countries except

Germany and the US. The model also dominated the CPI point forecasts at all other

horizons in Canada, while the UC-ARMA-SV variant dominated in both France and

Italy. This latter result extended to the density forecasts. In the former case, however,

the simpler AR-ARMA model produced the best density forecasts across all forecast

horizons. Finally, ARMA-SV models dominated the GDP deflator density forecasts in

Canada the US, provided good short-term forecasts in Italy and the UK, and good long-

term forecasts in France.
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Appendix A: Proof of H−1
ψ Hφ = HφH

−1
ψ

Proposition: Suppose Hφ and Hψ are the following matrices of size T :

Hφ =



1 0 0 0 · · · 0

−φ1 1 0 0 · · · 0
...

. . . . . . . . .
...

−φp · · · −φ1 1 · · · 0
...

. . . . . . . . .
...

0 · · · −φp · · · −φ1 1


, Hψ =



1 0 0 0 · · · 0

ψ1 1 0 0 · · · 0
...

. . . . . . . . .
...

ψq · · · ψ1 1 · · · 0
...

. . . . . . . . .
...

0 · · · ψq · · · ψ1 1


.

Then: H−1φ and Hψ commute, i.e., H−1ψ Hφ = HφH
−1
ψ .

Proof : Let Li be a T × T matrix which only has the nonzero elements 1 on the i-th

lower diagonal for i = 0, . . . , T − 1, i.e.,

Li =



0 0 0 0 · · · 0
... 0 0 0 · · · 0

0
. . . . . . . . .

...

1
. . . . . . 0 · · · 0

0
. . . 0

. . . . . .
...

...
. . . . . . . . . . . . . . .

...

0 · · · 0 1 0 · · · 0


.

In particular, L0 = IT (identity matrix). It is easy to check that LiLj = Li+j = LjLi,

when i, j > 0 and i+ j 6 T − 1. Then we can write Hφ and Hψ as:

Hφ = IT −
p∑
i=1

φiLi, Hψ = IT +

q∑
j=1

ψjLj.
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So that:

HφHψ =

(
IT −

p∑
i=1

φiLi

)(
IT +

q∑
j=1

ψjLj

)

= IT −
p∑
i=1

φiLi +

q∑
j=1

ψjLj −
p∑
i=1

q∑
j=1

φiψjLiLj

= IT +

q∑
j=1

ψjLj −
p∑
i=1

φiLi −
q∑
j=1

p∑
i=1

ψjφiLjLi

=

(
IT +

q∑
j=1

ψjLj

)(
IT −

p∑
i=1

φiLi

)
= HψHφ.

Hence:

H−1ψ (HφHψ)H−1ψ = H−1ψ (HψHφ)H−1ψ

H−1ψ Hφ = HφH
−1
ψ .
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Appendix B: Estimation Details

In this appendix we provide the details of the posterior simulator. As mentioned in the

main text, we implement a Metropolis-within-Gibbs sampler with five steps.

Step 1: Sample τ

Simulating directly from p(τ |y,h,φ,ψ, σ2
τ , σ

2
h) is cumbersome due to the ARMA error

structure. It will prove more efficient to work with τ̃ = H−1ψ τ ; once a draw for τ̃ is

obtained, we can simply compute the implied τ = Hψτ̃ . Now, we derive the log posterior

density of τ̃ :

log p(τ̃ | ỹ,h,φ,ψ, σ2
τ ) ∝ log p(τ̃ |ψ, σ2

τ ) + log p(ỹ | τ̃ ,h,φ,ψ), (15)

where p(ỹ | τ̃ ,h,φ,ψ) is the likelihood for the transformed data ỹ = H−1ψ y obtained by

setting µ = τ in (10). Next we derive an explicit expression for p(τ̃ |ψ, σ2
τ ), the prior

density of τ̃ .

This can be done by first noting that (5) can be written as:

Hτ = ετ , ετ ∼ N (0,Ωετ ), (16)

where Ωετ = diag(σ2
0τ , σ

2
τ , . . . , σ

2
τ ) and H is a first-difference matrix of size T . Since

|H| = 1, H is invertible and we can write (16) as:

τ = H−1ετ . (17)

Thus (τ |σ2
τ ) ∼ N (0,Ωτ ), where Ω−1τ = H′Ω−1ετ H. Since τ̃ = H−1ψ τ , it follows that

(τ̃ |ψ, σ2
τ ) ∼ N (0, (H′ψΩ−1τ Hψ)−1). The log prior density for τ̃ is therefore given by:

log p(τ̃ |ψ, σ2
τ ) ∝ −

T − 1

2
log σ2

τ −
1

2
τ̃ ′H′ψΩ−1τ Hψτ̃ , (18)

Finally, substituting (11) and (18) into (15), gives:

log p(τ̃ | ỹ,h,φ,ψ, σ2
τ ) ∝ −

1

2
τ̃ ′H′ψΩ−1τ Hψτ̃ −

1

2
(ỹ − τ̃ )′H′φΩ

−1
u Hφ(ỹ − τ̃ )

∝ −1

2
(τ̃ ′(H′ψΩ−1τ Hψ + H′φΩ

−1
u Hφ)τ̃ − 2τ̃ ′H′φΩ

−1
u Hφỹ)

∝ −1

2
(τ̃ − τ̂ )′Kτ̃ (τ̃ − τ̂ ),
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where Kτ̃ = H′ψΩ−1τ Hψ +H′φΩ
−1
u Hφ and τ̂ = K−1τ̃ H′φΩ

−1
u Hφỹ. The conditional posterior

distribution is therefore Gaussian:

(τ̃ | ỹ,h,φ,ψ, σ2
τ ) ∼ N (τ̂ ,K−1τ̃ ).

Since Hψ,Hφ and H are all band matrices, so is the precision matrix Kτ̃ . Sampling

from this Gaussian distribution can be efficiently conducted via the precision-based al-

gorithm (see, e.g., Chan and Jeliazkov, 2009). In particular, since Kτ̃ is a band matrix,

its Cholesky decomposition Cτ̃ can be quickly obtained. Then, forward and backward

substitutions give:

τ̂ = C′τ̃\(Cτ̃\(H′φΩ−1u Hφỹ)).

A draw of τ̃ ∼ N (τ̂ ,K−1τ̃ ) can be obtained by:

τ̃ = τ̂ + C′τ̃\Z,

where Z is a T×1 vector of standard normal random variables, i.e., Z ∼ N (0, IT ). Finally,

we return a draw of τ by the transformation τ = Hψτ̃ .

Step 2: Sample h

To sample from p(h |y, τ ,φ,ψ, σ2
τ , σ

2
h), note that (8) can be written as:

y∗ = u,

where y∗ = H−1ψ Hφ(y − τ ). Thus, (y∗ |h) ∼ N (0,Ωu) with Ωu = diag
(
eh1 , . . . , ehT

)
.

With this transformation the auxiliary mixture sampler proposed by Kim, Shepherd, and

Chib (1998) can be directly applied. The only difference here is that we replace their

forward-backward smoothing algorithm with the precision-based sampler discussed in the

main text.

Step 3: Sample σ2
h and σ2

τ

Since an inverse-gamma prior is conjugate for the normal likelihood, sampling σ2
h and σ2

τ

23



is standard. For example, it follows from (5) and the inverse-gamma prior on σ2
h that

p(σ2
τ | τ ) ∝ p(τ |σ2

τ )p(σ
2
τ )

= (σ2
τ )
−T−1

2 e
− 1

2σ2τ

∑T
t=2(τt−τt−1)2 × (σ2

τ )
−(ντ+1)e

−Sτ
σ2τ ,

∝ (σ2
τ )
−(T−1

2
+ντ+1)e

− 1

σ2τ
(
∑T
t=2(τt−τt−1)2/2+Sτ )

.

Hence, we have

(σ2
τ | τ ) ∼ IG

(
(T − 1)/2 + ντ ,

T∑
t=2

(τt − τt−1)2/2 + Sτ

)
.

Similarly, the posterior density of σ2
h is given by:

(σ2
h |h) ∼ IG

(
(T − 1)/2 + νh,

T∑
t=2

(ht − ht−1)2/2 + Sh

)
.

Step 4: Sample ψ

Since the complete conditional distribution of ψ is non-standard, we implement the

independence-chain Metropolis-Hastings algorithm (Kroese, Taimre, and Botev, 2011)

using a suitable proposal density. Below we first derive an analytical expression of the

full conditional density of ψ. Stacking (1) and (2) over t = 1, . . . , T gives:

y∗∗ = Hψu, (19)

where y∗∗ = Hφ(y−τ ). By a change of variable, we have (y∗∗ |ψ,h) ∼ N
(
0,HψΩuH

′
ψ

)
.

Therefore, given the truncated normal prior on ψ, the log conditional posterior of ψ is

given by:

log p(ψ |y, τ ,h,φ) ∝ log p(y∗∗ |ψ,h) + log p(ψ),

∝ log p (ψ)− 1

2
(y∗∗)′

(
HψΩuH

′
ψ

)−1
y∗∗.

The above log density can be evaluated using the method discussed in Section 2.1.1.

Since the dimension of ψ is typically low, we can use numerical optimization routines

to obtain the mode and negative Hessian of log p(ψ |y, τ ,h,φ) evaluated at the mode,

which we denote as ψ̂ and Kψ, respectively. Let q(ψ) represent the N (ψ̂,K−1ψ ) density,

and we use q(ψ) to generate candidates. Given the current draw ψ, a candidate draw
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ψc ∼ N (ψ̂,K−1ψ ) is accepted with probability:

min

{
1,

p(ψc |y, τ ,h,φ)

p(ψ |y, τ ,h,φ)
× q(ψ)

q(ψc)

}
;

otherwise we return ψ.

Step 5: Sample φ

Finally, we sample φ from its complete conditional distribution. To that end, note that

given y and τ , we can compute εy = y − τ . Then, we can rewrite (19) as:

εy = Xεyφ+ Hψu,

where Xεy is a T × p matrix of lagged residuals, i.e.,

Xεy =


εy0 εy−1 · · · εy1−p

εy1 εy0 · · · εy2−p
...

...
...

εyT−1 εyT−2 · · · εyT−p


Therefore, φ is equivalent to the coefficients of a linear regression model with MA errors.

Given the truncated normal prior, the complete conditional density of φ is:

(φ |y, τ ,h) ∼ N (φ̂,K−1φ )1l(φ ∈ Aφ),

where Kφ = V−1φ + X′εy(HψΩuH
′
ψ)−1Xεy and φ̂ = K−1φ (V−1φ φ0 + X′εy(HψΩuH

′
ψ)−1εy).

Sampling from this distribution can then be done using a standard acceptance-rejection

algorithm (see, e.g. Koop, 2003; Kroese et al., 2011).
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