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ABSTRACT

Factor models are used in a wide range of areas. Two issues with Bayesian versions of these

models are a lack of invariance to ordering of and scaling of the variables and computational

ineffi ciency. This paper develops invariant and effi cient Bayesian methods for estimating sta-

tic factor models. This approach leads to inference that does not depend upon the ordering

or scaling of the variables, and we provide arguments to explain this invariance. Beginning

from identified parameters which are subject to orthogonality restrictions, we use parameter

expansions to obtain a specification with computationally convenient conditional posteriors.

We show significant gains in computational effi ciency. Identifying restrictions that are com-

monly employed result in interpretable factors or loadings and, using our approach, these

can be imposed ex-post. This allows us to investigate several alternative identifying (non-

invariant) schemes without the need to respecify and resample the model. We illustrate the

methods with two macroeconomic datasets.

Keywords: Bayesian, Factor model, Invariance, Reduced rank regression.
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1 Introduction

Factor models have proven useful in many areas including psychology, genomics, epidemi-

ology, economics and finance and significant advances in computation using Bayesian ap-

proaches (for example, Geweke and Zhou (1996), Aguilar and West (2000) and Chib, Nar-

dari, and Shephard (2006)) have made Bayesian analysis of such models feasible for a range

of applications. Two problems that have hampered Bayesian inference in factor models are,

first, the models are not invariant to different ordering of the variables (see, for example,

Lopes and West (2004)) and, second, poor effi ciency of computation algorithms (e.g., Chib

et al. (2006)).

This paper makes a number of contributions. i) This paper presents an invariant specifica-

tion. That is, the specification will result in inference that does not depend upon the ordering

of the variables. ii) We use parameter expansions to develop an algorithm that is both easy

to implement and computationally effi cient. The resulting posteriors have relatively simple

normal forms. Further, as with the extant non-invariant specifications, our specification is

overparameterised. However, we follow the rules of Liu and Wu (1999) to ensure effi ciency

gains. It is not clear that extant specifications do follow these rules and this may explain

to some degree the poor sampling. iii) Finally, we provide a formal explanation for why

extant specifications are not invariant, that is, why the evidence in the model can change

when the order of the variables changes. In doing so, we demonstrate that there is not an

identification problem so much as a specification problem in these models.

Reordering of variables involves groups of transformations of the parameters in the model.

We therefore use group theory to show why existing specifications are not invariant to reorder-

ing of the variables. Work to date considering invariance has taken one of two approaches.
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The first approach attempts to resolve the issue by averaging over orderings (see for example

Geweke (1996) and Frühwirth-Schnatter and Lopes (2010)). To estimate k we would need to

estimate all orderings for all values of k. Averaging over orderings shows promise in small di-

mensional settings, but as applications often have many variables (sometimes hundreds), the

number of potential orderings to average over increases into the trillions making an averaging

approach computationally infeasible or at best challenging. For example, Forni, Giannone,

Lippi and Reichlin (2009) investigate some 89 series and find there are between k = 12 and

k = 18 factors. In this case, if we were to use a non-invariant Bayesian approach and average

over all orderings we would need to average over more than 237 trillion for k = 12 and 3

million trillion models for k = 18. It would seem more practical and feasible to only have

one invariant model to consider for each k.

Another approach, therefore, is to develop a single model that does not depend upon the

orderings. Examples of work taking this approach, besides our paper, are Bhattacharya and

Dunson (2011), Aßmann, Boysen-Hogrefe, and Pape (2012) and Kaufmann and Schumacher

(2012). Our approach differs from these in that we explicitly take the perspective of the factor

model as a reduced rank regression model, such as in Bai and Ng (2002), and use previous

work that utilizes the geometry of that model to develop an invariant model specification

and inferential framework. Taking this perspective leads us to the view that, contrary to

general belief, there is not an identification problem in the factor model but rather there is

a problem with the specification used.

The invariant specification we propose uses a singular value decomposition as in Hoff (2007).

This approach is related to the principal components specification commonly used in the

frequentist literature (see, for example, Connor and Korajczyk (1986) and Bai and Ng (2002))
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and effi cient computation is achieved by combining this with and extension of the parameter

expansion approach of Ghosh and Dunson (2009) in the static factor model and Koop, Léon-

González and Strachan (2010 & 2012) in the vector error correction model and instrumental

variables model. The parameter expansions are chosen to obtain a specification that is simple

to implement, in fact simpler than standard extant specifications. A further benefit of this

expanded specification is that the resulting sampler is effi cient. This parameter expansion

may be viewed as a generalization of the Ghosh and Dunson (2009) approach to computing

factor models but with the added benefit of invariance.

In Section 2 we present the identified parameters in the invariant Bayesian specification of

the static factor model and the priors for this model from a singular value decomposition

(SVD) (contribution i). We then introduce the full parameter expansion using invariant

transformations to obtain the prior for the ‘expanded’model (contribution ii). We present

the posterior, sampling algorithm and the posterior probability estimation for this ‘expanded’

model. In Section 3 we briefly outline the features of the static factor model and discuss

relationships, in particular mappings, among existing identification schemes, two of which

are popular non-invariant specifications used in the Bayesian literature and one invariant

specification used in the frequentist literature. This discussion allows us to present the

source of invariance (contributions iii, iv and v). Section 4 presents several applications

including one small application to six exchange rates to demonstrate the effect of reordering

and effi ciency of the proposed sampling algorithm in this paper. Section 5 provides some

concluding comments and potential extensions.
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2 The invariant static factor model

In this section we present the invariant specification of the static factor model. In the model

stacked over time, we will show that the product of the matrix of all factors and the loading

matrix forms a reduced rank matrix. The row and column space of this matrix are iden-

tified (as are various norms) and there is a smooth relationship between these spaces and

appropriate orthonormal frames which we take advantage of to achieve an invariant spec-

ification. The parameters identified under the likelihood are the elements of the singular

value decomposition of a reduced rank matrix, and therefore some of the identified parame-

ters are orthonormal k-frames that belong to the Stiefel manifold. As discussed in Section

3, most of the literature have attempted to estimate parameters which are discontinuous

transformations of the identified parameters, and it is this discontinuity that causes lack of

invariance. In contrast, we build on the theory of invariant measures and distributions on

special manifolds (e.g. Amari (1985), Chikuse (2003)) and first specify priors directly on the

identified parameters. In order to facilitate computations we then introduce non-identified

parameters that allow us to define diffeomorphic transformations from the identified and

non-identified parameters (the parameter expansions) to parameters with computationally

convenient supports (Real space) and distributions (normal). Because the transformations

are diffeomorphic the resulting approach preserves the invariant (order independent) infer-

ence, while allowing for a much more effi cient algorithm for computations. The prior that

we propose is defined in such a way that conditional posteriors belong to standard families

and allow for simple and effi cient computations. Although previous work by Hoff (2007)

proposes an invariant approach that works directly with the identified parameters, we show

in the Supplemental material A that thanks to the parameter expansions the effi ciency gains
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of our approach can be very large.

We can write the factor model as a reduced rank regression model for a 1×n vector yt ∈ Rn

with k < n factors as

yt = ftΛ + εt, εt ∼ N (0,Σ) , for t = 1, ..., T (1)

where ft is a 1 × k vector, Λ is an k × n matrix, and εt is a 1 × n vector with a diagonal

covariance matrix denoted by Σ. By stacking observations equation (1) can be equivalently

written as y = FΛ + ε = Π + ε, where y and ε are T ×n matrices with E
(
vec (ε) vec (ε)′

)
=

Σ ⊗ IT , F is a T × k matrix such that the matrix Π = FΛ has rank k. In this section we

develop priors for Λ and F by beginning with the parameters that are identified under the

likelihood and, via a series of parameter expansions, we obtain the prior and posterior for

the expanded model.

The reduced rank model in (1) has the same structure as a one-mode analysis used in psycho-

metrics (see, for example, Magnus and Neudecker (1988)) for which frequentist approaches

to estimation are proposed. Bayesian inference in other reduced rank models, such as the

cointegrating vector error correction model and the overidentified simultaneous equations

model, has been extensively explored and this literature is informative on how to approach

the analysis of this model. Bayesian approaches most relevant to this paper are Strachan

and Inder (2004), Koop, Léon-González and Strachan (2010 & 2012).

Taking a singular value decomposition (SVD) of the reduced rank matrix FΛ, we have

FΛ = U1S1V
′
1 (2)

U1 ∈ Vk,T V1 ∈ Vk,n

S1 = diag (s1, s2, . . . , sk)
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where si > si+1 > 0 for all i and Vm,n denotes the Stiefel manifold such that Vm,n =

{H (n×m) ;H ′H = Im} (for discussion, see Muirhead (1982)). All of the parameters U1, S1

and V1 are identified up to sign and have, respectively, Tk − k(k+1)
2

, k and nk − k(k+1)
2

free

elements.

In what follows, we define the trace of a square matrix A as tr (A) .We specify priors for U1,

S1 and V1 with the form

f (S1, V1) (dS1) (U ′1dU1) (V ′1dV1) cO
cNcU

f (S1, V1) ∝ exp
{
−cλ

2
tr
(
V ′1M

−1V1S
2
1

)}
2−k |S1|n−k

k∏
i<j

(
s2i − s2j

)
,

cN
cO

=

∫
f (S1, V1) (dS1) (V ′1dV1) , cU =

∫
(U ′1dU1) =

2kπ
Tk
2

Γk
(
T
2

)
cO =

∫
(C ′dC) =

2kπ
k2

2

Γk
(
k
2

) , Γk

(m
2

)
= πk(k−1)/2

k∏
i=1

Γ

[
m− i+ 1

2

]
,

where M is a matrix that can be fixed equal to the identity matrix In for a prior that

is invariant to ordering only, or equal to Σ for a prior that is invariant to both ordering

and scale transformation. The prior for U1 is uniform on the Stiefel manifold (for further

discussion see James (1954)) and the prior for V1 is uniform also whenM = In but not when

M = Σ. We give an explicit expression for cN below. The diagonal elements of the matrix

S1 have a ‘standard’prior which we will show implies that, marginally on F , Λ follows a

Matrix variate t-distribution (Gupta and Nagar, 2000, p. 134) with degrees of freedom equal

to (T + 1− k − n), zero mean and var(vec(Λ)) = M ⊗ Ik 1cλ
1

(T−n−k−1) . The priors for U1, S1

and V1 are all proper. The term cλ is included to permit shrinkage of Λ towards zero or a

more diffuse prior if desired.
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2.1 Parameter expansions

We introduce the nonidentified parameters by two parameter expansions. From the first

expansion, we obtain a normal form for the loading matrix and the second expansion results

in a normal prior for the factors. These expansions do not affect the proper, independent

priors for U , S and V , uniform priors for U and V , and the standard prior for S.

Map from the SVD parameters (U1, S1.V1) to the expanded parameters (U1,Λ
∗) by introduc-

ing the orthogonal matrix C ∈ O (k) via the transformation

U1S1V
′
1 = U1C

′CS1V
′
1 = UΛ∗

U1C
′ = U, CS1V

′
1 = Λ∗. (3)

The expanding parameter C is given a uniform distribution on O (k) : (C ′dC) . The trans-

formation Λ∗ = CS1V
′
1 is a singular value decomposition of Λ∗ such that Jacobian of this

transformation can be calculated using results in, for example, James (1954, p.71). The

transformation of measures for (3) is (U ′1dU1) = (U ′dU), such that the prior now becomes

f (S1) (dS1) (U ′1dU1) (V ′1dV1) (C ′dC)

cNcU
=
p∗ (Λ∗) (dΛ∗) (U ′dU)

cNcU

p∗ (Λ∗) = exp
{
−cλ

2
tr
(
M−1Λ∗′Λ∗

)}
,

cN =

∫
p∗ (Λ∗) (dΛ∗) =

∫
f (S1) (dS1) (V ′1dV1) (C ′dC) =

(
2π

cλ

)nk
2

|M |
k
2 ,

and so Λ∗ = CS1V
′
1 has a normal prior distribution such that p

∗ (Λ∗) has a form proportional

to the density of a zero mean normal distribution with covariance matrix 1
cλ

(M ⊗ Ik). The

semi-orthogonal matrix U has a uniform distribution over Vk,T . In the new parameterization,

FΛ = UΛ∗, the matrix Λ∗ is has a ‘nice’ form and prior but U is restricted to be semi-

orthogonal, and so it would be diffi cult to obtain draws from the posterior.
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To give the parameters a more computationally convenient form and prior distributions, we

transform from (U,Λ∗) to (F,Λ) via the second parameter expansion. Introduce the k × k

rank k matrix κ with k(k+1)
2

free parameters. κ may be, for example, lower triangular or

symmetric. This matrix is used to obtain the following transformations:

UΛ∗ = Uκκ−1Λ∗ = FΛ

where F = Uκ and Λ = κ−1Λ∗. It is easier to work with the transformation A = κ′κ = F ′F

and write the Jacobian of the bijective transformation from (A,U,Λ∗) to (A,F,Λ) (e.g.

Muirhead (1982), p. 58, 66) as

p∗ (Λ∗) (dA) (U ′dU) (dΛ∗)

cNcU
=
p (Λ, F ) J (F ) (dΛ) (dF )

cNcU

J (F ) = 2k |F ′F |−(T−n−k−1)/2 , p (Λ, F ) = exp
{
−cλ

2
tr
(
M−1Λ′F ′FΛ

)}
Clearly the presence of the determinant |F ′F | in the above Jacobian would complicate com-

putation, particularly as we prefer to have a more convenient form such as a normal dis-

tribution for F. Fortunately, we are free to choose the distribution of A and so we let this

matrix have a Wishart Distribution with degrees of freedom such that the prior for A is

proportional to

exp

{
−1

2
tr (A)

}
|A|(T−n−k−1)/2 = exp

{
−1

2
tr (F ′F )

}
|F ′F |(T−n−k−1)/2 .

When we introduce this into the full prior we obtain the following expression of the measure

|A|(T−n−k−1)/2 exp
{
−1
2
tr (A)

}
p∗ (Λ∗) (dA) (U ′dU) (dΛ∗)

cNcUcA
(4)

= exp

{
−1

2
tr (F ′F )

}
|F ′F |(T−n−k−1)/2 p (Λ, F ) |F ′F |−(T−n−k−1)/2 (dΛ) (dF ) c

= exp

{
−1

2
tr (F ′F )

}
p (Λ, F ) (dΛ) (dF ) c
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where c = 2k

cN cU cA
and define cA as

cA =

∫
|A|(T−n−k−1)/2 exp

{
−1

2
tr (A)

}
(dA) = 2(T−n)k/2Γk

(
T − n

2

)
.

We can summarize the transformations used to this point as

Π = U1S1V
′
1 = U1C

′CS1V
′
1 = UΛ∗ = Uκκ−1Λ∗ = FΛ (5)

The resulting joint prior distribution for F and Λ is given by

p (Λ, F ) (dΛ) (dF ) = exp

{
−1

2
tr (F ′F )

}
exp

{
−cλ

2
tr
(
M−1Λ′F ′FΛ

)}
(dΛ) (dF ) c. (6)

Recall that are (Λ, F ) are unrestricted matrices and note also that p (Λ, QF ) = p (Λ, F )

for any orthogonal matrix Q, which confirms that the prior for the space of U1 is uniform.

Integrating (6) with respect to F we get that the marginal prior for Λ is a matrix variate

t-distribution (e.g. Gupta and Nagar, 2000, p. 134) with zero mean and var(vec(Λ)) =

M ⊗ Ik
1
cλ

1
(T−n−k−1) . The resulting conditional priors have convenient normal forms such

that they will be conjugate with the usual specification for the model for y. That is, the

conditional prior for λ = vec (Λ) |F is normal with zero mean and covariance matrix V λ =

M 1
cλ
⊗ (F ′F )−1. The conditional prior for f = vec (F ) |Λ is normal with zero mean and

covariance matrix V F =
[
Ik + cλΛM

−1Λ′
]−1 ⊗ IT . For the chosen transformations and

distributions for the unidentified parameters, C and κ, we have results from Liu and Wu

(1999) ensuring the sampler will converge. Specifically, the transformations we use form

locally compact groups and the priors for the expanding parameters correspond to Haar

measures. Further, the expanding parameters are independent of the identified parameters.

Parameter expansions have been used in earlier work in factor models to produce more

effi cient and simple sampling schemes (see, for a recent example, Ghosh and Dunson, 2009)
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and to accelerate the EM algorithm in factor models (Liu, Rubin and Wu, 1998, Ročková

and George, 2015). The approach in this paper is an application of that developed in Liu

(1994) and Liu and Wu (1999) and shares some of the features of Ghosh and Dunson (2009).

However, a contribution of this paper that distinguishes it from this earlier work is to use

parameter expansion to also achieve invariant inference. This builds upon earlier work on

estimation of reduced rank models (Koop, Léon-González and Strachan (2010) & (2012))

which is natural as the factor model can be represented as a particular type of reduced rank

regression model.

2.2 Posterior Computations

In this section we extend the model to allow exogenous variables, provide priors for the other

parameters in the model and discuss approaches to computing k. The static factor model is

often specified with m exogenous variables collected into the (T ×m) matrix X. After the

parameter expansions in the previous section we obtained the matrix of factors F and the

loading matrix Λ. The model can now be written as

Y = Xβ + FΛ + ε, ε ∼ N (0,Σ⊗ IT ) (7)

f = vec (F ) |λ ∼ N (0, V F ) , λ = vec (Λ) |f ∼ N (0, V λ) , (8)

b = vec (β) ∼ N

(
0,Σ⊗ (X ′X)

−1 1

cβ

)
(9)

where V F =
[
Ik + cλΛM

−1Λ′
]−1 ⊗ IT and V λ = M 1

cλ
⊗ (F ′F )−1. We assume each diagonal

element of Σ = diag {σ2i } has an inverse gamma prior

p
(
σ2i
)
∝
(
σ2i
)− ν+2

2 exp

{
− ν

2σ2iµi

}(
dσ2i
)
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such that

p (Σ) ∝ |Σ|−
ν+2
2 exp

{
−ν

2
tr
(
Σ−1Ω

)}
(dΣ) (10)

where Ω = diag
{
1
µ
1

, 1
µ
2

, . . . , 1
µ
n

}
. To preserve scale invariance requires that the prior for Σ

also be scale invariant. One option is to use the Jeffrey’s prior and set ν = 0 in (10). Another

approach is to set each µ
i
to be some function of the scale of the data. For example, we could

set µ
i

= 1
σ̂2i
where σ̂2i is the sample variance of yi. By setting Ω = diag

{
σ̂21, σ̂

2
2, . . . , σ̂

2
n

}
, the

prior in (10) permits both of these options. The conditional posteriors f |λ, b,Σ, λ|f, b,Σ

and b|f, λ,Σ are normal while the elements on the diagonal of Σ|f, λ, b are inverse gamma

distributions. The precise form of these conditional posteriors are given in the Appendix.

One important question in factor models is the number of factors, k. The model with

no factors occurs at the point Λ = 0 and at this point the factors are excluded from the

likelihood. Therefore we are able to use the Savage-Dickey density ratio (SDDR) to compute

the Bayes factors for k = 0 to k = k∗, B0,k∗ , as (Verdinelli and Wasserman (1995)):

B0,k∗ =
m0

mk∗
=
p (Λ = 0|y)

p (Λ = 0)
cVW

wheremk∗ is the marginal likelihood for the model with k∗ factors, p (Λ = 0|y) is the marginal

posterior of Λ at the point Λ = 0, p (Λ = 0) is the marginal prior for Λ evaluated at the

same point, and cVW is the correction factor proposed by Verdinelli and Wasserman (1995).

When M = In the correction factor cVW is equal to one, and the marginal prior of Λ is

a matrix variate t-distribution so that the value of the prior ordinate can be calculated as

p (Λ = 0) = c(2π)Tk/2, where c was defined next to expression (4). When M = Σ, the

conditional prior of Σ given Λ = 0 depends on k, and therefore the correction factor cVW

becomes different from one. As shown in the Supplemental material B, when M = Σ the
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ratio cVW/p (Λ = 0) is given by:

cVW
p (Λ = 0)

=

(
π

cλ

)nk/2 Γk
(
T−n
2

)
Γk
(
T
2

)
 Γ

(
ν+T
2

)
Γ
(
ν+k+T

2

)
n

n∏
i=1

(
h̃ii
2

) k
2

(11)

where h̃ii is the ith diagonal element of H̃ = ν(Ω) + (Y − Xβ̂)′(Y − Xβ̂), and β̂ = (1 −√
cβ/(1 + cβ))(X ′X)−1X ′Y . With a sequence ofG draws from the posterior, we can compute

the conditional posterior p (Λ|β, F,Σ, y) at Λ = 0 to estimate the required ratio as:

B̂0,k∗ =

1
G

ΣG
i=1p

(
Λ = 0|β(i), F (i),Σ(i), y

)
p (Λ = 0)

cVW ,

where i = 1, .., G indicates the draws from the posterior.

Note that we are able to use the SDDR because the point Λ = 0 belongs to the parameter

space. The SDDR however cannot be used in the context of most previous literature because

the identifying restrictions often imposed on Λ imply that Λ = 0 is no longer a point in the

parameter space. Conversely, although the method of Chib (1995) can be used to calculate

marginal likelihoods in the non-invariant specifications, it is less suited to our specification

because the accuracy of the method relies on being able to estimate the posterior density

accurately at a point of high posterior density. This task is slightly more diffi cult in our

context because we have introduced non-identified parameters, which makes the augmented

posterior density more disperse around the mode. However, the SDDR method has the

advantage that it does not require further calculations beyond the basic estimation algorithm.

The accuracy of both methods to calculate marginal likelihoods decreases with the dimension

of y and the number of factors. In such situations one can use alternative methods such as

that of Chan and Eisenstat (2015) or calculate predictive likelihoods (Geweke and Amisano,

2010), as we illustrate in the empirical applications of Section 4.

In the following section we provide the technical details for the several contributions of this

14



paper. The reader who prefers not to read the technical details in Section 3 and interested

only in applying the approach may prefer to skip to Section 4.

3 An explanation for non-invariance with discussion

In this section we provide an explanation for non-invariance (contribution iii from the intro-

duction). We provide an informal explanation for the invariance followed by a theorem, the

proof for which we leave to the paper’s Supplemental material C. To support this discussion,

we describe existing invariant specifications closely related to the one we propose. We then

outline some standard non-invariant identification schemes that have been used in Bayesian

analysis of factor models to develop a more formal explanation of the source of the non-

invariance. The identification issues with this model are well understood (see, for example,

Lopes and West (2004), Geweke and Zhou (1996) and Anderson and Rubin (1956)). We do

not repeat these discussions here but focus upon the question of invariance.

The cause of the lack of invariance can be explained informally as follows. In the support for

the loading matrix, Λ, there are points where subsets of columns form singular matrices. The

collections of these points form manifolds in the support. Changing the order of the variables

in yt induces a transformation, g, of the loading matrix. These points of singularity in the

support pose no problems for the transformation for the invariant specification as g is smooth,

continuous and homoemorphic in this case. From group theory, we know these conditions

ensure invariance. For the non-invariant specifications, the transformation is discontinuous,

and therefore not bijective or homeomorphic, thus losing invariance. We demonstrate the

importance of this discontinuity for inference on the number of factors with a simulation in

the Supplemental materials D and E.
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The geometric object of interest is the space spanned by the rows of the loading matrix,

p = space (Λ′) . The space p is a k− dimensional plane in n− space. The collection of all k−

planes in n− space is the Grassman manifold, Gn−k,n. For the invariant specification, the

support of p is the Grassman manifold under all orderings and the transformation of Λ with

reordering implies a bijective mapping. With non-invariant specifications the support of p

differs for each ordering. Let i denote a particular ordering of the variables. The ordering

i implies that a submatrix made up of k columns of Λ, Λi, must have full rank. Denote

the points where |Λi| = 0 by Si then the support of p under order i is Li = Gn−k,n − Si.

Under another ordering, j, the support Lj for p may intersect with the points Si and the

transformation g from Li to Lj will not be surjective. The topology of p is not preserved

and at the points |Λj| = 0 the transformation g will have a discontinuity.

Theorem 1 (Discontinuity) The transformation from Li to Lj from reordering the vari-

ables has a discontinuity at |Λj| = 0.

Proof. See Supplemental material C.

The restrictions on the support of p suggest another reason the invariant specification may

be attractive. It is not possible to map from the non-invariant specifications to the invariant

specification with the unrestricted support. However, it is possible to transform from the in-

variant specification to the non-invariant specifications. There may be some reason to prefer

a particular non-invariant specification, or we may be interested in two or more alternative

non-invariant specifications. In this case, we can estimate the model once with the invariant

specification and post-process the results to obtain estimates of the non-invariant models.
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4 Empirical applications

In this section we present two empirical examples to demonstrate the effect of lack of in-

variance of other approaches and that our approach achieves invariance. We also present

evidence on the effi ciency of the sampling algorithm.

4.1 Currency Exchange Rates

We use data on international currency exchange rates relative to U.S. dollar over a time

period of 1045 business days beginning in January 2007 and ending in December 2010. The

returns are computed as yit = 100(pit/pi,t−1 − 1), where pit denotes the daily closing spot

rate. We first use six exchange rates and at the end of this example we expand the dataset

to 20 exchange rates. The six series we analyze first are the Australian Dollar (AUD), Euro

(EURO), South Korean Won (KRW), Japanese Yen (JPY), Canadian Dollar (CAD), and

British Pound (GBP). These represent some of the most heavily traded currencies over the

period. The returns are plotted in Figure 1.

We fit the data using the static factor model in (1) where yt is the vector of six observed

currency returns, ft ∼ iidN (0, Ik) is a 1×k vector of unobserved factors, Λ is an k×n matrix

of factor loadings. We first impose the identification assumption that Λ is upper triangular

with positive diagonal elements. We then compute the marginal likelihoods for four models.

Using the ordering (AUD, EUR, KRW, JPY, CAD, GBP), we compute a single-factor model

and then a two-factor model. Next, with the ordering (AUD, KRW, EUR, JPY, CAD, GBP),

we again compute a single-factor model and then a two-factor model.

The log marginal likelihoods for the invariant specification are computed using the SDDR

described earlier, and for the non-invariant specifications they are computed via the method
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Figure 1: Daily returns of the six currencies.

of Chib (1995) using 100 parallel chains each of length 50000. The results are reported in

Table 1. As the two marginal likelihoods for the models with one factor are almost the same

(i.e., ordering made no difference) we only report one of these. The computed marginal

likelihoods for the two-factors provide striking evidence of the effect of reordering. The log

marginal likelihoods differ by about 142.

Under the ordering (AUD, KRW, EUR, JPY, CAD, GBP) there is a very strong preference

for the two factor model over the one factor model with a log Bayes factor of -63.6. However,

under the ordering (AUD, EUR, KRW, JPY, CAD, GBP), there is a very strong preference

for the one factor model with the log Bayes factor of 78.3. The reordering of the variables

has shifted the evidence on the number of factors in the opposite direction. The invariant

specification selects a model with two factors over the one factor model with a log Bayes

factor of 645 (for M = Σ). The evidence for two factors is therefore overwhelming.
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Table 1: Log marginal likelihoods and the corresponding numerical standard errors for the

competing models.

Model log marginal numerical

likelihood standard error

1-factor (AUD, KRW, EUR, JPY, CAD, GBP) -7572.9 3.40

2-factor (AUD, EUR, KRW, JPY, CAD, GBP) -7636.5 5.64

2-factor (AUD, KRW, EUR, JPY, CAD, GBP) -7494.6 1.16

Figure 2 reports the ineffi ciency factors for blocks of parameters from the model estimated

with the Geweke and Zhou specification (GZ) and the parameter expanded invariant model

(PX). The ineffi ciency measures give an estimate of the number of draws needed to have as

much information about the posterior as we would obtain from one independent draw. The

smaller the ineffi ciency factor the better is the sampler. It is clear that the parameters are

generally much more effi ciently estimated using the expanded parameter specification. These

results are consistent with those found in Ghosh and Dunson (2009). The distributions of

both the loading matrix, Λ, and the factors, F , are less disperse and lower for the parameter

expanded model, but this is also true for the idiosyncratic variances, Σ, and the exogenous

variables coeffi cients, β.

To illustrate how the method performs in higher dimensions, we add to y 14 additional

currencies, so that n = 20. In order to control for possible serial correlation, we use the model

with exogenous variables in (7) with the intercept term and one lag of yt inXt, so thatm = 21

and T = 1043. Because the SDDR has a high variance in high dimensions, we calculate the

marginal likelihood using the adaptive importance sampling method proposed in Chan and
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Figure 2: Box and wisker plots of ineffi ciency factors for blocks of parameters:

(Λ, β, F,Σ−1 (denoted as 1/σ2)) . The models were estimated using Gibbs sampling. GZ

refers to the model with the upper triangular Λ1 with positive elements on the main diago-

nal, and PX refers to the parameter expansion of the invariant specification.
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Table 2: Logs of Marginal Likelihood with 20 exchange rates and Numerical Standard Errors.

k 1 2 3 4 5 6 7

Log ML -19092 -18516 -18397 -18335 -18324 -18367 -18412

NSE 0.08 0.15 0.16 1.24 3.02 4.97 3.86

Eisenstat (2015). Specifically, an importance sampling density for (β,Λ,Σ) is first obtained

by approximating the joint posterior density. Then we compute the importance sampling

estimate using the integrated likelihood, that is, the conditional density of the data marginal

of F , which is available analytically. For each factor model, 10000 posterior draws are used

to compute the importance sampling density. Then, 100000 importance sampling draws are

obtained to calculate the marginal likelihood. Table 2 reports log marginal likelihoods and

numerical standard errors, showing that the marginal likelihood improves up to the model

with 5 factors and then decreases, indicating that the model with 5 factors is the most

adequate.

4.2 The Number of Factors Driving US Macroeconomic Indicators

The dataset is obtained from Stock and Watson (2009), which consists of 190 quarterly

observations from 1959Q3 to 2006Q4 on n = 109 macroeconomic variables. Stock and

Watson (2009) provide a detailed list of the data and its transformation in terms of logs

and differencing. The dataset includes variables on GDP, industrial production, capacity

utilization, purchasing manager’s indices, labor force statistics, housing starts, consumer

prices, commodity prices, average hourly earnings, productivity, interest rates, yield spreads,

exchange rates, stock prices, money bases, business loans, consumer credit and consumer

expectations. The data are first standardized.
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Table 3: Sums of predictive likelihoods in the k-factor model.

k 1 2 3 4 5 6 7

-5545.0 -5493.0 -5425.2 -5400.1 -5388.0 -5335.3 -5360.9

In Table 3 we report the sums of log predictive likelihoods for the last 10 years using a k-

factor model, with k = 1, . . . , 7. Although Stock and Watson (2009) used a dynamic factor

model, here for simplicity we use the static factor model of Section 2. Predictive likelihoods

are the one-step ahead predictive density evaluated at the realized outcome (see Geweke and

Amisano 2010 or Geweke, 1996). Due to the large dimension of yt, predictive likelihoods

can be calculated more accurately than the SDDR, especially when parallel computing is

available. The best performing model is the one with k = 6, which gains as much as 25

points in the log scale with respect to the second best model (k = 7). This result is within

the range suggested by Stock and Watson (2009), who used the method of Bai and Ng (2002)

and found the rank to be between 2 and 10 depending on the criterion used.

5 Concluding remarks

In this paper, we propose a specification for the static factor model that requires no ordering

restrictions and so the choice of number of factors cannot depend upon the chosen ordering.

By augmenting the posterior with a number of unidentified parameters with appropriate

priors, the model can be computed using standard distributions and the draws are relatively

effi cient.

The specification we propose nests many of the existing and popular specifications used in

factor analysis. Thus each of these specifications are attainable directly from the output

from estimating our specification.
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Although for convenience we have only considered the static factor model, this approach is

readily extended to allow dynamics in the state equation. Such an extension would involve

using an informative prior on the space sp (F ) such as the orthogonal projective Gaussian

distribution as used in Koop, Léon- González and Strachan (2011). This would involve

transforming from F to Fc = RF where the matrix R captures the dynamics in Fc. For

example, if the rows of F follow a random walk as fc,t = fc,t−1 + ft = Σt
i=1fi then we would

define R as

R =



1 0 · · · 0

1 1 0

...
. . .

...

1 1 · · · 1


.

Alternatively R = R (ρ) may be a function of parameters to allow richer dynamics such as in

autoregressive processes. For example, an AR (1) state equation fc,t = ρfc,t+ft = Σt
i=1ρ

t−ifi

and so in which case we define R as

R (ρ) =



1 0 · · · 0

ρ 1 0

...
. . .

...

ρt−1 ρt−2 · · · 1


.

The full matrix of factors then becomes Fc = R (ρ)F which implies a prior for a process

with a zero mean process with covariance matrix (Ik + cλΛΛ′)−1 ⊗
(
R (ρ)′R (ρ)

)−1
.

Another implication of the invariant specification, which we have exploited in this paper, is

that we are able to compute the Bayes factors for the number of factors using the Savage-

Dickey density ratio. This approach requires only the conditional posterior and the con-

ditional prior for Λ. This greatly simplifies the computation of the posterior probabilities.
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This approach cannot be used in the non-invariant specifications as they exclude the point

Λ = 0 from the support of the loading matrix parameter.

In computing the models in this paper, it became evident that there is a relationship between

the computational effi ciency and accuracy of marginal likelihood estimates, and the proximity

of the posterior to the point of discontinuity. Models that are specified such that the posterior

is invariant to reordering tend to have lower numerical standard errors. The accuracy of

estimation of the marginal likelihood plays an important role in the confidence we have in

the conclusions we make. This relationship is a topic of current research.
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Appendix: Conditional Posterior Densities

The likelihood function can be written as

L ∝ |Σ|−T/2 exp

[
−1

2
tr
(
Σ−1 (Y −Xβ − FΛ)′ (Y −Xβ − FΛ)

)]

so that the conditional posteriors can be readily derived. First define

a =

 vec (β)

vec (Λ)

 =

 b

λ


W = [In ⊗X In ⊗ F ] = (In ⊗ ω) ,

ω = [X F ] ,

and f = vec (F ) . Vectorizing the T × n error matrix ε gives the useful linear forms for f

and a. Let y = vec (Y ) , then let x = (In ⊗X) and l = (Λ′ ⊗ IT ) , and define ỹ = y−xb such
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that we can write

vec (Y −Xβ − FΛ) = y − (In ⊗X) b− (Λ′ ⊗ IT ) f

= ỹ − lf

= y − (In ⊗X) b− (Ik ⊗ F )λ

= y −Wa

As the vectors f and a have normal priors and enter the likelihood linearly (conditional on the

other parameters) the conditional posteriors result from standard computations. Specifically,

the conditional posteriors have the following forms:

f |β,Λ,Σ, Y ∼ N
(
f, V F

)
, a|F,Σ, Y ∼ N

(
a, V a

)
, σ2i |a, F ∼ µiχ

−2
ν

where

f = V F

(
ΛΣ−1 ⊗ IT

)
(y − xb) = vec

(
(Y −Xβ) Σ−1Λ′

[
Λ
(
Σ−1 + cλM

−1)Λ′ + Ik
]−1)

,

V F =
[
Λ
(
Σ−1 + cλM

−1)Λ′ + Ik
]−1 ⊗ IT ,

a = V aW
′ (Σ−1 ⊗ IT ) y = V a

 vec(X ′Y Σ−1)

vec(F ′Y Σ−1)

 ,

V a =
[
W ′ (Σ−1 ⊗ IT )W + V −1a

]−1
=

 Σ−1 ⊗X ′X Σ−1 ⊗X ′F

Σ−1 ⊗ F ′X Σ−1 ⊗ F ′F
+ V −1a


−1

V a =

 Σ⊗ (X ′Xcβ)−1 0

0 M ⊗ (cλF
′F )−1


y = vec (Y )

µi = hii

where ν = T + m + ν, when M = In and ν = T + k + m + ν, when M = Σ. In the above

expression, hii is the ith diagonal element of H, and H = ε′ε+νΩ+ cββ
′X ′Xβ whenM = In
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and H = ε′ε + νΩ + cββ
′X ′Xβ + cλΛ

′F ′FΛ when M = Σ. The notation µiχ
−2
ν refers to µi

times an inverse chi-squared with ν degrees of freedom (e.g. Lee (2012, p.377)).
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