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Abstract

We consider Bayesian tensor vector autoregressions (TVARs) in which the VAR

coefficients are arranged as a three-dimensional array or tensor, and this coefficient

tensor is parameterized using a low-rank CP decomposition. We develop a family

of TVARs using a general stochastic volatility specification, which includes a wide

variety of commonly-used multivariate stochastic volatility and COVID-19 outlier-

augmented models. In a forecasting exercise involving 40 US quarterly variables, we

show that these TVARs outperform the standard Bayesian VAR with the Minnesota

prior. The results also suggest that the parsimonious common stochastic volatility

model tends to forecast better than the more flexible Cholesky stochastic volatility

model.
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1 Introduction

Large Bayesian vector autoregressions (BVARs) are now commonly used in macroeco-

nomic forecasting and structural analysis, following early influential papers by Bańbura,

Giannone, and Reichlin (2010), Carriero, Kapetanios, and Marcellino (2009) and Koop

(2013). The dominant approach to tackle the challenge of parameter proliferation in large

systems is to use shrinkage priors to regularize the variations in VAR coefficients; there is

now an extensive literature on various shrinkage priors designed for BVARs.1 In contrast,

other dimension reduction techniques are relatively unexplored.

We investigate the usefulness of specifying a low-rank structure on the VAR coefficients

for forecasting. More specifically, we follow the approach proposed by Wang, Zheng,

Lian, and Li (2022) to treat the VAR coefficients collectively as a three-dimensional

array or tensor: for a BVAR with n endogenous variables and p lags, we arrange the

n× n coefficient matrices A1, . . . ,Ap in the third dimension to construct the third-order

tensor A ∈ Rn×n×p. We then model A using a rank-R CP decomposition. We call these

BVARs constructed via the CP decomposition tensor VARs or TVARs.

Using this tensor decomposition, the number of free parameters is reduced from n2p to

(2n + p)R. Since the number of free parameters under this tensor decomposition grows

linearly in n, it is especially suitable for applications with a large number of variables.

This approach is related to the reduced-rank VAR (see, e.g., Carriero, Kapetanios, and

Marcellino, 2011), which may be viewed as a special case in which the rank of A is reduced

along one of the three possible dimensions.

Departing from the homoskedastic framework in Wang, Zheng, Lian, and Li (2022), we

formulate the TVARs using a general stochastic volatility specification, which can repre-

1The most widely-used shrinkage priors for BVARs are the family of Minnesota priors developed in
a series of papers by Doan, Litterman, and Sims (1984), Litterman (1986) and Kadiyala and Karlsson
(1993, 1997). Recent additions to this family include Giannone, Lenza, and Primiceri (2015) and Chan
(2022). Another popular family is the adaptive hierarchical shrinkage priors that can be represented as
scale mixtures of normals. Examples include the Bayesian Lasso (Park and Casella, 2008; Korobilis and
Pettenuzzo, 2019), the normal-gamma prior (Griffin and Brown, 2010; Huber and Feldkircher, 2019),
the horseshoe prior (Carvalho, Polson, and Scott, 2010; Follett and Yu, 2019) and the Dirichlet-Laplace
prior (Bhattacharya, Pati, Pillai, and Dunson, 2015; Kastner and Huber, 2020). Naturally, one can
also combine these adaptive hierarchical priors with the Minnesota priors, as proposed in Chan (2021).
Hauzenberger, Huber, and Koop (2024) provide an excellent recent review on the state-of-the-art shrink-
age priors developed for macroeconomic forecasting using BVARs.
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sent a wide variety of multivariate stochastic volatility and COVID-19 outlier-augmented

models commonly used for BVARs. This more general setup is motivated by the in-

creasing recognition of the importance of allowing time-varying volatility for forecasting

macroeconomic and financial variables, especially after the extreme economic turbulence

triggered by the COVID-19 pandemic (see, e.g., Lenza and Primiceri, 2022; Carriero,

Clark, Marcellino, and Mertens, 2022).

We develop efficient estimation procedures for these TVARs with stochastic volatility.

In particular, we propose two types of algorithms to sample the components of the CP

decomposition of the VAR coefficient tensor A: we can either sample each block of the

components jointly as a matrix or sample each column of the component matrix sepa-

rately. The latter is inspired by the equation-by-equation estimation approach designed

for BVARs proposed in Carriero, Clark, and Marcellino (2019) and Carriero, Chan, Clark,

and Marcellino (2022), which can drastically reduce the computational burden when the

number of endogenous variables n is very large.

We illustrate the methodology using a forecasting exercise that involves 40 US quarterly

variables, such as GDP, industrial production, labor market variables and a variety of in-

flation and interest rates. We consider various TVARs with different stochastic volatility

specifications, and compare them to a standard BVAR with the Minnesota prior in an

out-of-sample forecasting exercise. The results show that TVARs clearly outperform the

standard BVAR, highlighting the usefulness of the low-rank specification for the VAR

coefficient tensor. We also find that models with some form of time-varying volatility

substantially forecast better than their homoskedastic counterparts. Interesting, the par-

simonious common stochastic volatility model of Carriero, Clark, and Marcellino (2016)

tends to outperform the more flexible stochastic volatility model of Cogley and Sargent

(2005), suggesting that it is foremost important to capture the strong comovements in

the macroeconomic volatilities.

Our paper is closely related to the recent work by Luo and Griffin (2023), who also con-

sider a BVAR with a tensor decomposition. While they focus on the Cholesky stochastic

volatility model of Cogley and Sargent (2005), we consider a more general setup that

can represent a wide range of multivariate stochastic volatility models. Our paper is

also related to the emerging literature on modeling multidimensional tensors, where the

coefficient tensors are typically parameterized using CP or Tucker decompositions; see,
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for example, Billio, Casarin, Iacopini, and Kaufmann (2023) and Wang, Zheng, and Li

(2024).

The rest of this paper is organized as follows. Section 2 first introduces a general frame-

work of BVARs with a generic time-varying error covariance matrix and discusses how

it can be used to represent a variety of popular stochastic volatility and COVID-19

outlier-augmented models. We then outline the proposed approach of arranging the VAR

coefficient matrices as a third-order tensor in Section 3. Next, we introduce the efficient

sampling algorithms in Section 4. Section 5 considers a recursive out-of-sample forecast-

ing application that involves 40 US macroeconomic variables. Lastly, Section 6 concludes

and briefly discusses some future research directions.

2 Large Bayesian VARs with Stochastic Volatility

Let yt be an n× 1 vector of endogenous variables at time t for t = 1, . . . , T. Consider the

following VAR(p):

yt = A1yt−1 + · · ·+ Apyt−p + ut,

where A1, . . . ,Ap are n × n coefficient matrices. We omit an intercept term for ease of

exposition; an intercept or any exogenous variables can be added to the model with minor

modifications. Let A = (A1, . . . ,Ap)
′ be the np × n matrix of VAR coefficients and let

xt = (y′t−1, . . . ,y
′
t−p)

′ denote a vector of lag variables of dimension np×1. Then, stacking

the observations over t = 1, . . . , T , we can rewrite the VAR more succinctly as

Y = XA + U, (1)

where the matrices Y, X and U are, respectively, T ×n, T ×np and T ×n. In a standard

homoskedastic VAR, the reduced-form errors u1, . . . ,uT are assumed to be independent

and identically distributed (iid) as N (0n,Σ), where 0n is an n× 1 vector of zeros and Σ

is an n × n covariance matrix. However, it is increasingly recognized that some form of

time-varying volatility is needed in modeling typical macroeconomic time-series. Early

influential papers such as Cogley and Sargent (2005), Primiceri (2005) and Sims and

Zha (2006) have highlighted the secular variations in volatility. There is now a large

empirical literature that demonstrates the importance of allowing time-varying volatility
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in improving model-fit and forecasting performance in the context of Bayesian VARs;

examples include Clark (2011), Koop and Korobilis (2013), D’Agostino, Gambetti, and

Giannone (2013), Clark and Ravazzolo (2015), Cross and Poon (2016) and Chan and

Eisenstat (2018).

Below we outline a few stochastic volatility models suitable for large BVARs. In partic-

ular, the innovations of the VAR in (1) are now distributed as

ut ∼ N (0n,Σt), (2)

where Σt is a generic time-varying covariance matrix.

One of the first stochastic volatility models designed for large BVARs is the common

stochastic volatility proposed in Carriero, Clark, and Marcellino (2016). Their model is

motivated by the empirical observation that the estimated time-varying error variances

of many macroeconomic variables have broadly similar low-frequency movements. A

parsimonious way to model these comovements is to introduce a time-varying latent

factor to scale the error covariance matrix via

Σt = ehtΩ, (3)

where Ω is a time-invariant covariance matrix. The log-volatility ht is modeled using a

zero-mean stationary AR(1) process:

ht = φht−1 + uht , uht ∼ N (0, σ2
h), (4)

for t = 2, . . . , T , where |φ| < 1 and the process is initialized as h1 ∼ N (0, σ2
h/(1−φ2)). The

common stochastic volatility model specified in (3)–(4) can be extended to incorporate

other useful features. For example, Chan (2020) introduces a general framework that can

accommodate heavy-tailed, heteroskedastic and serially dependent innovations.

Another widely-used stochastic volatility specification for BVARs is the Cholesky stochas-

tic volatility model—based on the modified Cholesky decomposition of the covariance

matrix—developed in Cogley and Sargent (2005). More specifically, consider the decom-

position of Σt via

Σt = B−10 Dt(B
−1
0 )′, (5)
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where B0 is an n × n lower triangular matrix with ones on the diagonal and Dt =

diag(eh1,t , . . . , ehn,t). Each element of the vector ht = (h1,t, . . . , hn,t)
′ is modeled via an

independent autoregressive process:

hi,t = µi + φi(hi,t−1 − µi) + uhi,t, uhi,t ∼ N (0, σ2
i ) (6)

for t = 2, . . . , T , where hi,1 is initialized as hi,1 ∼ N (µi, σ
2
i /(1− φ2

i )) for i = 1, . . . , n.

This Cholesky stochastic volatility specification is more flexible than the common stochas-

tic volatility model in (3), since the former contains n stochastic volatility processes and

can accommodate more complex covolatility patterns. This flexibility, however, comes

at a cost of higher model complexity. Whether this stochastic volatility specification

forecasts better than alternatives in large systems is an empirical question.

Another difference between the Cholesky stochastic volatility and the common stochastic

volatility is that the latter is order-invariant—i.e., parameter estimates are invariant to

reordering the endogenous variables in yt—whereas the former is not. One practical

implication is that forecasts from the Cholesky stochastic volatility model could differ

substantially across different variable orderings, as documented in Arias, Rubio-Ramirez,

and Shin (2023) using a similar model of Primiceri (2005).

The reason why the Cholesky stochastic volatility is not order-invariant is partly due

to the use of the lower triangular parameterization of B0 in (5). Motivated by this

simple observation, Chan, Koop, and Yu (2024) extend the model by relaxing this lower

triangular assumption and instead specify B0 to be any non-degenerate square matrix.

They prove that the model is order invariant. Moreover, based on the results in Bertsche

and Braun (2022), B0 is also identified up to permutations and sign switches.

The extreme movements in many macroeconomic variables at the onset of the COVID-

19 pandemic have motivated much recent work on modeling outliers in macroeconomic

time-series. An example is the outlier-augmented stochastic volatility model proposed by

Carriero, Clark, Marcellino, and Mertens (2022), which builds on the Cholesky stochastic

volatility model and the discrete mixture representation for the innovations introduced

in Stock and Watson (2016). This outlier-augmented model can also be represented

using (2).

There are many other multivariate stochastic volatility models for Σt. Clark and Mertens
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(2023) and Chan (2024) provide two recent reviews on BVARs with a wide range of

stochastic volatility and outlier-augmented specifications.

3 Tensor Decomposition of VAR Coefficients

For high-dimensional settings, there are two key challenges related to the proliferation of

the VAR coefficients. First, the number of VAR coefficients increases quadratically in n.

In many large-scale applications, there are far more VAR coefficients than the number of

observations, which makes it necessary to regularize these VAR coefficients. Second, due

to the proliferation of VAR coefficients, sampling them tends to be very computational

intensive.

These two related challenges are typically tackled separately in the literature. For in-

stance, Bayesian shrinkage priors are widely used to regularize the VAR coefficients.

These include the family of Minnesota priors (Doan, Litterman, and Sims, 1984; Litter-

man, 1986; Kadiyala and Karlsson, 1993, 1997; Giannone, Lenza, and Primiceri, 2015;

Chan, 2022) and various adaptive hierarchical shrinkage priors (Huber and Feldkircher,

2019; Korobilis and Pettenuzzo, 2019; Kastner and Huber, 2020; Chan, 2021). The com-

putational challenge is addressed by developing efficient MCMC or variational methods

to sample the large number of VAR coefficients (Carriero, Clark, and Marcellino, 2019;

Carriero, Chan, Clark, and Marcellino, 2022; Gefang, Koop, and Poon, 2023; Bernardi,

Bianchi, and Bianco, 2024). We instead take an alternative approach that tackles these

two challenges simultaneously by imposing a low-rank structure on the VAR coefficients.

One possibility is the reduced-rank VAR (see, e.g., Carriero, Kapetanios, and Marcellino,

2011), in which the matrix A′ = (A1, . . . ,Ap) is assumed to have a reduced rank R < n.

That is, the dimension of the column space of the VAR coefficient matrices A1, . . . ,Ap

has rank R. Alternatively, one could impose a low-rank structure on (A′1, . . . ,A
′
p) or

(vec(A1), . . . , vec(Ap)), whose ranks correspond to the dimensions of the row space and

vectorized matrix space of the VAR coefficient matrices, respectively. Each of these

options essentially reduces the dimension along one of the three different directions.

This motivates us to follow the approach in Wang, Zheng, Lian, and Li (2022) to treat

the VAR coefficients collectively as a three-dimensional array or tensor. That is, we
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arrange the n × n coefficient matrices A1, . . . ,Ap in the third dimension to form the

third-order tensor A ∈ Rn×n×p. With this tensor representation, we then use a rank-R

CP decomposition to construct A:

A =
R∑

r=1

θ
(r)
1 ◦ θ

(r)
2 ◦ θ

(r)
3 , (7)

where θ
(r)
1 ,θ

(r)
2 ∈ Rn and θ

(r)
3 ∈ Rp. Each component θ

(r)
1 ◦ θ

(r)
2 ◦ θ

(r)
3 is a rank-1 third-

order tensor whose (i, j, k) element is the product of the i-th, j-th and k-th elements

of θ
(r)
1 ,θ

(r)
2 and θ

(r)
3 , respectively. Using this tensor decomposition with a small R, the

number of parameters is reduced from n2p to (2n + p)R. We refer the readers to Kolda

and Bader (2009) for a general introduction to tensors and their operations.

4 Bayesian Estimation

In this section we describe the priors and outline the posterior simulator. In particular,

we focus on the sampling of the components θ
(r)
1 ,θ

(r)
2 and θ

(r)
3 , r = 1, . . . , R. To that end,

let Θ1 = (θ
(1)
1 , . . . ,θ

(R)
1 ) and similarly define Θ2 and Θ3. The dimensions of Θ1,Θ2 and

Θ3 are, respectively, n × R, n × R and p × R. For later reference, stack θ1 = vec(Θ1),

θ2 = vec(Θ′2) and θ3 = vec(Θ′3). For reasons that will become transparent later, note

that θ1 is constructed by stacking the columns of Θ1, whereas θ2 and θ3 are formed by

stacking the rows of Θ2 and Θ3, respectively.

Next, consider the following independent Gaussian priors on θ1,θ2 and θ3:

θj ∼ N (θj,0,Vθj
), j = 1, . . . , 3. (8)

Here we consider simple Gaussian priors, but any adaptive hierarchical shrinkage priors

that have a conditionally Gaussian representation—such as the normal-gamma prior, the

horseshoe prior or the Dirichlet-Laplace prior—can be used.

In what follows, we derive the full conditional posterior distributions of (θ1 |Y,θ2,θ3,Σ),

(θ2 |Y,θ1,θ3,Σ) and (θ3 |Y,θ1,θ2,Σ), where Σ = diag (Σ1, . . . ,ΣT ).
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4.1 Sampling of θ1

For sampling θ1, first let

Θ−1 = (θ
(1)
3 ⊗ θ

(1)
2 , . . . ,θ

(R)
3 ⊗ θ

(R)
2 ),

Θ−2 = (θ
(1)
3 ⊗ θ

(1)
1 , . . . ,θ

(R)
3 ⊗ θ

(R)
1 ),

Θ−3 = (θ
(1)
2 ⊗ θ

(1)
1 , . . . ,θ

(R)
2 ⊗ θ

(R)
1 ).

Then, the mode-1 matricization of A can be written as (see, e.g., Kolda and Bader, 2009):

A(1) = A′ = Θ1Θ
′
−1. (9)

Furthermore, let X ∈ RT×n×p denote the third-order tensor constructed by stacking the

n×p matrices (yt−1, . . . ,yt−p), t = 1, . . . , T, along the first dimension so that vec(Xt,:,:) =

xt. It is easy to verify that its mode-1 matricization is the T×np matrix X, i.e., X(1) = X.

Hence, combining (1) and (9), we have

Y = X(1)Θ−1Θ
′
1 + U. (10)

It follows that

vec(Y′) = (X(1)Θ−1 ⊗ In)vec(Θ1) + vec(U′),

where vec(U′) ∼ N (0Tn,Σ) with Σ = diag (Σ1, . . . ,ΣT ). Given the Gaussian prior on

θ1 = vec(Θ1) specified in (8), the full conditional posterior of θ1 is given by

(θ1 |Y,θ2,θ3,Σ) ∼ N
(
θ̂1,K

−1
θ1

)
,

where

Kθ1 = V−1θ1
+ (Θ′−1X ′(1) ⊗ In)Σ−1(X(1)Θ−1 ⊗ In)

θ̂1 = K−1θ1

(
V−1θ1

θ1,0 + (Θ′−1X ′(1) ⊗ In)Σ−1vec(Y′)
)
.

Since θ1 is of length nR, sampling θ1 generally involves O(n3R3) elementary operations.

When both n and R are large, this sampling step could be computationally intensive. An

alternative is to sample each θ
(r)
1 separately, r = 1, . . . , R. For a fixed r, this can be done
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by substituting

Θ1Θ
′
−1 =

R∑
s=1

θ
(s)
1 θ

(s)′
−1 ,

where θ
(s)
−1 = θ

(s)
3 ⊗ θ

(s)
2 , into the transpose of (10) to obtain

Y′ =
R∑

s=1

θ
(s)
1 θ

(s)′
−1X ′(1) + U′.

Next, let Y1r = Y′ −
∑

s 6=r θ
(s)
1 θ

(s)′
−1X ′(1) and vectorize the above equation, we have

vec(Y1r) = (X(1)θ
(r)
−1 ⊗ In)θ

(r)
1 + vec(U′).

If the marginal prior for θ
(r)
1 is

θ
(r)
1 ∼ N

(
θ
(r)
1,0,Vθ

(r)
1

)
,

the posterior distribution (θ
(r)
1 |Y, {θ(s)

1 }s 6=r,θ2,θ3,Σ) has the form

(θ
(r)
1 |Y, {θ(s)

1 }s 6=r,θ2,θ3,Σ) ∼ N
(
θ̂
(r)

1 ,K−1
θ
(r)
1

)
,

where

K
θ
(r)
1

= (θ
(r)′
−1X ′(1) ⊗ In)Σ−1(X(1)θ

(r)
−1 ⊗ In)

θ̂
(r)

1 = K−1
θ
(r)
1

(
V−1

θ
(r)
1

θ
(r)
1,0 + (θ

(r)′
−1 X ′(1) ⊗ In)Σ−1vec(Y1r)

)
.

The drawback of sampling each θ
(r)
1 separately is that this tends to increase the autocor-

relation of the constructed Markov chain. But this approach is substantially faster and

remains computationally feasible even when both n and R are large.

4.2 Sampling of θ2 and θ3

Next, we derive the conditional distribution of (θ2 |Y,θ1,θ3,Σ) and show that it is

Gaussian. To start, we aim to write the VAR in (1) as a linear regression in θ2 = vec(Θ′2).
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We first introduce some notations. Let ep
i be the i-th column of Ip. Let P denote the

np×np commutation matrix so that P′vec(Z) = vec(Z′) for any n×p matrix Z. Explicitly,

P can be constructed by setting the (k, l) element to be 1, i.e., Pk,l = 1, if there exist i

and j such that k = (i− 1)n+ j and l = (j − 1)p+ i; otherwise, set Pk,l = 0.

Proposition 1. The VAR in (1) can be written as

vec(Y′) =

p∑
i=1

(Pi2X ′(2) ⊗Pi1Θ−2)θ2 + vec(U′), (11)

where Pi1 = (In ⊗ (ep
i )
′)P′, Pi2 = (ep

i )
′ ⊗ IT and X(2) is the mode-2 matricization of X .

The proof of this proposition is given in Appendix A. Now, given the representation in

(11) and the Gaussian prior on θ2 specified in (8), by standard linear regression results,

one can verify that the full conditional posterior of θ2 is given by

(θ2 |Y,θ1,θ3,Σ) ∼ N
(
θ̂2,K

−1
θ2

)
,

where

Kθ2 = V−1θ2
+

p∑
i=1

p∑
j=1

(X(2)P
′
i2 ⊗Θ′−2P

′
i1)Σ

−1(Pj2X ′(2) ⊗Pj1Θ−2),

θ̂2 = K−1θ2

(
V−1θ2

θ2,0 +

p∑
i=1

(X(2)P
′
i2 ⊗Θ′−2P

′
i1)Σ

−1vec(Y′)

)
.

Therefore, one can sample θ2 in one block. When n and R are large, it might only be

feasible to sample each θ
(r)
2 at a time for r = 1, . . . , R. We provide the details of this

alternative approach in Appendix C.

Likewise, the conditional distribution of (θ3 |Y,θ1,θ2,Σ) can be shown to be Gaussian.

More specifically, we first write the VAR in (1) as a linear regression in θ3 = vec(Θ′3). To

that end, let en
i denote the i-th column of In, let X(3) represent the mode-3 matricization

of X , and define Q to be the n2 × n2 commutation matrix so that Q′vec(Z) = vec(Z′)

for any n× n matrix Z. Explicitly, Q can be constructed by setting the Qk,l = 1 if there

exist i and j such that k = (i− 1)n+ j and l = (j − 1)n+ i; otherwise, set Qk,l = 0.
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Proposition 2. The VAR in (1) can be represented as

vec(Y′) =
n∑

i=1

(Qi2X ′(3) ⊗Qi1Θ−3)θ3 + vec(U′), (12)

where Qi1 = (In ⊗ (en
i )′)Q′ and Qi2 = (en

i )′ ⊗ IT .

Given the representation in (12), it is easy to verify that

(θ3 |Y,θ1,θ2,Σ) ∼ N
(
θ̂3,K

−1
θ3

)
,

where

Kθ3 = V−1θ3
+

n∑
i=1

n∑
j=1

(X(3)Q
′
i2 ⊗Θ′−3Q

′
i1)Σ

−1(Qj2X ′(3) ⊗Qj1Θ−3)

θ̂3 = K−1θ3

(
V−1θ3

θ3,0 +
n∑

i=1

(X(3)Q
′
i2 ⊗Θ

′

−3Q
′
i1)Σ

−1vec(Y′)

)
.

Alternatively, one can sample each θ
(r)
3 at a time for r = 1, . . . , R when n and R are large

as before.

Finally, sampling the time-varying error covariance matrices Σ1, . . . ,ΣT naturally de-

pends on the stochastic volatility specification used. For a wide variety of stochastic

volatility specifications commonly employed in applied work, such as the common stochas-

tic volatility and Cholesky stochastic volatility discussed earlier, efficient algorithms are

available to sample the latent variables and model parameters. We refer the readers to

Chan (2023a) for more details.

5 An Empirical Application

We conduct an out-of-sample forecasting exercise to evaluate the performance of the pro-

posed tensor VARs compared to a standard benchmark. More specifically, we construct

a dataset of 40 quarterly macroeconomic and financial variables from the FRED-QD

database (McCracken and Ng, 2020). The sample spans from 1969Q1 to 2024Q1. The

data include key macroeconomic variables such as GDP, inflation rates, labor market
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variables and various interest rates. We refer the readers to Appendix B for the detailed

description of the time series and their transformations.

We consider three tensor VARs: a homoskedastic tensor VAR (TVAR), TVARs with the

common volatility (TVAR-CSV) and the Cholesky stochastic volatility (TVAR-SV). For

now, we set the rank of the VAR coefficient tensor A to be R = 1 for all TVARs. As a

benchmark, we also include a standard Bayesian VAR (BVAR) with the Minnesota prior

(implemented as the natural conjugate prior). The evaluation period of the forecasting

exercise begins in 2010Q1 and ends in 2024Q1.

To assess the performance of jointly forecasting all n = 40 time series, we calculate the

average log predictive likelihoods for each model over one- and four-quarter-ahead forecast

horizons. The results are presented in Table 1. Higher values of log predictive likelihoods

signify better forecast performance.

Table 1: Joint density forecast performance of the proposed tensor VARs relative to a
standard Bayesian VAR with the Minnesota prior.

BVAR TVAR TVAR-CSV TVAR-SV
One-quarter-ahead −8.01 −3.30 −1.31 −2.32
Four-quarter-ahead −8.53 −3.30 −2.21 −2.66

A few observations can be drawn from these forecasting results. Firstly, comparing the

two homoskedastic models, TVAR and BVAR, it is clear that the former substantially out-

performs the latter, suggesting that the specification of a low rank structure on the VAR

coefficient tensor A is more appropriate. Secondly, allowing some form of time-varying

volatility clearly improves forecast performance. For example, extending a homoskedastic

TVAR to a version with the common stochastic volatility increases the average log pre-

dictive likelihood from −8 to about −3 for one-step-ahead density forecasts. This finding

is line with the large body of empirical evidence that demonstrates the importance of

allowing time-varying volatility in macroeconomic forecasting (Clark, 2011; D’Agostino,

Gambetti, and Giannone, 2013; Chan, 2023a). Finally, among the two TVARs with

stochastic volatility, the version with the parsimonious common stochastic volatility out-

performs the one with the more flexible Cholesky stochastic volatility, indicating strong

comovements in the macroeconomic volatilities.

Next, we look at the point forecast performance of the TVARs for individual time series.
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In particular, Table 2 reports the root mean squared forecast errors (RMSFEs) of a few

key macroeconomic variables over the evaluation period relative to the benchmark BVAR.

Values less than one indicate better forecast performance than the benchmark.

Table 2: Root mean squared forecast errors of the proposed tensor VARs relative to a
standard Bayesian VAR with the Minnesota prior.

One-quarter-ahead Four-quarter-ahead
TVAR TVAR-CSV TVAR-SV TVAR TVAR-CSV TVAR-SV

RPI 0.93 0.93 0.93 0.99 0.99 0.98
GDP 0.65 0.64 0.78 0.82 0.82 0.85
Unemployment 0.68 0.68 0.72 0.86 0.86 0.86
CPI 1.03 1.02 1.14 0.89 0.89 0.93
Fed funds rate 0.83 0.83 1.46 0.60 0.60 0.65
10-year T-bond 0.92 0.92 0.95 0.82 0.82 0.85

The results show that the TVARs tend to outperform the benchmark BVAR for both one-

and four-quarter-ahead horizons. For example, the RMSFE of the homoskedastic TVAR

for forecasting GDP is only 65% of that of the benchmark. Interestingly, allowing time-

varying volatility does not appear to improve point forecasts. In fact, the more flexible

TVAR-SV often provides inferior point forecasts compared to the homoskedastic TVAR

(though the performance of the more parsimonious TVAR-CSV is virtually identical to

TVAR).

So far we have set R, the rank of the VAR coefficient tensor A, to be 1 for all TVARs.

Naturally, one might wonder how this choice affects the density and point forecast per-

formance. To investigate the impact of the choice of R, we present in Table 3 the one-

quarter-ahead average log predictive likelihoods of the three TVARs for R = 1, 3, 5, 10.

Table 3: One-quarter-ahead joint density forecast performance of the proposed tensor
VARs for R = 1, 3, 5, 10.

TVAR TVAR-CSV TVAR-SV

R = 1 −3.30 −1.31 −2.32
R = 3 −3.27 −1.39 −2.36
R = 5 −3.40 −1.26 −2.48
R = 10 −3.53 −1.29 −2.53

It is interesting to note that the choice of R does not seem to have a large impact on
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the joint density forecast performance across the three TVARs. In particular, it does

not affect the relative ranking of the three models; the two TVARs with time-varying

volatility outperform the homoskedastic version regardless of the rank R. Overall, low-

rank TVARs tend to work as well as, if not better than, TVARs with R = 10.

Table 4 reports the one-quarter-ahead RMSFEs of the three TVARs for forecasting a

few key macroeconomic variables. To facilitate comparison, the results for each TVAR

are relative to the corresponding TVAR with R = 1. With the exception of CPI in-

flation, increasing the rank R does not appear to substantially improve point forecast

performance.

Table 4: One-quarter-ahead RMSFEs of TVARs with R = 3, 5, 10 relative to the corre-
sponding TVARs with R = 1.

R = 3 R = 5 R = 10
TVAR TVAR-CSV TVAR-SV TVAR TVAR-CSV TVAR-SV TVAR TVAR-CSV TVAR-SV

RPI 1.01 1.00 1.01 1.01 1.00 1.02 1.01 1.00 1.03
GDP 1.04 1.02 0.99 1.08 1.05 1.05 1.12 1.07 1.12
Unemployment 1.02 1.01 1.00 1.02 1.01 1.05 1.05 1.01 1.15
CPI inflation 0.97 0.95 1.06 0.96 0.95 0.90 0.89 0.90 0.94
Fed funds rate 1.08 1.11 1.08 1.24 1.21 1.05 1.20 1.18 0.99
10-year T-bond 1.00 1.00 1.22 0.99 1.00 1.17 0.98 0.99 1.16

Overall, these forecasting results demonstrate the benefits of the proposed approach of

specifying a low rank structure on the VAR coefficient tensor. In addition, our results

highlight the importance of accommodating time-varying volatility in forecasting macroe-

conomic variables. Notably, in our forecasting exercise, the more parsimonious TVAR-

CSV tends to forecast better than the more flexible TVAR-SV.

6 Concluding Remarks and Future Research

We have developed Bayesian tensor VARs in which the VAR coefficients are arranged

as a third-order tensor and parameterized using a rank-R CP decomposition. We then

introduced efficient sampling algorithms to simulate the components of the tensor de-

composition. Through a forecasting exercise, we showed that these TVARs outperform

the standard BVAR with the Minnesota prior.

For future research, it would be useful to extend these TVARs to allow for time-varying
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coefficients in the mean equations. This tensor framework is especially suitable for de-

veloping time variation in the VAR coefficients, as the number of free parameters grows

only linear in n. Of course, for large systems one might need additional shrinkage. In

those cases, one can consider either the static shrinkage approach in Chan (2023b) or the

dynamic shrinkage approaches proposed in Koop and Korobilis (2018) and Huber, Koop,

and Onorante (2019).
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Appendix A: Proofs of Propositions

In this appendix we provide a proof of Proposition 1. The proof of Proposition 2 is very

similar and is thus omitted. We first introduce some useful notations. Let em
i denote the

i-th column of Im; if there is no ambiguity about the dimension, we simply write ei. For

a generic third-order tensor Z, let Z(k) denote its mode-k matricization for k = 1, 2, 3.

We use the notation Zi1,i2,i3 to represent the (i1, i2, i3) tensor element of Z and Z(k),i,j to

denote the (i, j) element of Z(k).

As an example, consider the third-order tensor X ∈ RT×n×p. Its mode-2 matricization

X(2) is an n × Tp matrix, and the (i1, i2, i3) tensor element Xi1,i2,i3 maps to the (i2, j)

matrix element X(2),i2,j, where j = (i3 − 1)T + i1. Conversely, the (i, j) matrix element

maps to the (i1, i, i3) tensor element, where i1 = mod(j, T ) is the remainder after division

of j by T , and i3 = dj/T e is the least integer greater than or equal to j/T . It can be

easily verified that j = (i3 − 1)T + i1.

Naturally, any matrix multiplication involving matrices constructed by mode-k matri-

cization can be written in terms of the elements in the original tensors. For example,

consider the (i, j) element of the matrix E = X ′(2)A(2). Let i3 = di/T e and i1 = mod(i, T )

so that i = (i3 − 1)T + i1. Similarly, obtain integers j1 and j3 so that j = (j3 − 1)n+ j1.

Then, we can write Ei,j in terms of elements in X and A:

Ei,j =
n∑

k=1

X(2),k,iA(2),k,j

=
n∑

k=1

X(2),k,(i3−1)T+i1A(2),k,(j3−1)T+j1 =
n∑

k=1

Xi1,k,i3Aj1,k,j3 .

(13)

Next, we introduce a useful lemma.

Lemma 1. The VAR in (1) can be written as

Y =

p∑
i=1

(e′i ⊗ IT )EP(In ⊗ ei) + U, (14)

where ei ≡ ep
i is the i-th column of Ip, E = X ′(2)A(2), and P is the np× np commutation

matrix in which Pk,l = 1 if there exist integers i and j such that k = (i − 1)n + j and
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l = (j − 1)p+ i; otherwise, Pk,l = 0.

Proof of Lemma 1. First, note that from

Y = X(1)A′(1) + U,

the element Yt,l can be expressed as

Yt,l =

np∑
i=1

X(1),t,iA(1),l,i + Ut,l =
n∑

i1=1

p∑
i3=1

Xt,i1,i3Al,i1,i3 + Ut,l,

where i = (i3 − 1)n + i1. Now, it suffices to show that the (t, l) element of the sum on

the right-hand side of equation (14) has the same expression and is thus equal to Yt,l.

We start by describing the typical element of the Tp×np matrix EP. For any (i, j), obtain

the pairs of integers (i1, i3) and (j1, j3) such that i = (i3− 1)T + i1 and j = (j3− 1)p+ j1.

Then, by direct computation, we have

(EP)i,j =(EP)(i3−1)T+i1,(j3−1)p+j1

=

np∑
s=1

E(i3−1)T+i1,sPs,(j3−1)p+j1

=

p∑
k=1

n∑
l=1

E(i3−1)T+i1,(k−1)n+lP(k−1)n+l,(j3−1)p+j1

=

p∑
k=1

n∑
l=1

E(i3−1)T+i1,(k−1)n+l1(k = j1, l = j3)

=E(i3−1)T+i1,(j1−1)n+j3 .
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Then, the (t, l) element of the sum on the right-hand side of equation (14) is given by:

p∑
k=1

Tp∑
i=1

np∑
j=1

(e′k ⊗ IT )t,i(EP)i,j(In ⊗ ek)j,l + Ut,l

=

p∑
k=1

T∑
i1=1

p∑
i3=1

n∑
j3=1

p∑
j1=1

(e′k ⊗ IT )t,(i3−1)T+i1E(i3−1)T+i1,(j1−1)n+j3(In ⊗ ek)(j3−1)p+j1,l + Ut,l

=

p∑
k=1

T∑
i1=1

p∑
i3=1

n∑
j3=1

p∑
j1=1

(e′k,i3IT,t,i1)E(i3−1)T+i1,(j1−1)n+j3(In,j3,lek,j1) + Ut,l

=

p∑
k=1

T∑
i1=1

p∑
i3=1

n∑
j3=1

p∑
j1=1

1(k = i3, t = i1)E(i3−1)T+i1,(j1−1)n+j31(j3 = l, k = j1) + Ut,l

=

p∑
k=1

E(k−1)T+t,(k−1)n+l + Ut,l

=

p∑
k=1

n∑
s=1

Xt,s,kAl,s,k + Ut,l,

where the last equality holds because of (13). Hence, we have shown that the (t, l) element

of the sum on the right-hand side is Yt,l, thus completing the proof.

Proof of Proposition 1. We begin by taking the transpose of both sides of equation (14)

in Lemma 1:

Y′ =

p∑
i=1

(In ⊗ e′i)P
′E′(ei ⊗ IT ) + U′.
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Next, vectorizing both sides of the above equation, we have

vec(Y′) =

p∑
i=1

((e′i ⊗ IT )⊗ (In ⊗ e′i)P
′) vec(E′) + vec(U′)

=

p∑
i=1

(Pi2 ⊗Pi1)vec(E′) + vec(U′)

=

p∑
i=1

(Pi2 ⊗Pi1)vec(A′(2)X(2)) + vec(U′)

=

p∑
i=1

(Pi2 ⊗Pi1)vec(Θ−2Θ
′
2X(2)) + vec(U′) (15)

=

p∑
i=1

(Pi2 ⊗Pi1)(X ′(2) ⊗Θ−2)vec(Θ′2) + vec(U′)

=

p∑
i=1

(Pi2X ′(2) ⊗Pi1Θ−2)θ2 + vec(U′),

where Pi1 = (In ⊗ e′i)P
′ and Pi2 = e′i ⊗ IT , θ2 = vec(Θ′2). The fourth equality holds

because A(2) = Θ2Θ
′
−2.
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Appendix B: Data

The quarterly dataset is sourced from the FRED-QD database (McCracken and Ng, 2020)

maintained by the Federal Reserve Bank of St. Louis. The sample spans from 1969Q1 to

2024Q1. Table 5 lists the variables and describes how they are transformed. To ensure

consistency, each time series is standardized to have zero mean and unit variance.
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Table 5: A list of variables and their transformations. Tcode: 1: no transformation; 2:
∆xt; 5: ∆ log(xt); 6: ∆2 log(xt).

Name Description T-code

RPI Real Personal Income 5
INDPRO IP Index 5
GDP Real Gross Domestic Product 5
GDPDEFL GDP deflator 6
DPCERA3M086SBEA Real PCE 5
CMRMTSPLx Real M & T Sales 5
HWI Help-Wanted Index for US 2
HWIURATIO Help Wanted to Unemployed ratio 2
CLF16OV Civilian Labor Force 5
UNRATE Civilian Unemployment Rate 2
PAYEMS All Employees: Total nonfarm 5
CES0600000007 Hours: Goods-Producing 5
CPIAUCSL CPI: All Items 6
FEDFUNDS Effective Federal Funds Rate 2
TB3MS 3-Month T-bill 2
TB6MS 6-Month T-bill 2
GS1 1-Year T-bond 2
GS5 5-Year T-bond 2
GS10 10-Year T-bond 2
AAA Aaa Corporate Bond Yield 2
BAA Baa Corporate Bond Yield 2
M1SL M1 Money Stock 5
M2SL M2 Money Stock 5
BUSLOANS Commercial and Industrial Loans 5
NONREVSL Total Nonrevolving Credit 5
INVEST Securities in Bank Credit 5
S&P 500 S&P 500 5
S&P div yield S&P Dividend yield 2
S&P PE ratio S&P Price/Earnings ratio 5
EXSZUSx Switzerland / U.S. FX Rate 5
EXJPUSx Japan / U.S. FX Rate 5
EXUSUKx U.S. / U.K. FX Rate 5
EXCAUSx Canada / U.S. FX Rate 5
UEMPMEAN Average Duration of Unemployment 5
AWHMAN Hours: Manufacturing 1
ISRATIOx Inventories to Sales Rati 2
REALLN Real Estate Loans 5
PPICMM PPI: Commodities 6
PCEPI PCE: Chain-type Price Index 6
FPI Fixed Private Investment 5
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Appendix C: Additional Estimation Details

In this appendix we provide technical details on the alternative approach of sampling

each θ
(r)
2 at a time for r = 1, . . . , R. To that end, we derive the conditional distribution

of θ
(r)
2 given {θ(s)

2 }s 6=r and other model parameters.

We assume the following the marginal prior for θ
(r)
2 :

θ
(r)
2 ∼ N

(
θ
(r)
2,0,Vθ

(r)
2

)
.

Next, it follows from equation (15) in the proof of Proposition 1 that

vec(Y′) =

p∑
i=1

(Pi2 ⊗Pi1)vec(Θ−2Θ
′
2X(2)) + vec(U′)

=

p∑
i=1

vec(Pi1Θ−2Θ
′
2X(2)P

′
i2) + vec(U′).

Noting that Θ2Θ
′
−2 =

∑R
s=1 θ

(s)
2 θ

(s)′
−2 , where θ

(s)
−2 = θ

(s)
3 ⊗ θ

(s)
1 , one can express Y′ as:

Y′ =

p∑
i=1

Pi1Θ−2Θ
′
2X(2)P

′
i2 + U′

=

p∑
i=1

R∑
s=1

Pi1θ
(s)
−2θ

(s)′
2 X(2)P

′
i2 + U′.

Fix r and let Y2r = Y′−
∑p

i=1

∑
s 6=r Pi1θ

(s)
−2θ

(s)′
2 X(2)P

′
i2. Vectorize the above equation to

get

vec(Y2r) =

p∑
i=1

(Pi2X ′(2) ⊗Pi1θ
(r)
−2)θ

(r)
2 + vec(U′).

Therefore, the posterior conditional distribution (θ
(r)
2 |Y,θ1, {θ(s)

2 }s 6=r,θ3,Σ) can be ex-

pressed as

(θ
(r)
2 |Y,θ1, {θ(s)

2 }s 6=r,θ3,Σ) ∼ N
(
θ̂
(r)

2 ,K−1
θ
(r)
2

)
,
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where

K
θ
(r)
2

= V−1
θ
(r)
2

+

p∑
i=1

p∑
j=1

(X(2)P
′
i2 ⊗ θ

(r)′
−2 P′i1)Σ

−1(Pj2X ′(2) ⊗Pj1θ
(r)
−2)

θ̂
(r)

2 = K−1
θ
(r)
2

(
V−1

θ
(r)
2

θ
(r)
2,0 +

p∑
i=1

(X(2)P
′
i2 ⊗ θ

(r)′
−2 P′i1)Σ

−1vec(Y2r)

)
.
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