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1 Summary of Contents of Online Appendix

This appendix contains two sections. The �rst is a technical appendix which
describes the prior and MCMC algorithm used to estimate our bivariate
model of in�ation and unemployment (labelled Bi-UC in the paper). It also
provides additional estimation details about the other models used for com-
parison. The second is section contains a prior predictive analysis. Papers
cited in this appendix are listed in the references in the paper itself.

2 Technical Appendix

We remind the reader that our model is de�ned by:

(�t � ��t ) = ��t
�
�t�1 � ��t�1

�
+ �t (ut � �ut ) + "�t

(ut � �ut ) = �u1
�
ut�1 � �ut�1

�
+ �u2

�
ut�2 � �ut�2

�
+ "ut

��t = �
�
t�1 + "

��
t

�ut = �
u
t�1 + "

�u
t

��t = �
�
t�1 + "

��
t

�t = �t�1 + "
�
t

; (1)
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and

"�t � N(0; eht) (2)

ht = ht�1 + "
h
t ;

"ht � N(0; �2h);

"ut � N(0; �2u):

Trends are bounded through:

"��t � TN(a� � ��t�1; b� � ��t�1; 0; �2��)
"�ut � TN(au � �ut�1; bu � �ut�1; 0; �2�u)

(3)

and time varying parameters through

"��t � TN(���t�1; 1� ��t�1; 0; �2��)
"�t � TN(�1� �t�1; 0� �t�1; 0; �2�):

(4)

We also impose the stationary condition on the unemployment equation and
assume �u1 + �

u
2 < 1, �

u
2 � �u1 < 1 and j�u2 j < 1:

We use notation where � = (�1; : : : ; �T )0; u = (u1; : : : ; uT )0; y = (�0; u0)0;
�� = (��1 ; : : : ; �

�
T )
0; �u = (�u1 ; : : : ; �

u
T )
0; �� = (��1 ; : : : ; �

�
T )
0; � = (�1; : : : ; �T )

0;
h = (h1; : : : ; hT )

0, and de�ne "�; "u; "��; "�u; "h; "��; "� similarly. In addition,
let � denote the model parameters, i.e., � = (�2u; �

2
��; �

2
�u; �

2
h; �

2
��; �

2
�; a�; b�; au; bu; �

u
1 ; �

u
2)
0:

2.1 The Prior

We require a prior for the initial condition in every state equation and these
are:

��1 � TN(a�; b�; ��0 ; !2��);
�u1 � TN(au; bu; �u0 ; !2�u);
��1 � TN(0; 1; ��0 ; !2��);
�1 � TN(�1; 0;�0; !2�);
h1 � TN(h0; !2h);

where ��0 , !
2
��, �

u
0 , �

u
�1, !

2
�u, �

�
0 , !

2
��, �0, !

2
�u, h0, and !

2
h are known constants.

In particular we choose the relatively non-informative values of ��0 = 3, �
u
0 =

�u�1 = 5, h0 = �
�
0 = �0 = 0, !

2
�� = !

2
�u = !

2
h = 5 and !

2
�� = !

2
�u = !

2
� = 1.
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Note that the need for �u�1 arises from the use of an AR(2) speci�cation in
the unemployment equation.
The prior for the model parameters is speci�ed as

p(�) = p(�2u)p(�
2
h)p(�

2
��)p(�

2
�u)p(�

2
��)p(�

2
�)p (a�) p (b�) p (au) p (bu) p (�

u
1) p (�

u
2) ;

where �2u � IG(�u; Su), �
2
h � IG(�h; Sh), �

2
�� � IG(���; S��), �

2
�u �

IG(��u; S�u), �
2
�� � IG(���; S��), �

2
� � IG(��; S�), and IG(�; �) denotes

the inverse-Gamma distribution. We choose relatively small values for the
degrees of freedom parameters, which imply large prior variances, i.e., the
priors are relatively non-informative. Speci�cally, we set �u = �h = ��� =
��u = ��� = ��u = �� = 10. We then choose values for the scale parameters
so that the parameters have the desired prior means. We set Su = Sh = 0:9;
which imply prior means E(�2u) = E(�

2
h) = 0:1. Next, we set S�� = 0:18 and

S�u = 0:09; which imply E(�
2
��) = 0:02 and E(�

2
�u) = 0:01. These values are

chosen to re�ect the desired smoothness of the corresponding state transi-
tion. For example, the prior mean for �2�� implies that with high probability
the di¤erence between consecutive trend in�ation, ��t � ��t�1, lies within the
values �0:3 and 0:3. We set S�� = S� = 0:018; which imply prior means
E(�2��) = E(�

2
�u) = E(�

2
�) = 0:002. These values imply a relatively smooth

transition for the relevant states.
For the bounds we use uniform priors: a� � U(0; 2); b� � U(3; 5); au �

U(3; 5); bu � U(6; 8). The priors for �u1 and �u2 are jointly normal with mean
(1:8;�0:8)0 and covariance matrix 5I2.

2.2 MCMC Algorithm

We extend the MCMC sampler developed in Chan, Koop and Potter (2013)
which in turn is an adaptation of the algorithm introduced in Chan and
Strachan (2012).
Speci�cally, we sequentially draw from (we suppress the dependence on

�0, u0 and u�1):

1. p(�� j y; �u; ��; �; h; �)

2. p(�u j y; ��; ��; �; h; �)

3. p(�� j y; ��; �u; �; h; �)

4. p(� j y; ��; �u; ��; h; �)
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5. p(h j y; ��; �u; ��; �; �)

6. p (�jy; ��; �u; ��; �; h)

Step 1: To derive the conditional distribution p(�� j y; �u; ��; �; h; �), we
�rst rewrite the in�ation equation as

K�� = �� +K��
� + "�; "� � N(0;
�);

where 
� = diag(eh1 ; : : : ; ehT ) and

�� =

0BBBBB@
��1 (�0 � ��0 ) + �1(u1 � �u1)

�2(u2 � �u2)
�3(u3 � �u3)

...
�T (uT � �uT )

1CCCCCA ; K� =

0BBBBBBB@

1 0 0 � � � 0
���2 1 0 � � � 0
0 ���3 1 � � � 0
...

. . .
...

0 0 � � � ���T 1

1CCCCCCCA
:

Since jK�j = 1 for any ��, K� is invertible. Therefore, we have

(� ju; �u; ��; �; h; �) � N(K�1
� �� + �

�; (K 0
�


�1
� K�)

�1);

i.e.,

log p(� ju; �u; ��; �; h; �)

/ �1
2
�0Th�

1

2
(� �K�1

� �� � ��)0K 0
�


�1
� K�(� �K�1

� �� � ��); (5)

where �T is a T � 1 column of ones. Similarly, rewrite the state equation for
�� as

H�� = �� + "
��;

where

�� =

0BBBBB@
��0
0
0
...
0

1CCCCCA ; H =

0BBBBBBB@

1 0 0 � � � 0
�1 1 0 � � � 0
0 �1 1 � � � 0
...

. . .
...

0 0 � � � �1 1

1CCCCCCCA
:
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That is, the prior density for �� is given by

log p(�� j�2��) /
1

2
(�� �H�1��)

0H 0
�1��H(�
� �H�1��) + g��(�

�; �2��); (6)

where a� < ��t < b� for t = 1; : : : ; T , 
�� = diag(!
2
��; �

2
��; : : : ; �

2
��) and

g��(�
�; �2��) =� log

�
�

�
b�
!��

�
� �

�
a�
!��

��
�

TX
t=2

log

�
�

�
b� � ��t�1
���

�
� �

�
a� � ��t�1
���

��
:

Combining (5) and (6), we obtain

log p(�� j y; �u; ��; �u; �; h; �)

/� 1
2
(� �K�1

� �� � ��)0K 0
�


�1
� K�(� �K�1

� �� � ��)

� 1
2
(�� �H�1��)

0H 0
�1��H(�
� �H�1��) + g��(�

�; �2��);

/� 1
2
(�� � �̂�)0D�1

�� (�
� � �̂�) + g��(��; �2��);

where a� < ��t < b� for t = 1; : : : ; T , and

D�� =
�
H 0
�1��H +K

0
�


�1
� K�

��1
;

�̂� = D��(H
0
�1���� +K

0
�


�1
� K�(� �K�1

� ��)):

Since this conditional density is non-standard, we sample �� via an independence-
chain Metropolis-Hastings (MH) step. Speci�cally, candidate draws are �rst
obtained from theN(�̂�; D��) distribution with the precision-based algorithm
discussed in Chan and Jeliazkov (2009), and they are accepted or rejected
via an acceptance-rejection Metropolis-Hastings (ARMH) step.
Step 2: To implement Step 2, note that information about �u comes

from three sources: the two measurement equations for in�ation and unem-
ployment and the state equation for �u. We derive an expression for each
component in turn. First, write the in�ation equation as:

z = ��u + "�; "� � N(0;
�);
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where zt = (�t � ��t ) � ��t (�t�1 � ��t�1) � �tut, z = (z1; : : : ; zT )
0, and � =

diag(��1; : : : ;��T ). Hence, ignoring any terms not involving �u, we have

log p(� ju; �u; ��; �; h; �) / �1
2
(z � ��u)0
�1� (z � ��u): (7)

The second component comes from the unemployment equation, which can
be written as:

Kuu = �u +Ku�
u + "u; "u � N(0;
u);

where 
u = IT 
 �2u and

�u =

0BBBBB@
�u1(u0 � �u0) + �u2(u�1 � �u�1)

�u2(u0 � �u0)
0
...
0

1CCCCCA ; Ku =

0BBBBBBBBB@

1 0 0 0 � � � 0
��u1 1 0 0 � � � 0
��u2 ��u1 1 0 � � � 0
0 ��u2 ��u1 1 � � � 0
...

. . . . . . . . .
...

0 0 � � � ��u2 ��u1 1

1CCCCCCCCCA
:

Thus, ignoring any terms not involving �u, we have

log p(u j �u; �) / �1
2
(u�K�1

u �u � �u)0K 0
u


�1
u Ku(u�K�1

u �u � �u): (8)

The third component is contributed by the state equation for �u :

log p(�u j�2�u) / �
1

2
(�u�H�1�u)

0H 0
�1�uH(�
u�H�1�u)+ g�u(�

u; �2�u); (9)

where �u = (�u0 ; 0; : : : ; 0)
0, au < �ut < bu for t = 1; : : : ; T , 
�u = diag(!

2
�u; �

2
�u; : : : ; �

2
�u)

and

g�u(�
u; �2�u) =� log

�
�

�
bu
!�u

�
� �

�
au
!�u

��
�

TX
t=2

log

�
�

�
bu � �ut�1
��u

�
� �

�
au � �ut�1
��u

��
:
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Combining (7), (8) and (9), we obtain

log p(�u j y; ��; �u1 ; �u2 ; �; h; �)

/� 1
2
(z � ��u)0
�1� (z � ��u)

� 1
2
(u�K�1

u �u � �u)0K 0
u


�1
u Ku(u�K�1

u �u � �u)

� 1
2
(�u �H�1�u)

0H 0
�1�uH(�
u �H�1�u) + g�u(�

u; �2�u);

/� 1
2
(�u � �̂u)0D�1

�u (�
u � �̂u) + g�u(�u; �2�u);

where au < �ut < bu for t = 1; : : : ; T , and

D�u =
�
H 0
�1�uH +K

0
u


�1
u Ku + �

0
�1� �
��1

;

�̂u = D�u(H
0
�1�u�u +K

0
u


�1
u Ku(u�K�1

u �u) + �
0
�1� z):

Again, we sample �u via an ARMH step with candidate draws obtained from
N(�̂u; D�u).
Step 3: Next, we derive an expression for p(�� j y; ��; �u; �; h; �). First,

let ��t = �t � ��t , u�t = ut � �ut , �� = (��1; : : : ; �
�
T )
0, and u� = (u�1; : : : ; u

�
T )
0.

Then the measurement equation for in�ation can be rewritten as

�� + �u� = X��
� + "�; "� � N(0;
�);

where X� = diag(��0; : : : ; �
�
T�1) and � = diag(��1; : : : ;��T ): From the state

equation for �� we also have

H�� = "��:

Therefore, using a similar argument as before, we have

p(�� j y; ��; �u; �u; �; h; �) / �1
2
(�� � �̂�)0D�1

�� (�
� � �̂�) + g��(��; �2��);

where 0 < ��t < 1 for t = 1; : : : ; T ,

g��(�
�; �2��) = �

TX
t=2

log

�
�

�
1� ��t�1
���

�
� �

����t�1
���

��
;

D�� =
�
H 0
�1��H +X

0
�


�1
� X�

��1
; �̂� = D��X

0
�


�1
� (�

� + �u�);
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and 
�� = diag(!2��; �
2
��; : : : ; �

2
��). As before, we implement an ARMH step

with approximating density N(�̂�; D��).
Step 4: Using the same argument as before, we have

p(� j y; ��; �u; ��; h; �) / �1
2
(�� �̂)0D�1

� (�� �̂) + g�(�; �2�);

where �1 < �t < 0 for t = 1; : : : ; T ,

g�(�; �
2
�) = �

TX
t=2

log

�
�

�
��t�1
��

�
� �

�
�1� �t�1

��

��
;

D� =
�
H 0
�1� H +X

0
u


�1
� Xu

��1
; �̂ = D�X

0
u


�1
� w;

Xu = diag(u�0; : : : ; u
�
T�1), w = (��1 � ��1��0; : : : ; ��T � ��T��T�1)0; and 
� =

diag(!2�; �
2
�; : : : ; �

2
�). As before, we implement an ARMH step with approxi-

mating density N(�̂u; D�u).
Step 5: For Step 5, we use the algorithm in Chan and Strachan (2012)

to sample from p(h j y; ��; �u; ��; �; �).
Step 6: We draw from � in separate blocks, mainly using standard results

for the regression model. We use notation where ��x for all parameters in �
except for x.
Using standard linear regression results, it can be shown that �u =

(�u1 ; �
u
2)
0 is a bivariate truncated normal:

p(�u j y; ��; �u; ��; �; h; ���u) / �
1

2
(�u � �̂u)0D�1

�u (�
u � �̂u) + g�u(�u);

with the stationarity constraints �u1+�
u
2 < 1, �

u
2��u1 < 1 and j�u2 j < 1, where

D�u =
�
V �1�u +X

0
uXu=�

2
u

��1
; �̂u = D�uX

0�
u =�

2
u; Xu =

0BBB@
u�0 u��1
u�1 u�0
...

...
u�T�1 u�T�2

1CCCA :
A draw from this truncated normal distribution can be obtained via acceptance-
rejection sampling with proposal from N(�̂u; D�u).
To sample from the error variances, �rst note that they are conditionally

independent given the data and the states. Hence, we can sample each
element one by one.
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Now, both p(�2u j y; ��; �u; ��; �; h; ���2u) and p(�2h j y; ��; �u; ��; �; h; ���2h)
are standard inverse-Gamma densities, respectively:

(�2u j y; ��; �u; ��; �; h; ���2u) � IG
 
�u +

T

2
; Su +

1

2

TX
t=1

(u�t � �u1u�t�1 � �u2u�t�2)2
!

(�2h j y; ��; �u; ��; �u; �; h; ���2h) � IG
 
�h +

T � 1
2

; Sh +
1

2

TX
t=2

(ht � ht�1)2
!
:

Next, the log conditional density for �2�� is given by

logp(�2�� j y; ��; �u; ��; �; h; ���2��) /

� (��� + 1) log �2�� �
S��
�2��

� T � 1
2

log �2�� �
1

2�2��

TX
t=2

(��t � ��t�1)2 + g��(��; �2��);

which is a non-standard density. To proceed, we implement an MH step with
the proposal density

IG

 
��� +

T � 1
2

; S�� +
1

2

TX
t=2

(��t � ��t�1)2
!
:

Similarly, the log conditional density for �2�u is given by

logp(�2�u j y; ��; �u; ��; �; h; ���2�u) /

� (��u + 1) log �2�u �
S�u
�2�u

� T � 1
2

log �2�u �
1

2�2�u

TX
t=2

(�ut � �ut�1)2 + g�u(�u; �2�u):

Again, a draw from p(�2�u j y; ��; �u; ��; �; h; ���2�u) is obtained via an MH
step with the proposal density

IG

 
��u +

T � 1
2

; S�u +
1

2

TX
t=2

(�ut � �ut�1)2
!
:

The remaining error variances, �2�� and �
2
�, are sampled analogously.

To draw from the bounds a�, b�, au and bu, we use a Griddy-Gibbs
sampler which is the same as the one used in Chan, Koop and Potter (2013).
Speci�cally, since each of the bounds has �nite support, we can evaluate
its conditional density on a �ne grid, which can then be used to construct
the associated cumulative distribution function. Finally, a draw from the
conditional density can be obtained via the inverse-transform method. The
reader is referred to our earlier paper for details.
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2.3 Speci�cation and Estimation Details for OtherMod-
els

The other models used in our forecast comparisons are mostly restricted
special cases of Bi-UC and all speci�cation and prior details are identical
to Bi-UC except that the relevant restriction is imposed. The exceptions to
this are discussed in this sub-section.
The VAR(2) is speci�ed as:

yt = �+B1yt�1 +B2yt�2 + "t;

where yt = (�t; ut)0 and "t = ("�t ; "
u
t )
0 � N(0;�). We use a relatively nonin-

formative prior. For � the prior is N(0; 100). For the VAR coe¢ cients, we
assume each is N(0,1) and all are, a priori, uncorrelated with one another.

The prior for � is IW
�
10;

�
1:4 0
0 0:7

��
so that the prior mean of the error

variances in the two equations are 0:2 and 0:1, respectively.
We also use a VAR(2) with stochastic volatility:

yt = �+B1yt�1 +B2yt�2 + A
�1"t;

where "�t � N(0; eht), "ut � N(0; �2u) and

A =

�
1 0
a 1

�
:

The VAR coe¢ cients have the same prior as the VAR(2) without stochastic
volatility. All details (including prior) relating to ht and �2u are exactly as in
Bi-UC and a has a N(0; 10) prior.
The VARs are estimated using MCMC methods as outlined, e.g., in Koop

and Korobilis (2009).
For Bi-UC-TVP-�u, all details are identical to Bi-UC except that we

need to specify the initial conditions for �u1t and �
u
2t which are now time-

varying. These are both assumed to be N(0; 5). The priors for the two
error variances in the two state equations are both IG(10; 0:009), a relatively
noninformative choice implying prior means of 0:001.
The VAR(2) with Minnesota Prior model is speci�ed as follows. Let

� = vec((�;B1; B2)0) and Xt = I2 
 (1; y0t�1; y0t�2), and let bb denote the least
10



squares estimator of �. We �x � = b�, where b� = T�1PT
t=1(yt �Xt

bb)0(yt �
Xt
bb). For �, we consider the prior � � N(0; V mn), where

V mn = diag
�
a3s

2
1; a1;

a2s
2
1

s22
;
a1
4
;
a2s

2
1

4s22
; a3s

2
2;
a2s

2
2

s21
; a1;

a2s
2
2

4s21
;
a1
4

�
and s2i is the i-th diagonal element of b�, i = 1; 2. We set a1 = 0:1, a2 = 0:05,
and a3 = 0:1.
The bivariate random walk model is:

�t = �t�1 + �
�
t ;

ut = ut�1 + �
u
t ;

where ��t � N(0; �2�) and �ut � N(0; �2u) are independent.
This model is a special case of Bi-UC, where �u1 = 1, �u2 = 0, ��t =

�ut = �t = 0, ��t = 1 for t = 1; : : : ; T , and the errors are independent and
homoskedastic.
The UCSV-AR(2) model is:

�t = �
�
t + �

�
t ;

ut = �
u
1ut�1 + �

u
2ut�2 + �

u
t ;

where ��t � N(0; eht) and �ut � N(0; �2u) are independent. The in�ation trend
��t and log-volatility ht follow independent random walks. This model is a
special case of Bi-UC, where �ut = �t = �

�
t = 0, = 1 for t = 1; : : : ; T .

3 Prior Predictive Analysis

To convince the reader of the sensibility of our model and prior, this sub-
section presents results from a prior predictive analysis.
We begin by computing the predictive densities for future trend in�ation

and future NAIRU, ��T+k and �
u
T+k respectively, with k = 20 under the Bi-

UC model. The results are reported in Figure 3 and 3. These �gures should
that the predictive densities produced by our model are sensible and show
the role of the bounds tightening these densities in a sensible manner.
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Figure 1: Predictive densities for ��T+k under the Bi-UC model
where k = 20.
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Figure 2: Predictive densities for �uT+k under the Bi-UC model
where k = 20.

Next, we preform a prior predictive analysis. This involves taking a draw
from the prior (using the prior described in the Technical Appendix) and then
simulating from the state equations. Given the drawn parameters, states and
an initial value for in�ation and the unemployment rate (we set �0 = 3 and
u0 = u�1 = 5:5), an arti�cial dataset of in�ation and unemployment can be
generated. This is repeated 104 times and, for each generated data set, we
compute various features of interest such as quantiles, variance, autocorre-
lations, etc. in order to build up the prior cumulative distribution function
(cdf) for each of these features. Tables 1 and 2 present these cdf�s evalu-
ated at the feature of interest calculated for the observed data set. It can
be seen that all of the features of the data can be well explained by our
model. Our model does worst at explaining the autocorrelation patterns in
the unemployment rate series. However, even for this case, it does as well as
an unbounded version of our model.
To formally compareBi-UC andBi-UC-NoBound, we compute the log
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Table 1: Prior cdfs of features for �t.
Feature Bi-UC Bi-UC-NoBound
16%-tilde 0.576 0.574
median 0.557 0.547
84%-tilde 0.663 0.585
variance 0.598 0.520
fraction of �t < 0 0.431 0.417
fraction of �t > 10 0.687 0.620
lag 1 autocorrelation 0.634 0.706
lag 4 autocorrelation 0.726 0.581
MA coe¢ cient 0.539 0.713

Table 2: Prior cdfs of features for ut.
Feature Bi-UC Bi-UC-NoBound
16%-tilde 0.694 0.708
median 0.715 0.721
84%-tilde 0.725 0.703
variance 0.626 0.587
fraction of ut < 4 0.273 0.261
fraction of ut > 8 0.746 0.719
lag 1 autocorrelation 0.965 0.965
lag 4 autocorrelation 0.922 0.903
MA coe¢ cient 0.765 0.764
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Bayes factors using the prior predictive densities for various combinations of
the features of interest considered in Tables 1 and 2. In particular, we divide
the features into three groups: �Quantile" includes the �rst three features
of interest (16%-tilde, median and 84%-tilde), �Spread and Drift" includes
the next three (variance, fraction of yt < 0, and fraction of yt > 10 for
yt = �t or ut), and �Dynamics" include the last three features of interest (lag
1 autocorrelation, lag 4 autocorrelation and MA coe¢ cient). The results are
reported in Table 3. The fact that the inclusion of bounds leads to a more
parsimonious model (without causing the �t of the model to deteriorate),
leads to log Bayes factors strongly in favor of our bounded model for in�ation.
For the unemployment rate, the bounds play less of a role and our model is
performing roughly as well as its unbounded version.

Table 3: Log Bayes factors in favor of Bi-UC against Bi-UC-NoBound.
Quantile Spread and drift Dynamics All

�t 286.67 328.76 1.45 613.85
ut 0.47 0.34 -0.53 0.15
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