
Measuring Inflation Expectations Uncertainty Using

High-Frequency Data

Joshua C.C. Chan∗

Economics Discipline Group,

University of Technology Sydney,

Yong Song

Department of Economics,

University of Melbourne

September 2017

Abstract

Inflation expectations play a key role in determining future economic outcomes. The

associated uncertainty provides a direct gauge of how well-anchored the inflation

expectations are. We construct a model-based measure of inflation expectations

uncertainty by augmenting a standard unobserved components model of inflation

with information from noisy and possibly biased measures of inflation expecta-

tions obtained from financial markets. This new model-based measure of inflation

expectations uncertainty is more accurately estimated and can provide valuable in-

formation for policymakers. Using US data, we find significant changes in inflation

expectations uncertainty during the Great Recession.
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1 Introduction

Inflation expectations play a key role in price and wage setting behavior, and therefore

have a substantial influence on future economic outcomes. Policymakers and central

bankers in particular pay close attention to measures of long-run inflation expectations—

these expectations reveal information about the credibility of monetary policy and are

an important input in the formulation of macroeconomic policy in general. Given their

importance, there is now a large and growing literature on combining econometric models

of trend inflation with inflation expectations from surveys of professionals or consumers to

obtain better estimates of inflation expectations or better inflation forecasts. Prominent

examples include Kozicki and Tinsley (2012), Wright (2013), Nason and Smith (2013)

and Mertens (2016).

Building on this line of research, we investigate the information content of market-based

measures of inflation expectations for refining estimates of inflation expectations volatility

or uncertainty.1 Such a measure is useful for several reasons. Monetary policy tools work

differently if inflation expectations are firmly anchored than if they are not. In particular,

monetary policy is thought to be most effective when inflation expectations are stable.

Hence, a measure of inflation expectations uncertainty provides a direct gauge of how well-

anchored the inflation expectations are. This measure can be used to assess, for example,

the effectiveness of forward guidance. A more refined measure of inflation expectations

uncertainty can also be used to develop by a better second moment policy such as a

financial stabilization package to reduce systemic risk.

To construct such a measure of inflation expectations uncertainty, we develop a new

bivariate unobserved components model. We take a model-based approach and combine

direct measures of inflation expectations uncertainty and information in model-based

estimates. In essence, we aim to view these direct measures of inflation expectations

uncertainty through the lens of an econometric model. Our point of departure is the

univariate unobserved components model with stochastic volatility (UCSV) of Stock and

Watson (2007) that is widely used to model inflation (see, e.g., Chan, Koop, and Potter,

2013; Clark and Doh, 2014). Under some assumptions, trend inflation from this model

should correspond to long-run inflation expectations. Hence, the time-varying volatility

of trend inflation can be interpreted as long-run inflation expectations uncertainty.

1Here the uncertainty is about long-run inflation expectations, which is different from uncertainty
about long-run inflation.

2



We augment this model-based measure of uncertainty with information from market-

based inflation expectations. Specifically, we obtain breakeven inflation computed from

long-horizon real and nominal bonds, which is available daily. We then compute the

associated realized volatility (see, e.g., Andersen et al., 2003), say, within a month. The

constructed realized volatility gives a quantitative measure of the variation of inflation

expectations, but it may also reflect other idiosyncratic factors such as volatility of risk

premiums. As such, it may not be appropriate to directly equate the realized volatility

with the volatility of inflation expectations. However, we can still incorporate this ad-

ditional information into the UCSV model by adding a new measurement equation that

relates the realized volatility to the latent time-varying volatility of trend inflation. Using

this bivariate model, we can extract useful information in the realized volatility to refine

estimates of trend inflation volatility.

Using US data, we find that the constructed measure of realized volatility helps improve

the estimation precision of inflation expectations uncertainty compared to the benchmark

UCSV model. We find significant changes in inflation expectations uncertainty during

the Great Recession, in contrast to the largely flat estimates from the UCSV model. By

incorporating the realized volatility, the new model is able to pick up drastic changes in

inflation expectations uncertainty. Using the marginal likelihood as a model comparison

criterion, we show that this new model compares favorably to the benchmark. In addi-

tion, in a pseudo out-of-sample forecasting exercise, the new model that incorporates the

realized volatility measure provides better density forecasts compared to the benchmark.

Our paper is also related to the literature on measuring uncertainty and studying its

impact on the economy. Since the seminal paper by Bloom (2009), many studies have con-

tributed to this literature, including Bloom (2013), Caggiano, Castelnuovo, and Groshenny

(2014), Jurado, Ludvigson, and Ng (2015) and Mumtaz and Theodoridis (2015). In par-

ticular, Berument, Yalcin, and Yildirim (2009) and Chan (2017) study the impact of

inflation volatility on inflation. Our paper provides a new measure of inflation expecta-

tions volatility, and it would be interesting in future work to study its impact on other

macroeconomic variables.

The rest of this paper is organized as follows. Section 2 introduces the model and discusses

the interpretation of trend inflation volatility. Section 3 defines the breakeven inflation

and explains how the realized volatility measure is constructed. The data and estimation

are outlined in Section 4, and Section 5 presents the estimation and forecasting results

using US inflation data. For robustness checks, Section 6 presents additional results using
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variations of the proposed model and different data sources. Finally, Section 7 concludes

and discusses some future research direction.

2 Modeling Trend Inflation Uncertainty

The trend-cycle decomposition of inflation, πt, is motivated by the idea that it can be

usefully viewed as the sum of two separate components: a nonstationary component

that represents the trend inflation, π∗

t , and a transitory deviation from the trend, or the

inflation gap, uπt :

πt = π∗

t + uπt . (1)

To identify the two components, one typically makes assumptions that imply

lim
j→∞

Etπt+j = lim
j→∞

Etπ
∗

t+j = π∗

t (2)

and

lim
j→∞

Etu
π
t+j = 0, (3)

where Et is the conditional expectation given the information at time t. For example, if

one assumes that π∗

t follows a random walk and uπt follows a stationary AR(1) process

with 0 mean, then both conditions are satisfied. The decomposition in (1) together with

the conditions in (2) and (3) maybe seen as a generalization of the Beveridge-Nelson

decomposition (Beveridge and Nelson, 1981). In our empirical work the inflation πt is in

monthly frequency.

Under the conditions in (2) and (3), we may view the trend inflation π∗

t as some long-

horizon inflation expectation. Specifically, given the information at time t, the expected

future inflation for period t + j for some large j should provide an estimate of π∗

t . A

few recent papers have exploited this relationship and used survey long-horizon inflation

expectations made at time t to produce estimates of current trend inflation, with Kozicki

and Tinsley (2012) and Faust and Wright (2013) being prominent examples.

Our modeling approach is similar to the one in Chan, Clark, and Koop (2017), where

they extend the unobserved components model with stochastic volatility (UCSV) of Stock

and Watson (2007) by incorporating survey-based long-run inflation expectations. More

specifically, an additional measurement equation is added to include long-run inflation

expectations, xt, obtained from the Federal Reserve Board of Governor’s FRB/US econo-
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metric model and Blue Chip Consensus. They find that that long-run inflation expecta-

tions can substantially refine estimates of trend inflation over popular alternatives. But

it is inappropriate to equate trend inflation with the long-run inflation expectations.

We exploit a different source of information for a different purpose. Specifically, we

investigate if the realized volatility of market-based long-horizon inflation expectations

at time t—which we denote as zt—provides useful information for the trend inflation

uncertainty. Heuristically, because we observe the market-based measure of inflation

expectations at daily frequency, we could obtain an estimate of the variance of inflation

expectations at lower frequency, say, monthly, as in Andersen, Bollerslev, Diebold, and

Labys (2003) and Barndorff-Nielsen and Shephard (2002a), and use it as a measure of

inflation expectations uncertainty.

Barndorff-Nielsen and Shephard (2002b) apply the realized variance method to a very

flexible stochastic volatility framework. In this framework, a time series y(t) satisfies the

stochastic differential equation

dy(t) = µ(t)dt+ σ(t)dW (t),

where µ(t) is the drift, σ(t) is the spot volatility and W is the Brownian motion. Under

weak assumptions, the variance of y(t) can be consistently estimated by the realized

variance, which is defined as
q∑

i=1

(
y(tqi )− y(tqi−1)

)2

for any sequence of partitions tq0 = 0 < tq1 < ... < tqq = t with sup(tqi − tqi−1) → 0 as

q → ∞. This powerful result does not require any knowledge on the process of the

instantaneous volatility σ(t) nor the drift term in the stochastic differential equation. See

Barndorff-Nielsen and Shephard (2002b) for more details.

However, since the theory of realized volatility relies on infill asymptotics—where more

data are collected by sampling more intensely in a fixed domain—it may not be reason-

able to assume that the realized volatility measure from the daily observations would be

consistent for the integrated variation at monthly frequency. But one may still view this

measure as a potentially useful source of information inspired by the realized volatility

theory. We will delineate data construction in more details in the next section.

We take the UCSV model of Stock and Watson (2007) and augment it with an addi-

tional measurement equation of the realized volatility zt. More specifically, consider the
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following model:

πt = π∗

t + uπt , uπt ∼ N (0, eht), (4)

π∗

t = π∗

t−1 + uπ
∗

t , uπ
∗

t ∼ N (0, egt), (5)

ht = ht−1 + uht , uht , ∼ N (0, σ2
h), (6)

gt = gt−1 + ugt , ugt , ∼ N (0, σ2
g), (7)

log zt = a0 + a1gt + uzt , uzt ∼ N (0, σ2
z), (8)

where ht and gt are respectively the log volatility of the transitory and trend components.

The UCSV model of Stock and Watson (2007) is defined by (4)–(7). The new equation

is (8), which relates the log realized volatility measure to gt, the log volatility of the

trend inflation. Since zt is likely to be a noisy and potentially biased measure of trend

inflation volatility, the measurement equation (8) allows us to estimate the relationship

instead of imposing equality. For example, by allowing the parameters a0 and a1 to be

estimated, we can investigate whether equating the log realized volatility measure with

the log volatility of trend inflation is a sensible thing to do. In particular, if log zt is an

unbiased measure, we would expect that a0 = 0 and a1 = 1.

In principle one could entertain an additional measurement equation that relates a market-

based long-term inflation expectation measure (e.g., the monthly average of the daily

breakeven inflation) to the trend inflation π∗

t . In preliminary work we find that the per-

formance of the model deteriorates when this additional source of information is added;

there are noticeable discrepancies between the market-based measure and the model-

based trend inflation. This likely reflects the fact that breakeven inflation includes not

only inflation expectations but also liquidity and inflation risk premiums. While there are

a few recent papers, such as Christensen, Lopez, and Rudebusch (2010) and Grishchenko

and Huang (2012), that aim to decompose the breakeven inflation into a purely inflation

expectations measure and risk premiums, these approaches often involve additional mod-

eling and assumptions about how risk is priced. We therefore do not use the level of the

market-based long-term inflation expectations.

This discussion raises the question of the quality of the realized volatility constructed,

given that the breakeven inflation includes liquidity and inflation risk premiums. In next

section we argue that as long as the risk premiums do not change drastically within a

month, the constructed realized volatility should be a reasonable estimate of the under-

lying volatility. Further, in Section 5 we show empirically that the constructed realized
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volatility can refine model estimates and improve inflation forecasts. Finally, as a ro-

bustness check, we construct an alternative realized volatility measure that adjusts for

liquidity premium in Section 6.2, and the corresponding estimates remain essentially the

same.

3 Realized Volatility of Inflation Expectations

In this section we discuss how our measure of realized volatility of market-based long-

horizon inflation expectations zt is constructed. These calculations are based on the

so-called breakeven inflation or inflation compensation, which is often interpreted as a

measure of expected inflation. More specifically, the breakeven inflation is the inflation

rate at which the investor receives the same expected return from holding either nominal

or inflation-protected bonds. The breakeven inflation reflects expected inflation—and

empirical studies (e.g., Gürkaynak, Levin, and Swanson, 2010a) typically interpret it

as such. But it also reflects compensation investors are demanding for risks associated

with the uncertainty about future inflation or liquidity differential between the real and

nominal bond markets. One main goal of our paper is to investigate whether the realized

volatility of this market-based inflation expectations measure is consistent with its model-

based counterpart.

Let r
(k)
t represent the real interest rate on a k-period bond and let i

(k)
t denote the corre-

sponding nominal interest rate. The breakeven inflation between periods k1 and k2 with

k2 > k1 is calculated as

ei(k1,k2) =
k2(i

(k2) − r(k2))− k1(i
(k1) − r(k1))

k2 − k1
.

This quantity is commonly used as a measure of expected inflation between periods k1

and k2. For example, if k1 = 2 and k2 = 3, then ei(2,3) may be interpreted as the average

expected inflation between year 2 and 3. One often uses ei(5,10) as a measure of long-

horizon inflation expectations, although other measures are also used (see, e.g., Jochmann,

Koop, and Potter, 2010). In our empirical work, the real and nominal interest rates are

the US real and nominal Treasury security yields taken from the Treasury Inflation-

Protected Securities (TIPS) market. For further discussion of the TIPS market, see, e.g.,

Potter and Rosenberg (2007). We use these daily long-horizon inflation expectations to

construct the relevant realized volatility.
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The construction of realized volatility for inflation expectations is complicated by the fact

that this market-based measure of inflation expectations does not only reflect inflation

expectations, but also includes risk premiums associated with future inflation uncertainty

as well as the difference in liquidity between the nominal and real bond markets. Hence,

using the level of breakeven inflation as a measure of inflation expectations might be

problematic. However, if such risk premiums are constant within a month, they can be

removed by using demeaned data.

Specifically, let ei
(k1,k2)
t,i denote the breakeven inflation on the i-th day in month t and

write

ei
(k1,k2)
t,i = π

(k1,k2)
t,i + φt,

where π
(k1,k2)
t,i is the expected average inflation between periods k1 and k2 given the infor-

mation on the i-th day in month t and φt is a risk premium term that is independent of

i. Then, it is easy to see that ei
(k1,k2)
t,i − ei

(k1,k2)

t is independent of φt, where ei
(k1,k2)

t is the

average of the daily observations within month t. Therefore, we construct the realized

volatility by using the demeaned quadratic variation as

zt =
1

nt

nt∑

i=1

(
ei

(k1,k2)
t,i − ei

(k1,k2)

t

)2

,

where nt is the number of daily observations in month t.

In the context of high-frequency financial data (e.g., stock returns observed every 5 min-

utes), the quadratic variation is a simple estimator for the daily volatility that has good

properties. In particular, since the quadratic variation of continuous finite-variation pro-

cess is zero (see, e.g., property (ii) of Proposition 2 in Andersen et al., 2003), the mean

component becomes irrelevant for the quadratic variation. However, these results are

based on infill asymptotics which might not apply in our context as there are on average

only 22 daily observations in each month.2

This discussion is meant to provide a motivation for the use of an imperfect, noisy indi-

cator to enrich the UCSV model. As such, in the measurement equation (8) for zt, we

allow for the potential bias associated with this measurement problem. The condition

that risk premiums remain constant within the month might still be too restrictive in

2In addition to the quadratic variation discussed above, other realized volatility construction methods
such as bipower variation (Barndorff-Nielsen and Shephard, 2004), flat-top realized kernel (Barndorff-
Nielsen et al., 2008) and non-negative realized kernel (Barndorff-Nielsen et al., 2011) are proposed to
deal with jumps and microstructure noise. All these methods rely on infill asymptotics, and no simple
small sample properties are available to the best of our knowledge.
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practice. In Section 6.2 we investigate whether the presence of liquidity premium distorts

our measure of realized volatility. By using an alternative measure of realized volatility

that adjusts for liquidity premium, we conclude that the variation in liquidity premium

does not substantially affect the estimation results. In addition, we show in Section 5

that the constructed realized volatility helps refine the estimates and improve inflation

forecasts.

4 Data and Estimation

In this section we describe the data source and outline the posterior sampler. The daily

real and nominal interest rates used to compute our measure of realized volatility of

inflation expectations are the US real and nominal Treasury security yields taken from

the Treasury Inflation-Protected Securities (TIPS) market. Since bond yields from the

TIPS market are only available relatively recently, we restrict our sample to January 2003

to December 2015. We use annualized US monthly CPI inflation rate as our inflation

measure. In our baseline results, we use the maturities of 5 and 10 years. That is, the

breakeven inflation is ei(5,10). All data are sourced from the Federal Reserve Bank of

St. Louis economic database. In Appendix B we report results based on the breakeven

inflation ei(7,10). The estimation results are broadly similar to the baseline case.

The model (4)–(8) is estimated using Markov chain Monte Carlo (MCMC) methods and

the details are delineated in Appendix A. To summarize the posterior sampler, the

parameters and the latent states are partitioned into five blocks:

1. g = (g1, . . . , gT )
′ is the vector of log volatility of the trend inflation;

2. h = (h1, . . . , hT )
′ is the vector of log volatility of the transitory component of

inflation;

3. π
∗ = (π∗

1, . . . , π
∗

T )
′ is the vector of trend inflation;

4. (σ2
g , σ

2
h, σ

2
z) is the collection of the error variances;

5. a = (a0, a1)
′ is the vector of regression coefficients in the inflation expectation

uncertainty equation (8).

Each block of parameters is simulated conditional on the other blocks. After discarding
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a burn-in sample, the sample of the random draws is used for inference. We refer the

readers to Appendix A for technical details.

5 Empirical Results

Before presenting results from the model (4)–(8), we conduct a preliminary analysis to

assess how well our measure of realized volatility of long-horizon inflation expectations

matches some conventional estimates of inflation expectations uncertainty. To that end,

we estimate the UCSV model of Stock and Watson (2007) using only inflation data, and

report the estimates of the log volatility corresponding to the trend inflation. We also

plot the log realized volatility constructed by using the real and nominal bond yields as

discussed in Section 3. The results are reported in Figure 1.

Not surprisingly, the realized volatility is much nosier than the trend stochastic volatility

estimates. There is a clear comovement between these two quantities, though they diverge

in certain episodes. For example, the realized volatility sharply increases in 2008-2009 at

the onset of the Great Recession. While the trend stochastic volatility estimate increases

as well in that period, the rise is not as large. These observations suggest that the realized

volatility measure is potentially useful in providing additional information for estimating

the inflation expectations uncertainty, but it might be inappropriate to treat the realized

volatility as an unbiased estimate of the trend stochastic volatility.

2004 2006 2008 2010 2012 2014 2016
−6

−5

−4

−3

−2

−1

0

1

2

 

 
log RV
trend SV

Figure 1: The log realized volatility measure and the log volatility estimates corresponding
to the trend inflation under the UCSV model.
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5.1 Inflation Expectations Uncertainty

We first report the stochastic volatility estimates from the model (4)–(8). That is, we ex-

tend the UCSV model of Stock and Watson (2007) by incorporating the realized volatility

measure zt as specified in (8). We refer to this model as UCSV-RV. For comparison we

also present the estimates from the UCSV model. The results are depicted in Figure 2.

The most noticeable difference between the estimates from the two models occurs at the

onset of the Great Recession in 2008. Under UCSV the inflation expectations uncertainty

exhibits slow and gradual movements, and peaks only in 2011. This is intuitive as the

UCSV model uses only inflation data; under this model the inflation expectations volatil-

ity is assumed to change slowly as specified in (7). Hence, by construction the UCSV

gives smooth estimates of inflation expectations uncertainty.

In contrast, the inflation expectations uncertainty under UCSV-RV peaks in the first

quarter of 2009, reflecting the sudden and drastic drop of inflation, as well as the surge

of realized volatility in late 2008 and early 2009. By incorporating the realized volatil-

ity measure, the UCSV-RV model is able to pick up drastic changes in the inflation

expectations uncertainty.

2004 2006 2008 2010 2012 2014 2016
0

0.5

1

1.5

2

2004 2006 2008 2010 2012 2014 2016
0

0.5

1

1.5

2

Figure 2: Stochastic volatility estimates expressed in standard deviations exp(gt/2) from
UCSV-RV (left panel) and UCSV (right panel). The shaded areas represent the 16- and
84-percentiles.

In addition, Figure 2 also shows the associated 68% credible intervals of the estimates.3

Since the UCSV-RV model incorporates more information, in general the volatility of the

3Under the normal distribution, the probability of being within plus or minus one standard deviation
from the mean is about 0.68.
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inflation expectations is estimated more precisely compared to UCSV, as evidenced by

the typically narrower credible intervals. For example, the 68% credible interval under

UCSV in December 2015 is about 2.5 times wider than that of UCSV-RV.

The only exception occurs at the onset of the Great Recession, when the credible in-

tervals of UCSV-RV become noticeably larger. This increase in uncertainty is due to

the conflict between two sources of information: the realized volatility measure increases

markedly at the onset of the Great Recession, whereas the state equation (7) dictates a

smooth evolution of the inflation expectations volatility. Even though the former source

of information dominates the posterior estimates, the model registers a higher level of

parameter uncertainty.

Overall, the results show that adding the information in the realized volatility measure

changes the estimates of inflation expectations uncertainty. Moreover, this additional

information typically refines the inflation expectations uncertainty estimates.

Lastly, we plot the filtered estimates of the inflation expectations uncertainty in Figure 3.

As expected, the filtered estimates are more volatile compared to the smoothed estimates.

However, both series exhibit broadly similar trends. In particular, the filtered estimates

sharply increase in early 2008 at the onset of the Great Recession. These results suggest

that the model can potentially provide policymakers with timely information on inflation

expectations uncertainty.

2004 2006 2008 2010 2012 2014 2016
0

0.2

0.4

0.6

0.8

1

1.2

1.4

filtered
smoothed

Figure 3: Stochastic volatility filtered and smoothed estimates expressed in standard
deviations exp(gt/2) from UCSV-RV.
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5.2 Inflation Expectations

To investigate how the inclusion of realized volatility measure affects the trend inflation

estimates, we report in Figure 4 the estimates from UCSV-RV. For comparison, we also

present estimates from a version that also incorporates the level of breakeven inflation.

Specifically, let xt denote the average breakeven inflation in month t. We then augment

our model with the additional measurement equation:

xt = b0 + b1π
∗

t + uxt , uxt ∼ N (0, σ2
x). (9)

We call this variant UCSV-RV-BE. Finally, we also report results from the UCSV model

of Stock and Watson (2007).

2004 2006 2008 2010 2012 2014 2016
−3

−2

−1

0

1

2

3

4

5

 

 

UCSV−RV
UCSV−RV−BE
UCSV
x

t

Figure 4: Trend estimates from UCSV-RV, UCSV-RV-BE and UCSV.

Comparing the estimates from UCSV-RV and UCSV, it is clear that they are remarkably

similar in most of the sample. The exception is the few months in the early phase of

the Great Recession. For example, in November 2008 the trend estimate under UCSV-

RV is about 1.9%, whereas that under UCSV is 2.6%. This reflects the heightened trend
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inflation or inflation expectations uncertainty under UCSV-RV, and the model gives more

weight to the actual inflation data. Since the inflation rate was negative, this drags down

the trend inflation estimate.

Interestingly, the estimates under UCSV-RV-BE become negative during the Great Re-

cession, partly due to the sudden drop of the breakeven inflation. These results confirm

the conclusion in Faust and Wright (2013), who warn against interpreting the breakeven

inflation as a pure measure of inflation expectations. In addition, we show in Section 5.4

that UCSV-RV-BE fits the inflation data relatively poorly compared to the other two

models.

5.3 Parameter Estimates

In this section we report the posterior estimates of a few parameters of interest to highlight

the properties of the proposed model in (4)–(8). One main question we wish to address is:

Is the realized volatility measure a useful estimate of the underlying inflation expectations

uncertainty? To answer that question, we plot the prior and posterior densities of a0 and

a1 in Figure 5. Recall that a0 and a1 are respectively the intercept and slope of the log

realized volatility equation in (8). If the log realized volatility is an unbiased measure of

the underlying inflation expectations uncertainty, we expect a0 = 0 and a1 = 1.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4
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0.6

0.7

−2 −1 0 1 2 3 4
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0.4

0.6

0.8

1

1.2

1.4

 

 
posterior
prior

Figure 5: Prior and posterior densities of a0 (left panel) and a1 (right panel).

The left panel of Figure 5 shows that the posterior density of a0 is centered around −0.5,

suggesting some evidence of bias. However, the parameter uncertainty is sufficiently large

that the density has substantial mass around 0. In fact, the Bayes factor in favor of the
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hypothesis that a0 = 0 is 0.98, showing equal evidence in favor and against a0 = 0.

In contrast, the posterior density of a1 is centered around 1 and has more mass around

that value compared to the prior. The Bayes factor in favor of the hypothesis that

a1 = 1 is 2.9, indicating some evidence that a1 = 1. Overall, we conclude that the

realized volatility provides useful information for estimating the inflation expectations

uncertainty, but it may not be a perfectly unbiased measure.

Next, we report in Table 1 the posterior estimates of σ2
z , the error variance in the log

realized volatility equation. The posterior mean of σ2
z is 0.66, compared to the prior mean

of 0.3. This variance estimate is relatively large, suggesting that the realized volatility is a

noisy measure of the underlying inflation expectations uncertainly. This is also apparent

in Figure 1.

Table 1: Posterior estimates of selected parameters.

parameter a0 a1 σ2
z

mean −0.53 1.04 0.66
std. dev. (0.71) (0.35) (0.09)

5.4 Model Comparison

In this section we provide some evidence that the proposed model is favored by the

data. Specifically, we compute the marginal likelihood for UCSV, UCSV-RV and UCSV-

RV-BE. Each marginal likelihood estimate is computed by decomposing the marginal

density of the inflation data as the product of predictive likelihoods. In particular, let

π1:t = (π1, . . . , πt)
′ denote the inflation data up to time t. Then, we can factor the

marginal likelihood for model Mk as follows:

p(π |Wk,Mk) = p(π1 |W1,k,Mk)
T−1∏

t=1

p(πt+1 |π1:t,W1:t,k,Mk),

where p(πt+1 |π1:t,W1:t,k,Mk) is the predictive likelihood and W1:t,k is the set of addi-

tional data up to time t used in model Mk (e.g., the realized volatility or the level of

breakeven inflation).

Therefore, even though some models use more than inflation data, the marginal likeli-

hoods thus computed are comparable across models. The results are reported in Table 2.
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Table 2: Log marginal likelihood estimates of selected models.

UCSV UCSV-RV UCSV-RV-BE
log marginal likelihood −415 −412 −423

Our baseline model UCSV-RV is the best among the three models, showing that adding

the realized volatility measure improves the model fit relative to the increase in model

complexity. For example, the Bayes factor in favor of UCSV-RV against UCSV is about

20 (≈ e3). In other words, if we assume both models are equally probable a priori, the

former is 20 times more likely than the latter given the data. Interestingly, even though

the UCSV-RV-BE model has the most information, its performance is worse than even

UCSV. This result suggests that there are large discrepancies between the breakeven

inflation and the model-based trend inflation.

5.5 Forecasting Results

In this section we conduct a recursive forecasting exercise to evaluate the forecast per-

formance of the proposed model in terms of its density forecasts of CPI inflation. To

evaluate the m-step-ahead density forecast p(πt+m |π1:t, z1:t), where π1:t and z1:t are re-

spectively the inflation and realized volatility data up to time t, one natural measure is

the predictive likelihood p(πt+m = πo
t+m |π1:t, z1:t)—i.e., the predictive density of πt+m

evaluated at the observed value πo
t+m. It is clear that if the actual outcome πo

t+m is likely

under the density forecast, the value of the predictive likelihood will be large, and vise

versa. We then summarize the performance of the density forecasts using the sum of log

predictive likelihoods:
T−m∑

t=t0

log p(πt+m = πo
t+m |π1:t, z1:t),

where t0 is the time index for the start of the evaluation period. The evaluation period

for our forecasting exercise is from January 2005 to December 2015.

For easy comparison, we report in Table 3 the differences of the sum of log predictive

likelihoods from those of the UCSV model. Positive values indicate better forecast per-

formance than the benchmark. For all the forecast horizons considered, the proposed

UCSV-RV outperforms the UCSV model, whereas UCSV-RV-BE does worse than UCSV

in 1- and 4-step-ahead forecasts.
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Table 3: Sums of log predictive likelihoods relative to UCSV.

1-step-ahead 2-step-ahead 3-step-ahead 4-step-ahead
UCSV-RV 3.4 8.5 7.4 6.0
UCSV-RV-BE −7.2 0.4 1.6 −1.7

To investigate the forecast performance of UCSV-RV in more detail, we plot in Figure 6

the cumulative sums of log predictive likelihoods over the whole evaluation period (relative

to UCSV) for 1- and 4-step-ahead forecasts. It is clear from the figure that UCSV-RV

consistently outperforms the benchmark. By contrast, UCSV-RV-BE performs better

than UCSV only early in the sample; its performance has deteriorated against UCSV

since the onset of the Great Recession. These results again suggest that while one should

not interpret the breakeven inflation as purely inflation expectation, the realized volatility

constructed from the breakeven inflation is useful in refining estimates of trend inflation

volatility, which in turn helps provide better inflation density forecasts.
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Figure 6: Cumulative sums of log predictive likelihoods relative to UCSV.

6 Additional Models and Alternative Data Sources

In this section we present additional results using variations of the proposed model and

different data sources. The primary objective of this exercise is to check the robustness

of the main results and to investigate the information content of alternative data sources.
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6.1 Different Model Specifications

First, we investigate the modeling assumption that the constructed realized volatility does

not react to movements in ht, the log volatility of the transitory component of inflation.

To that end, we consider a version of the UCSV-RV model where (8) is extended to

include ht as a covariate:

log zt = a0 + a1gt + a2ht + uzt , uzt ∼ N (0, σ2
z).

We call this variant UCSV-RV-h. Clearly, this model includes UCSV-RV as a special

case with a2 = 0.

Figure 7 plots the posterior density of a2. It is clear that the posterior density has

substantial mass around small values. In fact, the posterior mean of a2 is estimated to

be 0.2 with a 90% credible interval (−0.11, 0.48)—which includes 0. Moreover, the Bayes

factor in favor of the hypothesis that a2 = 0 is 1.02, showing equal evidence in favor and

against the hypothesis that a2 = 0.

We plot the estimates of inflation expectations uncertainty from UCSV-RV-h in Figure 7.

These estimates are fairly similar to those of our baseline model UCSV-RV. In partic-

ular, the inflation expectations uncertainty sharply increases at the onset of the Great

Recession, even though the magnitude of the increase is smaller compared to the baseline

model.
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Figure 7: Prior and posterior densities of a2 (left panel) and stochastic volatility estimates
expressed in standard deviations exp(gt/2) from UCSV-RV and UCSV-RV-h (right panel).

Next, we consider a variant of the baseline model in which the realized volatility equation
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also has stochastic volatility. This is motivated by the concern that the volatility of the

realized volatility might be time-varying over the sample period. Specifically, we replace

(8) with

log zt = a0 + a1gt + uzt , uzt ∼ N (0, evt),

where the log volatility vt follows a random walk. This variant is denoted as UCSV-RV-

SV.

This version has similar support as the baseline UCSV-RV—its log marginal likelihood is

also −412. The left panel in Figure 8 reports the posterior densities of a0 and a1 under

UCSV-RV-SV. These estimates are very similar to those of the baseline. In particular,

the posterior densities of a0 and a1 are centered around −0.5 and 1, respectively. These

results confirm the conclusion that while the realized volatility provides useful information

for estimating the inflation expectations uncertainty, it may not be an unbiased measure.

Figure 8 also plots the inflation expectations uncertainty under UCSV-RV-SV. The es-

timates are again broadly similar to those of the baseline, showing that allowing for

stochastic volatility in the realized volatility equation does not change our conclusion

that the inflation expectations uncertainty exhibits a sharp increase at the onset of the

Great Recession.
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Figure 8: Posterior densities of a0 and a1 (left panel) and stochastic volatility estimates ex-
pressed in standard deviations exp(gt/2) from UCSV-RV and UCSV-RV-SV (right panel).

In the third variant of the baseline, we extend the realized volatility equation (8) to allow

for an MA(1) process:

log zt = a0 + a1gt + uzt + ψuzt−1, uzt ∼ N (0, σ2
z),
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and we refer to this model as UCSV-RV-MA. This version allows more persistence in

the realized volatility. Obviously, if ψ = 0, then it reduces to UCSV-RV. The posterior

density of ψ, as shown in the left panel in Figure 9, is centered around 0.2, although there

is substantial mass around 0. Consistent with the estimation result, the log marginal

likelihood of UCSV-RV-MA is −411 (compared to −412 of the baseline), which shows

that this variant is slightly favored by the data. However, the inflation expectations

uncertainty estimates under this variant are essentially the same as those of the baseline.
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Figure 9: Posterior density of the MA(1) coefficient ψ (left panel) and stochastic volatility
estimates expressed in standard deviations exp(gt/2) from UCSV-RV and UCSV-RV-MA
(right panel).

6.2 Accounting for Liquidity Premium

As mentioned earlier, the breakeven inflation includes not only inflation expectations, but

also liquidity risk premium. Given the differential liquidity in the Treasury and TIPS

markets at the onset of the Great Recession, one might be concerned that the sharp rise

in the constructed realized volatility measure reflects more about changes in liquidity risk

premium rather than long-term inflation expectations.

To adjust for the liquidity risk, we follow the approach in Gürkaynak, Sack, and Wright

(2010b) to regress the breakeven inflation on a constant and proxies for liquidity. The

residuals from this regression are used as raw data to compute an alternative realized

volatility series. Specifically, we use the VIX options-implied volatility index, which

reflects short-term uncertainty in the Standard & Poors 500 index, as a proxy.4

4Andreasen, Christensen, and Riddell (2017) identify a few variables that are highly correlated with
the TIPS liquidity premium they constructed. In particular, they find that the correlation between the
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The regression coefficient corresponding to the VIX index is estimated to be −0.015

with a 95% confidence interval (−0.016,−0.014). The estimate has the expected sign:

high uncertainty tends to increase the risk associated with the future resale price of

any security, which increases the required liquidity premium and lowers the breakeven

inflation. The R2 of the regression is about 0.2, i.e., if we use VIX as a proxy for liquidity

premium, about 20% of the variation in the breakeven inflation can be attributed to

changes in liquidity risk.

This alternative measure of realized volatility is plotted in Figure 10. After adjusting for

liquidity premium, there remains an uptick in the realized volatility at the start of 2008.

Next, we rerun the baseline model using this new measure, and the corresponding inflation

expectations uncertainty are reported in Figure 10 (UCSV-RV-liq). As the figure shows,

the new estimates are essentially the same as the baseline, showing that the variation in

liquidity premium does not dominate the constructed realized volatility.
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Figure 10: The log realized volatility corrected for liquidity premium (left panel) and
stochastic volatility estimates expressed in standard deviations exp(gt/2) from UCSV-
RV and UCSV-RV-liq (right panel).

6.3 Inflation Forecast Disagreement

Next, we investigate the information content of cross-sectional dispersion of survey fore-

casts as an alternative source of inflation expectations uncertainty. While the forecast

disagreement is conceptually distinct from inflation uncertainty, a few papers have inves-

tigated their relationships with mixed results (see, e.g., Boero, Smith, and Wallis, 2008;

Rich and Tracy, 2010). Here we construct the forecast disagreement variable based on the

VIX index and their liquidity premium is high and has the expected sign (0.67).
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cross-sectional forecast dispersion from the Survey of Professional Forecasters, sourced

from the Federal Reserve Bank of Philadelphia. Specifically, the disagreement measure is

the interquartile range—difference between the 75th percentile and the 25th percentile—

of the one-year-ahead CPI forecasts.5 The data frequency is quarterly and we use the

same quarterly value for the three months in the quarter. The disagreement data are

plotted in the left panel in Figure 11.

We re-estimate the model (4)–(8) using this disagreement measure instead of the realized

volatility zt. This variant is denoted as UCSV-D. Recall that for a normal random variable

with variance σ2, its interquartile range is about 1.35σ. Hence, if this dispersion measure

is an unbiased measure of gt, the log volatility of the trend inflation, one would expect

that a0 = log 1.35 ≈ 0.3 and a1 = 0.5. On the other hand, if this dispersion measure

has no information about gt, then a1 should be 0. The posterior means of a0 and a1 are,

respectively, 0.28 and 0.38 with 90% credible intervals (−0.16, 0.80) and (0.22, 0.57). The

estimated a1 is less than 0.5, but the 90% credible interval excludes 0.
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Figure 11: Forecast disagreement (left panel) and stochastic volatility estimates expressed
in standard deviations exp(gt/2) from UCSV-RV-D (right panel).

To compare the information content of this disagreement variable with that of the realized

volatility measure, we compute the log marginal likelihood of UCSV-D. The estimate is

−414, which is slightly less than the corresponding value of −412 under UCSV-RV. These

results show that although this disagreement variable contains some information about

gt, its quality is not as good as the proposed realized volatility measure.

Figure 11 also reports the inflation expectations uncertainty estimates under UCSV-D.

5Ideally the forecast horizon should be substantially longer to match the uncertainty of long-run
inflation expectations, but one-year-ahead is the longest horizon available.
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Despite the very different data source, the estimates under UCSV-D are broadly similar

to those of the baseline UCSV-RV. In particular, the inflation expectations uncertainty

under UCSV-D sharply increases in early 2008. By contrast, under UCSV the inflation

expectations uncertainty moves slowly, and peaks only in 2011.

7 Concluding Remarks and Future Research

We use daily breakeven inflation to construct a realized measure of inflation expectations

volatility. We then incorporate this realized volatility measure in a standard UCSV model

to investigate how well it matches the model-based measure of trend inflation volatility.

We find that the two measure are largely compatible, and the realized volatility helps

refine the estimates of inflation expectations uncertainty and improve inflation forecasts.

In addition, we find significant changes in inflation expectations uncertainty during the

Great Recession.

In future work, it would be fruitful to have a term structure model to combine multiple

realized volatility measures from different horizons. It would also be interesting in future

work to study the impact of inflation expectations uncertainty on other macroeconomic

variables.
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A Appendix: Estimation Details

In this appendix we provide the estimation details of fitting the UCSV-RV-BE model

defined in (4)–(9) using MCMC methods. The UCSV-RV model is a restricted version

where equation (9) is omitted. We implement a Gibbs sampler that sequentially draws

from the full conditional distributions of the parameters and the latent states. The

parameters are σ2
h, σ

2
g , σ

2
z , σ

2
x,, a = (a0, a1)

′ and b = (b0, b1)
′, and the latent states are g,

h and π
∗.

Let IG(c1, c2) denote the inverse-gamma distribution with mean c1/(c2−1). We consider

the following priors: σ2
h ∼ IG(sh/2, vh/2), σ

2
g ∼ IG(sg/2, vg/2), σ

2
z ∼ IG(sz/2, vz/2),

σ2
x ∼ IG(sx/2, vx/2), a ∼ N (ma,Va) and b ∼ N (mb,Vb). Finally, we initialize the state

equations using g1 ∼ N (mg, Vg), h1 ∼ N (mh, Vh) and (π∗

1 | g1) ∼ N (mπ∗ , eg1Vπ∗).

Posterior draws can be obtained by sequentially performing the following MCMC steps:

1. Sample g = (g1, . . . , gT )
′.

To sample the log volatilities, we adopt the auxiliary mixture sampler of Kim, Shepherd,

and Chib (1998) by approximating the nonlinear state space model using a mixture of con-

ditionally linear Gaussian state space models with mixture indicators sg = (sg1, . . . , s
g
T )

′.

We first sample the mixture indicators sg given the current g. Then, we draw g given

the mixture indicators sg. For a textbook treatment of the auxiliary mixture sampler,

see Chan and Hsiao (2014).

First define yg1 = log((π∗

1 −mπ∗)2/Vπ∗) and ygt = log((π∗

t − π∗

t−1)
2) for t = 2, . . . , T . Since

sg1, . . . , s
g
T are conditionally independent, we can sample them sequentially. Each sgt takes

values in {1, . . . , 7} with probabilities

p(sgt = k | ygt , gt) ∝ wkfN(y
g
t − gt;mk, v

2
k) for k = 1, 2, . . . , 7,

where fN(·; u, v
2) is the Gaussian density with mean u and variance v2, and the values

(wk,mk, v
2
k) are given in Table 4 of Kim, Shepherd, and Chib (1998).

Next, we sample g given the mixture indicators sg. To that end, stack yg = (yg1 , . . . , y
g
T )

′

and rewrite (5) as

yg = g + ε
g, ε

g ∼ N (dsg ,Ωsg)
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with density function

p(yg |g, sg) ∝ exp

(
−
1

2
(yg − dsg − g)′Ω−1

sg (y
g − dsg − g)

)
,

where dsg and Ωsg are constant matrices determined by sg, and Ωsg is diagonal.

Next, write the state equation (7) in matrix form

Hg = ug, ug ∼ N (m̃g,Sg),

where m̃g = (mg, 0, 0, . . . , 0)
′, Sg = diag(Vg, σ

2
g , . . . , σ

2
g) and

H =




1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 −1 1




.

Hence, the prior density of g is given by

p(g | σ2
g) ∝ exp

(
−
1

2
(g −H−1m̃g)

′H′S−1
g H(g −H−1m̃g)

)

= exp

(
−
1

2
(g − 1Tmg)

′H′S−1
g H(g − 1Tmg)

)
,

where 1T is a T × 1 column of ones. Note that the prior mean of g is 1Tmg since gt is a

random walk process.

Now, let z̃ = (log z1, . . . , log zT )
′ and rewrite (8) as

z̃ = a01T + a1g + uz, uz ∼ N (0, σ2
zIT )

with density function

p(z̃ |g, σ2
z , a0, a1) ∝ exp

(
−

1

2σ2
z

(z̃− a01T − a1g)
′(z̃− a01T − a1g)

)
.
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Finally, the full conditional density of g is given by

p(g |yg, z̃, sg,σ2
g , σ

2
z , a0, a1) ∝ p(yg |g, sg)p(g | σ2

g)p(z̃ |g, σ
2
z , a0, a1)

∝ exp

{
−
1

2

[
g′

(
Ω−1

sg +H′S−1
g H+

a21
σ2
z

IT

)
g

−2g′

(
Ω−1

sg (y
g − dsg) +H′S−1

g H1Tmg +
a1
σ2
z

(z̃− a01T )

)]}
,

which is the kernel of the N (ĝ,K−1
g ) distribution, where

Kg = Ω−1
sg +H′S−1

g H+
a21
σ2
z

IT ,

ĝ = K−1
g

(
Ω−1

sg (y
g − dsg) +H′S−1

g H1Tmg +
a1
σ2
z

(z̃− a01T )

)
.

Notice that H′S−1
g H1Tmg = (V −1

g mg, 0, 0, . . . , 0)
′. Since Kg is a band precision matrix,

the precision sampler in Chan and Jeliazkov (2009) can be used to sample g efficiently.

2. Sample h = (h1, . . . , hT )
′.

Similar to the previous step, we implement the auxiliary mixture sampler of Kim, Shep-

herd, and Chib (1998) by first drawing the mixture indicators sh = (sh1 , . . . , s
h
T )

′ given h

and other parameters, followed by sampling h given the mixture indicators sh. To that

end, define yht = log ((πt − π∗

t )
2) and stack yh = (yh1 , . . . , y

h
T )

′. Then, each sht can be

drawn from the conditional posterior distribution as before.

Next, rewrite (4) in matrix form:

yh = h+ ε
h, ε

h ∼ N (dsh ,Ωsh),

where dsh and Ωsh are constant matrices determined by sh. Similarly, rewrite (6) as

Hh = uh, uh ∼ N (m̃h,Sh),

where m̃h = (mh, 0, 0, . . . , 0)
′ and Sh = diag(Vh, σ

2
h, . . . , σ

2
h). Using a similar derivation

as in Step 1, we have

(h |yh, sh, σ2
h) ∼ N (ĥ,K−1

h ),

where Kh = Ω−1
sh

+H′S−1
h H and ĥ = K−1

h

(
Ω−1

sh
(yh − dsh) +H′S−1

h H1Tmh

)
.

3. Sample π
∗ = (π∗

1, . . . , π
∗

T )
′.
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Information about π
∗ comes from three sources: the two measurement equations (4)

and (9), as well as the state equation (5). First, rewrite the three equations as

π = π
∗ + uπ, uπ ∼ N (0,Sπ),

x = b01T + b1π
∗ + ux, ux ∼ N (0, σ2

xIT ),

Hπ
∗ = uπ∗

, uπ∗

∼ N (m̃π∗ ,Sπ∗),

where Sπ = diag(eh1 , . . . , ehT ), m̃π∗ = (mπ∗ , 0, . . . , 0)′ and Sπ∗ = diag(eg1Vπ∗ , eg2 , . . . , egT ).

Using a similar derivation as in Step 1, we have

(π∗ |π,g,h,x,b) ∼ N (π̂∗,K−1
π

∗ ),

where

Kπ
∗ = H′S−1

π∗ H+ S−1
π +

b21
σ2
x

IT , π̂
∗ = K−1

π
∗

(
H′S−1

π∗ m̃π∗ + S−1
π π +

b1
σ2
x

(x− 1T b0)

)
.

Note that H′S−1
π∗ m̃π

∗ = (mπ∗/(eg1Vπ∗), 0, . . . , 0)′. Again Kπ
∗ is a band precision matrix,

we use the algorithm in Chan and Jeliazkov (2009) to sample π
∗.

4. Sample σ2
g , σ

2
h, σ

2
z and σ2

x.

This step is standard as σ2
g , σ

2
h, σ

2
z and σ2

x are conditionally independent and each follows

an inverse-gamma distribution. Define ∆g = (g2 − g1, g3 − g2, . . . , gT − gT−1)
′, ∆h =

(h2 − h1, h3 − h2, . . . , hT − hT−1)
′, uz = z̃− a01T − a1g and ux = x− b01T − b1π

∗. Then,

we have

σ2
h ∼ IG(ŝh/2, v̂h/2),

σ2
g ∼ IG(ŝg/2, v̂g/2),

σ2
z ∼ IG(ŝz/2, v̂z/2),

σ2
x ∼ IG(ŝx/2, v̂x/2),

where

ŝh = sh + (∆h)′∆h v̂h = vh + T − 1,

ŝg = sg + (∆g)′∆g v̂g = vg + T − 1,

ŝz = sz + (uz)′uz v̂z = vz + T,

ŝx = sx + (ux)′ux v̂x = vx + T.
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5. Sample a = (a0, a1)
′.

This step is standard since (a | z, g, σ2
z) ∼ N (â,K−1

a ), where

Ka = V−1
a +

1

σ2
z

X′

aXa, â = K−1
a

(
V−1

a ma +
1

σ2
z

X′

az̃

)

with z̃ = (log z1, . . . , log zT )
′ and Xa = [1T ,g] is constructed by stacking the regressors.

6. Sample b = (b0, b1)
′.

Similarly, let Xb = [1T ,π
∗]. Then, we have (b |x,π∗, σ2

x) ∼ N (b̂,K−1
b ), where

Kb = V−1
b +

1

σ2
x

X′

bXb, 1̂ = K−1
b

(
V−1

b mb +
1

σ2
x

X′

bx

)
.
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B Appendix: Additional Results

In this appendix we re-estimate the models using another measure of realized volatility.

Specifically, the realized volatility is computed from the the breakeven inflation ei(7,10).

The results are reported in Figure 12 to Figure 14. The conclusions we draw from

these results are the same from the baseline case: the realized volatility provides useful

information for the underlying inflation expectations uncertainty and typically helps refine

the estimates.
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Figure 12: Stochastic volatility estimates expressed in standard deviations exp(gt/2) from
UCSV-RV (left panel) and UCSV (right panel). The shaded areas represent the 16- and
84-percentiles. The realized volatility is computed from the the breakeven inflation ei(7,10).
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Figure 13: Trend estimates from UCSV-RV, UCSV-RV-BE and UCSV. The realized
volatility is computed from the the breakeven inflation ei(7,10).
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Figure 14: Prior and posterior densities of a0 (left panel) and a1 (right panel). The
realized volatility is computed from the the breakeven inflation ei(7,10).
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