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Abstract

We develop importance sampling methods for computing two popular Bayesian
model comparison criteria, namely, the marginal likelihood and the deviance infor-
mation criterion (DIC) for time-varying parameter vector autoregressions (TVP-
VARs), where both the regression coefficients and volatilities are drifting over time.
The proposed estimators are based on the integrated likelihood, which are substan-
tially more reliable than alternatives. Using US data, we find overwhelming support
for the TVP-VAR with stochastic volatility compared to a conventional constant
coefficients VAR with homoscedastic innovations. Most of the gains, however, ap-
pear to have come from allowing for stochastic volatility rather than time variation
in the VAR coefficients or contemporaneous relationships. Indeed, according to
both criteria, a constant coefficients VAR with stochastic volatility outperforms
the more general model with time-varying parameters.
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1 Introduction

Since the seminal work of Cogley and Sargent (2001, 2005) and Primiceri (2005), the time-
varying parameter vector autoregression (TVP-VAR) with stochastic volatility has be-
come a benchmark for analyzing the evolving inter-relationships between multiple macroe-
conomic variables.? In addition, models with time-varying parameters and stochastic
volatility are often found to forecast better than their constant-coefficient counterparts,
as demonstrated in papers such as Clark (2011), D’Agostino, Gambetti, and Giannone
(2013) and Clark and Ravazzolo (2014). Despite the empirical success of these flexible
time-varying models, an emerging literature has expressed concerns about their potential
over-parameterization.® This new development highlights the need for model comparison
techniques. For instance, one might wish to compare a general TVP-VAR with stochastic
volatility to various restricted models to see if all forms of time variation are required.

Model comparison techniques for these TVP-VARs are also needed when one wishes to
test competing hypotheses. For example, there is an ongoing debate about the causes
of the Great Moderation—the widespread, historically unprecedented stability in most
developed economies between early 1980s and mid 2000s. A number of authors, including
Cogley and Sargent (2001) and Boivin and Giannoni (2006), have argued that the mone-
tary policy regime is an important factor in explaining the Great Moderation. Under this
explanation, one would expect that the monetary policy transmission mechanism would
be markedly different during the Great Moderation compared to earlier decades. This in
turn would manifest itself in changes in the reduced-form VAR coefficients.

On the other hand, other researchers such as Sims and Zha (2006) and Benati (2008)
have emphasized that the volatility of exogenous shocks has changed over time, and
this alone may be sufficient to explain the Great Moderation. To assess which of these
two explanations are more empirically relevant, one direct approach is to perform a
model comparison exercise—e.g., comparing a TVP-VAR with constant variance against
a constant coefficients VAR with stochastic volatility—to see which model is more favored
by the data.

Our contributions are twofold. On the methodological side, we develop importance sam-
pling methods for computing two popular Bayesian model comparison criteria, namely,
the marginal likelihood and the deviance information criterion (DIC) for TVP-VARs with
stochastic volatility. The former evaluates how likely it is for the observed data to have
occurred given the model, whereas the latter trades off between model fit and model
complexity. There are earlier attempts to formally compare these TVP-VARs. For in-
stance, Koop et al. (2009) compute the marginal likelihood using the harmonic mean of
a conditional likelihood—the conditional density of the data given the log-volatilities but
marginal of the time-varying parameters. However, recent work has shown that this ap-

2For example, recent papers include Benati (2008), Koop, Leon-Gonzalez, and Strachan (2009),Koop
and Korobilis (2013) and Liu and Morley (2014).

3See, e.g., Chan, Koop, Leon-Gonzalez, and Strachan (2012), Nakajima and West (2013) and Bel-
monte, Koop, and Korobilis (2014).



proach can be extremely inaccurate. For example, Chan and Grant (2015) find that the
marginal likelihood estimates computed using the modified harmonic mean (Gelfand and
Dey, 1994) of the conditional likelihood can have a substantial bias and tend to select the
wrong model.* Frithwirth-Schnatter and Wagner (2008) conclude the same when Chib’s
method (Chib, 1995) is used. In a related context, Millar (2009) and Chan and Grant
(2016b) provide Monte Carlo evidence that the DIC based on the conditional likelihood
almost always favors the most complex models.

In contrast, our proposed estimators are based on the integrated likelihood—i.e., the
conditional density of the data marginal of all the latent states. As such, the proposed
estimators have good theoretical properties and are substantially more stable in prac-
tice. Specifically, integrated likelihood evaluation is achieved by integrating out the time-
varying parameters analytically, while the log-volatilities are integrated out numerically
via importance sampling. A key novel feature of our approach is that it is based on band
and sparse matrix algorithms instead of the conventional Kalman filter, which markedly
reduces the computational costs. Our approach builds upon earlier work on DIC and
marginal likelihood estimation for TVP-VARs (but without stochastic volatility) devel-
oped in Chan and Grant (2016a) and Chan and Eisenstat (2015). The extension to mul-
tivariate stochastic volatility models is nontrivial as it involves high-dimensional Monte
Carlo integration.

On the empirical side, we illustrate the proposed methodology by a model comparison
exercise using a standard set of macroeconomic variables for the US. Specifically, we eval-
uate the support for various TVP-VARs with or without stochastic volatility, with the
aim of contributing to the “good luck” versus “good policy” debate. The main results
can be summarized as follows. The model of Primiceri (2005)—with both time-varying
parameters and stochastic volatility—is overwhelmingly favored by the data compared
to a conventional VAR according to both criteria. However, most of the gains appear to
have come from allowing for stochastic volatility rather than time variation in the VAR
coefficients or contemporaneous relationships. In fact, both criteria prefer a constant coef-
ficients VAR with stochastic volatility against the more general model of Primiceri (2005).
This suggests that the time variation in the variance of exogenous shocks is empirically
more important than changes in the monetary policy regime, lending support for the good
luck hypothesis of the Great Moderation. These results also provide empirical support
for the modeling approach of Carriero, Clark, and Marcellino (2016), who construct large
constant coefficients VARs with a variety of stochastic volatility specifications.

In this paper we have focused on Bayesian model comparison, but the integrated likelihood
estimators can be used in other settings, such as in developing more efficient MCMC
samplers or designing reversible jump MCMC algorithms to explore models of different
dimensions.® The rest of this paper is organized as follows. In Section 2 we introduce the

4For instance, in one example that involves US CPI inflation, they show that the log marginal likeli-
hood of an unobserved components model should be —591.94, but the modified harmonic mean estimate
is —494.62 (the associated numerical standard error is 1.32). Even when the number of draws is increased
to ten millions, the estimate is —502.70—the finite sample bias is still substantial.

5In addition to the two Bayesian model selection criteria considered in this paper, another possibility is



class of TVP-VARs we wish to compare. We give an overview of the two Bayesian model
comparison criteria—the marginal likelihood and DIC in Section 3. Section 4 discusses
the estimation of the two criteria for the competing models. We then conduct a small
Monte Carlo experiment in Section 5 to assess how the proposed algorithms perform in
selecting the correct models. Section 6 evaluates the evidence in support of the TVP-
VARSs in explaining the US and Australian data. Lastly, Section 8 concludes and briefly
discusses some future research directions.

2 TVP-VARs with Stochastic Volatility

In this section we outline the class of models we wish to compare. We first discuss the
most general model; other models are then specified as restricted versions of this general
model. To that end, let y; be an n x 1 vector of observations. Consider the following
TVP-VAR with stochastic volatility:

Boy: =, + Buyio1 + -+ Buyip + &1, €0~ N(0,%), (1)

where p, is an n x 1 vector of time-varying intercepts, By;,..., B, are n x n VAR
coefficient matrices, By is an n X n lower triangular matrix with ones on the diagonal
and X; = diag(exp(hy),...,exp(hy)).5 The log-volatilities hy = (hy, ..., ) evolve
according to the following random walk:

h; =h,_; + ¢, ¢ ~N(0,%,), (2)
where the initial conditions hy are treated as parameters to be estimated.

For the purpose of model comparison, we separate the time-varying parameters into
two groups. The first group consists of the kg x 1 vector of time-varying intercepts
and coefficients associated with the lagged observations: 3, = vec((g, Bit,...Bp)').
The second group is the £k, x 1 vector of time-varying coefficients that characterize the
contemporaneous relationships among the variables, which we denote as «,— it consists
of the free elements of By, stacked by rows. Note that kg = n(np+1) and k, = n(n—1)/2.
With these two groups of parameters defined, we can rewrite (1) as:

Y = itﬁt + Wy, +e, e ~N(0X),

to construct a reversible jump MCMC algorithm to compute the posterior model probabilities. Primiceri
(2005) uses this strategy to compare various choices of hyperparameter values. Note that in his setting,
the dimensions of all the models considered are the same—the models only differ in their hyperparameters.
For our problem, the dimensions of the models can be very different. As such, to compute the transition
probability, e.g., from a constant coefficients VAR to one with stochastic volatility, one would need to
evaluate the integrated likelihood of the latter model. Hence, our proposed method would also be useful
if such an approach is desired. We leave this possibility to future research.

6Note that this TVP-VAR is written in the structural form and is therefore different from the reduced-
form formulation in Primiceri (2005). However, reduced-form coefficients can be easily recovered from
the structural-form coefficients.



where X; = I, ® (L, yi 4, ,¥i,) and W, is an n x k, matrix that contains appropriate
elements of —y;. For example, when n = 3, W, has the form

0 0 0
Wt - —Y1e 0 0 )
0 Y1t —Yau

where y;; is the i-th element of y; for ¢ = 1,2. In the application we will investigate the
empirical relevance of allowing time variation in each group of parameters.

Finally, the above model can be further written as a generic state space model:
ye = X0+, & ~N(0,3), (3)

where X, = ()N(t, W,) and 6, = (3;,~})" is of dimension ky = kg+ k.. This representation
is used in Eisenstat, Chan, and Strachan (2016) to improve the efficiency of the sampler
by drawing 3, and -, jointly—instead of the conventional approach in Primiceri (2005)
that samples 3, given -y, followed by sampling ~, given B,. Moreover, it also allows us to
integrate out both 3, and =, analytically, which is important for the method of integrated
likelihood evaluation described later.

The vector of time-varying parameters 6, in turn follow the following random walk pro-
cess:

Ot = Ot—l + Ny, My ™~ N(Ov 29) (4)

We treat the initial conditions @ as parameters to be estimated.

To complete the model specification, below we give the details of the priors on the
model parameters. The priors of the initial conditions 8y and hy are both Gaussian:
0y ~ N(ay,Vy) and hg ~ N(a,, V}). Moreover, we assume that the error covari-
ance matrices for the state equations are diagonal, i.e., Xy = diag(oZ,... ,agke) and
3, = diag(o?,,...,0%,)." The diagonal elements of 3y and X, are independently dis-

tributed as
O'giNIg<Vgi,Sgi), O-f21,j NIg(th,Shj>, ’LZ 1,...,]{39,j: 1,...,]€h.

In particular, we set the hyperparameters to be ag = 0, Vy = 10 x I;,, a;, = 0 and
V, = 10 x I,,. For the degree of freedom parameters, they are assumed to be small:
Vpi = vy = 5. The scale parameters are set so that the prior mean of U%j is 0.12. In other
words, the difference between consecutive log-volatilities is within 0.2 with probability of
about 0.95. Similarly, the implied prior mean of o, is 0.01% if it is associated with a VAR
coefficient and 0.12 for an intercept.

The model as specified in (2)—(4) can be fitted using Markov chain Monte Carlo meth-
ods. In particular, it is conventionally estimated using Kalman filter-based algorithms in

"This diagonal assumption is made for simplicity and all the proposed algorithms apply to the case
with general covariance matrices. In fact, the algorithms for integrated likelihood evaluation in Appendix
B are presented for general covariance matrices Xy and X,.



conjunction with the auxiliary mixture sampler of Kim, Shepherd, and Chib (1998). In
contrast, here we adopt the precision sampler of Chan and Jeliazkov (2009) that is based
on fast band and sparse matrix routines and is more efficient than Kalman filter-based
algorithms. We modify the algorithm of Primiceri (2005) as discussed in Del Negro and
Primiceri (2015). Estimation details are given in Appendix A.

We denote the general model in (2)—(4) as TVP-SV. To investigate what features are
the most important in explaining the observed data, we consider a variety of restricted
versions of this general model in the model comparison exercise. The competing models
are listed in Table 1. More specifically, to examine the role of time-varying volatility, we
consider a model with only drifting coefficients but no stochastic volatility (referred to
as TVP), as well as a version that has stochastic volatility but with constant coefficients

(CVAR-SV).

Next, to investigate the individual contributions of the two groups of time-varying coeffi-
cients, we consider two variants of the general model in which either 3, or ~, is restricted
to be time-invariant—the former is denoted as TVP-R1-SV and the latter as TVP-R2-SV.
Note that TVP-R2-SV is the model proposed in Cogley and Sargent (2005). In addition,
we also consider a variant in which only the intercepts are time-varying—hence this is a
restricted version of TVP-R1-SV. This version is denoted as TVP-R3-SV.

Table 1: List of competing models.

TVP-SV the time-varying parameter VAR with SV in (2)—(4)

TVP same as TVP-SV but h; = hy and v, = 7,

TVP-R1-SV  same as TVP-SV but 8, = 3,

TVP-R2-SV  same as TVP-SV but ~v, = 7,

TVP-R3-SV  same as TVP-SV but only the intercepts are time-varying

CVAR-SV  same as TVP-SV but 8, = 8, and v, =7,

CVAR the constant coefficients VAR with 6, = 6, and h, = h,

RS-VAR the regime-switching VAR in (5)

RS-VAR-R1 same as RS-VAR but (By;, Byj,...,B,;) are the same across regimes
RS-VAR-R2 same as RS-VAR but X; are the same across regimes

For comparison, we also consider the class of regime-switching VARs similar to those in
Sims and Zha (2006). More specifically, let S; € {1,...,7} denote the regime indicator
at time ¢, where r is the number of regimes. Then, a regime-switching VAR is given by

BOStyt - /J/St + BlSth—l + -+ BpStyt—p + &t Er v N(07 Est)v (5)

where (By;,Byj,...,B,;) and X; for j = 1,...,r are regime-specific parameters. The
regime indicator S; is assumed to follow a Markov process with transition probability
P(S; = j| Si—1 = i) = p;;. This regime-switching VAR is denoted as RS-VAR.

In addition, we consider two restricted versions of RS-VAR in which either the VAR coef-
ficients (Bg;, Byj, ..., B,;) or the covariance matrices 3; to be the same across regimes.



The former is denoted as RS-VAR-R1 and the latter as RS-VAR-R2. Lastly, we also
include a VAR with both constant coefficients and covariance matrix, which we simply

refer to as CVAR.

3 Bayesian Model Comparison Criteria

In this section we give an overview of the two Bayesian model comparison criteria—the
marginal likelihood and the deviance information criterion—which we will use to compare
the models outlined in Section 2.

To set the stage, suppose we wish to compare a collection of models {M;, ..., Mk}, where
each model M}, is formally defined by a likelihood function p(y | ., M) and a prior on
the model-specific parameter vector 1, denoted by p(1),, | My). A natural Bayesian model
comparison criterion is the Bayes factor in favor of M; against M;, defined as

P(Y | Mz)
BF,; = 2151
T oply | M)

where

Py | My) = / Py | Mo)p(aby | M)

is the marginal likelthood under model My, k = 4,j. The marginal likelihood can be
interpreted as a density forecast from the model evaluated at the observed data y—hence,
if the observed data are likely under the model, the corresponding marginal likelihood
would be “large” and vice versa. Therefore, if BF;; is larger than 1, observed data are
more likely under model M; than model M;, which is viewed as evidence in favor of M;.

Furthermore, the Bayes factor is related to the posterior odds ratio between the two
models as follows:

P(M;|y) _ P(M;) « BF

P(M;ly)  P(M;)
where P(M;)/P(M,) is the prior odds ratio. It follows that if both models are equally
probable a priori, i.e., p(M;) = p(M;), the posterior odds ratio between the two models
is then equal to the Bayes factor. In that case, if, for example, BF;; = 10, then model M,
is 10 times more likely than model M; given the data. For a more detailed discussion of
the Bayes factor and its role in Bayesian model comparison, see Koop (2003) or Kroese
and Chan (2014). From here onwards we suppress the model indicator; for example we

denote the likelihood by p(y | 4).

7R

The Bayes factor is conceptually simple and has a natural interpretation. However,
one drawback is that it is relatively sensitive to the prior distributions. An alternative
Bayesian model selection criterion that is relatively insensitive to the priors is the deviance
information criterion (DIC) introduced in the seminal paper by Spiegelhalter, Best, Car-
lin, and van der Linde (2002). This criterion can be viewed as a tradeoff between model



fit and model complexity. It is based on the deviance, which is defined as

D(vp) = —2logp(y | ) + 2log h(y),

where h(y) is some fully specified standardizing term that is a function of the data alone.

Model complexity is measured by the effective number of parameters pp of the model,
which is defined to be

pp = D(v) — D(v), (6)
where
D(vp) = —2E4[logp(y | 1) | y] + 2log h(y)

is the posterior mean deviance and ’(,Nb is an estimate of 4, which is typically taken as the
posterior mean or mode.The difference between the number of parameters (i.e., cardinality
of ) and pp may be viewed as a measure of shrinkage of the posterior estimates towards
the prior means; see Spiegelhalter et al. (2002) for a more detailed discussion.

Then, the DIC is defined as the sum of the posterior mean deviance, which can be used
as a Bayesian measure of model fit or adequacy, and the effective number of parameters:

DIC = D(¥) + pp.

For model comparison, the function h(y) is often set to be unity for all models. Given a
set of competing models for the data, the preferred model is the one with the minimum
DIC value.

We note that there are alternative definitions of the DIC depending on different concepts
of the likelihood (Celeux, Forbes, Robert, and Titterington, 2006). In particular, suppose
we augment the model p(y |) with a vector of latent variables z with density p(z | )
such that

Py |6) = / Py |8, 2)p(z| 0)dz = / ply.z|6)dz,

where p(y | 0, z) is the conditional likelihood and p(y,z| @) is the complete-data likelihood.
To avoid ambiguity, we refer to the likelihood p(y | @) as the observed-data likelihood or
the integrated likelihood.

An alternative DIC can then be defined in terms of the conditional likelihood, which has
been used in numerous applications (e.g., Yu and Meyer, 2006; Abanto-Valle, Bandyopad-
hyay, Lachos, and Enriquez, 2010; Mumtaz and Surico, 2012; Brooks and Prokopczuk,
2013). However, this variant has recently been criticized on both theoretical and prac-
tical grounds. Li, Zeng, and Yu (2012) argue that the conditional DIC should not be
used as a model selection criterion, as the conditional likelihood of the augmented data
is nonregular and hence invalidates the standard asymptotic arguments that are needed
to justify the DIC. On practical grounds, Millar (2009) and Chan and Grant (2016b)
provide Monte Carlo evidence that the conditional DIC almost always favors overfitted
models, whereas the original version based on the integrated likelihood works well.



Relatedly, one could in principle compute the marginal likelihood using the conditional
likelihood instead of the integrated likelihood. For instance, one could estimate the
marginal likelihood using the modified harmonic mean (Gelfand and Dey, 1994) of the
conditional likelihood. However, Chan and Grant (2015) find that this approach does not
work well in practice, as the resulting estimates have substantial bias and tend to select
the wrong model. Frithwirth-Schnatter and Wagner (2008) reach the same conclusion
when Chib’s method is used in conjunction with the conditional likelihood. Given these
findings, the calculation of both the marginal likelihood and DIC in this paper are based
on the integrated likelihood.

One main difficulty of the proposed approach is that the integrated likelihood for models
with stochastic volatility typically does not have a closed-form expression.® In fact, its
evaluation is nontrivial as it requires integrating out the high-dimensional time-varying
coefficients and log-volatilities. In principle one can use, e.g., the auxiliary particle filter
of Pitt and Shephard (1999) to evaluate the integrated likelihood for general nonlinear
state space models. In practice, however, the auxiliary particle filter is computationally
intensive and it is infeasible to be employed in our settings with a large number of latent
states. To overcome this problem, we develop an efficient importance sampling estimator
for evaluating the integrated likelihood in the next section.

4 Marginal Likelihood and DIC Estimation

In this section we discuss the estimation of the marginal likelihood and DIC for TVP-
VARs. Marginal likelihood estimation has generated a large literature; see, e.g., Friel
and Wyse (2012) and Ardia, Bagtiirk, Hoogerheide, and van Dijk (2012) for a recent re-
view. There are several papers dealing specifically with marginal likelihood estimation for
Gaussian and non-Gaussian state space models using importance sampling (Frithwirth-
Schnatter, 1995; Chan and Eisenstat, 2015) or auxiliary mixture sampling (Frithwirth-
Schnatter and Wagner, 2008). We build on this line of research by extending importance
sampling methods to the more complex setting of TVP-VARs with stochastic volatility.

For observed-data DIC estimation in the context of nonlinear state space models, the
literature is relatively scarce. The main difficulty is the evaluation of the integrated
likelihood—the marginal density of the data unconditional on the latent states. Earlier
work, such as Durbin and Koopman (1997), McCausland (2012) and Chan and Grant
(2016b), considers integrated likelihood estimation for only univariate stochastic volatility
models. Here we develop algorithms suitable for high-dimensional stochastic volatility
models.

Section 4.1 first discusses the estimation of the observed-data DIC. The main step is to
compute the average of the integrated likelihoods over the posterior draws. There we
present a fast routine to evaluate the integrated likelihood—marginal of the time-varying

80ne notable exception is the stochastic volatility of Uhlig (1997).



coefficients and log-volatilities. It involves an importance sampling algorithm that first
integrates out the time-varying coefficients analytically, followed by integrating out the
log-volatilities using Monte Carlo.

Next, marginal likelihood computation is discussed in Section 4.2. In addition to integrat-
ing out the latent states, marginal likelihood computation requires an extra importance
sampling step to integrate out the parameters. We adopt an adaptive importance sam-
pling approach known as the improved cross-entropy method for this purpose.

4.1 DIC Estimation

We now discuss the estimation of the observed-data DIC. Let 1 = (34, X, 09, hg) denote
the model parameters in the TVP-SV model and let y = (y7,...,y%})" denote the data.
Recall that the DIC is defined as

where D(1) is the posterior mean of the deviance and pp = D(¢) — D(%)) is the effective
number of parameters, with 1 being the posterior mean.

The main challenge in computing the DIC is the calculation of the first term

D() = —2Ey[logp(y | ) | y] = —2Ey[log p(y | ¢, 3, 00, ho) | y].

To evaluate the posterior expectation, one could obtain the average of the log integrated
likelihood log p(y | 3g, 31, B0, hg) over the posterior draws. However, this is computation-
ally challenging as the evaluation of the integrated likelihood is non-trivial—it involves a
very high-dimensional integration:

p(y | 3o, X, 00, ho) = /p(y\@,h, 30, 2,00, ho)p(0,h| Xy, 3,00, hy)d(6,h)

where h = (h,...,h%.) and 8 = (0,...,67)".

Below we develop an importance sampling algorithm for estimating the integrated like-
lihood in two steps. In the first step, we integrate out the time-varying coefficients 0
analytically. In the second step, we use importance sampling to integrate out the log-
volatilities h. Our approach extends earlier work on integrated likelihood evaluation for
various univariate stochastic volatility models, including Durbin and Koopman (1997),
Koopman and Hol Uspensky (2002), Frithwirth-Schnatter and Wagner (2008), McCaus-
land (2012), Djegnéné and McCausland (2014) and Chan and Grant (2016b).

To implement the first step, recall that @ and h evolve according to independent random
walks given in (4) and (2), respectively. Therefore, they are conditionally independent:

p(07 h | 297 Eha 00a hO) = p(e | 297 00)p(h | Eha hO)

10



Now, we write the integrated likelihood as
Py | S, S, 60, ho) = / p(y 8,1, S0, Zn, 60, ho)p(0| o, 80)p(h | Zp, ho)d (6, h)
_ / p(y |1, S, Sn. 60, ho)p(h | £y, h)dh. (7)

Both terms in the integrand in (7) have an analytical expression. The first term is the
density of the data marginal of @; its closed-form expression is given in Appendix B.
The second term is the prior density of h implied by (2)—it is in fact Gaussian, and its
closed-formed expression is given in Appendix A.

In the second step, we further integrate out h using importance sampling. Specifically,
since both terms in the integrand in (7) can be evaluated quickly, we can then estimate
the integrated likelihood using importance sampling:

p ’h 2972h7007h0) (hl‘zhahO)
39, X, 00, hy) g 8
Py 130, 2100, o) g(hiry, 59, 5, 00, h0) ®)
where h', ... h™ are draws from the importance sampling density ¢ that might depend

on the parameters and the data.

The choice of the importance sampling density ¢ is of vital importance as it determines
the variance of the estimator. In general, we wish to find g so that it well approximates
the integrand in (7). The ideal zero-variance importance sampling density in this case is
the marginal density of h unconditional on 6:

p<h7 0 | Y, 297 2’17 007 hO)

h 72’2,6,}1 = . 9
p( ‘y 0 h> Y0 0) p(0|y,h, 29,2h7007h0) ( )

However, this density cannot be used as an importance sampling density because its
normalization constant is unknown. To proceed, we approximate p(h |y, 3g, 3, 09, ho)
using a Gaussian density, which is then used as the importance sampling density.

This Gaussian approximation is obtained as follows. We first develop an expectation-
maximization (EM) algorithm (for a textbook treatment see, e.g., Kroese, Taimre, and
Botev, 2011) to locate the mode of p(h |y, ¥y, X5, 0, hy), say, h. Then, we obtain the
negative Hessian of this density evaluated at the mode, say, K;. The mode and negative
Hessian are then used, respectively, as the mean and precision matrix of the Gaussian
approximation. That is, the importance sampling density is N (h, K,_Ll). We leave the
technical details to Appendix B. We summarize the estimation of the integrated likelihood
in Algorithm 1.

11



Algorithm 1 Integrated likelihood estimation.
Given the parameters 3y, 3, 68y and hgy, complete the following two steps.

1. Obtain the mean h and precision matrix K of the Gaussian importance sampling
density.

2. Fori=1,..., M, simulate h’ ~ ./\/'(B, K; ') using the method in Chan and Jeliazkov
(2009) and compute the average

Z p y | hl 297 Eha 007h0) (hl | Ehth)

39, 35,60, hy)
(Y| 6, 2, 00, ho) g(hi;y, Xy, 3,00, hy)

To ensure an importance sampling estimator to work well, a requirement is that the
variance of the importance sampling weights should be finite. However, checking this
requirement analytically in high-dimensional settings such as ours is difficult. One way to
ensure this finite-variance condition holds is to modify the importance sampling estimator
g(h) = g(h;y, 3,3, 00, h) to include an additional mixture component as proposed
by Hesterberg (1995). More specifically, for § € (0,1), consider the mixture density

95(h) = dp(h| X, he) + (1 — 5)g(h).

That is, samples are taken from the prior density p(h | X;, hy) with probability §; other-
wise, we draw from the original importance sampling density g(h).

If we assume that for fixed data y and parameter values (2g, 3, €9, hy), the conditional
likelihood is bounded in h, i.e., there exists a constant C' such that p(y | h, Xy, X5, 09, hy) <
C' for all h (this condition holds for the stochastic volatility models we consider), then
the importance sampling weight is bounded by:

p(y | h, 3, Xy, 00, ho)p(h| X, hy) < p(y | h, 29,35, 00, hg)p(h| 3, hy)
95(h7ya E@aEhveoahO) - 5p(h|2hah0)

<

>l Q)

Hence, the variance of the importance sampling weights corresponding to gs(h) is finite.
In our applications we experiment with both g(h) and gs(h), and they give very similar
results.”

Finally, given Algorithm 1, we can estimate the DIC using the following Algorithm 2.

9For example, using the US data in Section 6 we evaluate the log integrated likelihood of the TVP-SV
model at the posterior means of the parameters. For the original estimator, we obtain an estimate of
—1074.3; for the modified estimator with § = 0.05, we have —1074.5.
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Algorithm 2 DIC estimation.
The DIC can be estimated by the following steps.

1. Obtain N sets of posterior draws ' = (X}, X}, 05 hi) fori=1,...,N.

2. Fori=1,...,N, compute the integrated likelihood p(y | ') = p(y | Z§, 3%, 0, h})
using Algorithm 1. Then, average the log integrated likelihoods to obtain D())

3. Given D(1p) and the posterior mean sz obtained from the posterior draws, compute
Pp-

4. Finally, return DIC = D(4) + pp.

4.2 Marginal Likelihood Estimation

In this section we discuss the marginal likelihood estimation of the TVP-SV model. We
use the importance sampling approach to evaluate the integrated likelihood discussed in
the previous section in conjunction with an improved version of the classic cross-entropy
method. More specifically, the cross-entropy method is originally developed for rare-
event simulation by Rubinstein (1997, 1999) using a multi-level procedure to construct
the optimal importance sampling density (see also Rubinstein and Kroese, 2004, for a
book-length treatment). Chan and Kroese (2012) later show that the optimal importance
sampling density can be obtained more accurately in one step using MCMC. This new
variant is applied in Chan and Eisenstat (2015) for marginal likelihood estimation. In
what follows, we outline the main ideas.

First, to estimate the marginal likelihood, the ideal zero-variance importance sampling
density is the posterior density p(¢ |y) = p(Xg, X, 09, hg | y). Unfortunately, this den-
sity is only known up to a constant and therefore cannot be used directly in practice.
Nevertheless, it provides a good benchmark to obtain a suitable importance sampling
density.

The key idea is to locate a density that is “close” to this ideal importance sampling
density, which we denote as f* = f*(¢) = p(¢|y). To that end, consider a parametric
family F = {f(¢;v)} indexed by the parameter vector v. We then find the density
f(a; v*) € F such that it is the “closest” to f*.

One convenient measure of closeness between densities is the Kullback-Leibler divergence
or the cross-entropy distance. Specifically, let f; and fo be two probability density func-
tions. Then, the cross-entropy distance from f; to f; is defined as:

f1(x)

h(x) dx.

D(fifo) = [ ) log
Given this measure, we locate the density f(-;v) € F such that D(f*, f(-;v)) is mini-
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mized:

Vie = argininD(f*, f(5v))
= argmin ( / £ () log f* (9)dep — p(y) ™ / Dy | )p(e) log f (4 v)dw) ,

where we used the fact that f*(¢) = p(y|¥)p(¥)/p(y). Since the first term does not
depend on v, solving the CE minimization problem is equivalent to finding

vi, = arguax [ ply | $Ip() log S (4 v)dv.

In practice, this optimization problem is often difficult to solve analytically. Instead, we
consider its stochastic counterpart:

R
o~ 1 § : r,
Vee = arg{’naX E < IOg f(T,b ,V), (10)

where ', ... ¥® are posterior draws. In other words, V!, is exactly the maximum
likelihood estimate for v if we treat f(1);v) as the likelihood function with parameter
vector v and ', ..., 9’ as an observed sample. Since finding the maximum likelihood
estimate is a standard problem, solving (10) is typically easy. In particular, analytical
solutions to (10) can be found explicitly for the exponential family (e.g., Rubinstein and
Kroese, 2004, p. 70).

As for the choice of the parametric family F, it is often chosen so that each member
f(a;v) is a product of densities, e.g., f(1p;v) = f(¥;;v1) X -+ X f(g;vp), where
= (¢Yy,...,%p) and v = (vy,...,vp). In that case, one can reduce the possibly high-
dimensional maximization problem (10) into B low-dimensional problems, which can then
be readily solved. For example, for the TVP-SV model, we divide ¥ = (Xy, Xy, 09, hy)
into 4 natural blocks and consider the parametric family

kg k'h
F = {H fIg(Ugi; V1,0, U2,0i) H fIg(O-}QU‘; U1,hjs V2,07) I (003 V1,605 V2,00) f (o5 Vi o Vz,ho)}

i=1 j=1

where frg and fy are the inverse-gamma and Gaussian densities, respectively. Given
this choice of the parametric family, the CE minimization problem in (10) can be readily
solved.!®

Once the optimal density f(3g, X, 09, hg; v*) is obtained, it is used to construct the
importance sampling estimator:

vy = Lol |3, 31.00 hn(2), 5 04, ) "
N s sy

10See also Frithwirth-Schnatter (1995), which constructs a different importance sampling density by
using a mixture of full conditional distributions given the latent states.
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where (34, 3,60, hY), ..., (T, =Y 0 h)) are independent draws from the optimal im-
portance sampling density f(2g, Xy, 0o, ho; v*) and p(y | Xy, X4, 09, hy) is the integrated
likelihood, which can be estimated using the estimator in (8).

The main advantage of this importance sampling approach is that it is easy to implement
and the numerical standard error of the estimator is readily available. We refer the
readers to Chan and Eisenstat (2015) for a more thorough discussion. We summarize the
algorithm in Algorithm 3.

Algorithm 3 Marginal likelihood estimation via the improved cross-entropy method.
The marginal likelihood p(y) can be estimated by the following steps.

1. Obtain R posterior draws and use them to solve the CE minimization problem in
(10) to obtain the optimal importance sampling density f(3g, X, 09, hg; v*).

2. Forj =1,..., N, simulate (X}, 37 8] h)) ~ f(2g, =1, 09, hy; v*) and compute the
average

Y

-~ . 1 ZP(Y| Eé,E%,G{),h{))p(xé,Ei,@{),hé)
4(3%, 3, 6, b))

where the integrated likelihood estimate pA(y | Efé, E{l, 6).1)) is computed using Al-

gorithm 1.

Since Algorithm 3 has two nested importance sampling steps, it falls within the im-
portance sampling squared (IS?) framework in Tran, Scharth, Pitt, and Kohn (2014).
Following their recommendation, the simulation size of the inner importance sampling
loop—i.e., the importance sampling step for estimating the integrated likelihood—is cho-
sen adaptively so that the variance of the log integrated likelihood is around 1. See also
the discussion in Pitt, dos Santos Silva, Giordani, and Kohn (2012).

5 A Monte Carlo Study

In this section we conduct a small Monte Carlo experiment to assess how the proposed
algorithms perform in selecting the correct models. Specifically, from each of the three
models—CVAR, CVAR-SV and TVP-SV—we generate one dataset of n = 3 variables
and T" = 300 observations. For each dataset, we estimate the log marginal likelihoods
and DICs for the same three models.

For CVAR, we set the diagonal elements of the error covariance matrix to be 0.5. The
intercepts are generated uniformly from the set {—10,—9,...,0,...,9,10}. The diagonal
elements of the i-th VAR coefficient matrix are independent ¢/(—0.3/7,0.3/7) and the off-
diagonal elements are U(—0.1/7,0.1/i) with ¢ = 1,...,p. The free elements of the impact
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matrix are generated independently from the standard normal distribution.

For CVAR-SV, the VAR coefficients are generated as in the CVAR case. We set the
diagonal elements of 3, to be 0.01 and generate the log volatilities according to the
state equation (2). Lastly, for TVP-SV, we set the diagonal elements of 34 to be 0.001
and generate the time-varying coefficients according to the state equation (4). The log
volatilities are generated as in the CVAR-SV case.

Each log marginal likelihood estimate is based on 10000 evaluations of the integrated
likelihood, where the importance sampling density is constructed using 20000 posterior
draws after a burn-in period of 5000. Each DIC estimate (and the corresponding numer-
ical standard error) is computed using 10 parallel chains, each consists of 20000 posterior
draws after a burn-in period of 5000. The integrated likelihood is evaluated every 20-th
post burn-in draw—a total of 10000 evaluations. To calculate the plug-in estimate D(v))
in (6), where Tp is the vector of posterior means, 500 draws are used for the integrated
likelihood evaluation. The results are reported in Table 2.

Table 2: Log marginal likelihood and DIC estimates for three Monte Carlo experiments.

log marginal likelihood
DGP1: CVAR DGP2: CVAR-SV DGP3: TVP-SV

CVAR —1042.8 —1180.2 —1810.8
(0.003) (0.004) (0.003)

CVAR-SV  —1059.6 ~1116.2 —1729.4
(0.004) (0.004) (0.01)

TVP-SV —1130.4 —1201.3 ~1514.2
(0.08) (0.04) (0.18)

DIC

CVAR 1913.4 2186.0 3436.3
(0.21) (0.14) (0.10)

CVAR-SV 1945.8 2057.6 3287.0
(0.25) (0.27) (0.28)

TVP-SV 2099.3 2239.7 2857.5
(0.62) (0.33) (0.51)

In each case, both the log marginal likelihood and DIC are able to select the true data
generating process. In addition, both criteria penalize model complexity when it is not
needed. For example, when the data are generated from the CVAR (second column of
the table), both CVAR-SV and TVP-SV perform worse than the simpler homoscedastic
CVAR.
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6 Data and Empirical Results

In this section we compare a number of VARs that involve quarterly data on the GDP
deflator, real GDP, and short-term interest rate for the US. These three variables are
commonly used in forecasting (e.g., Banbura, Giannone, and Reichlin, 2010; Koop, 2013)
and small DSGE models (e.g., An and Schorfheide, 2007). The data on real GDP and the
GDP deflator are sourced from the Federal Reserve Bank of St. Louis economic database.
They are then transformed to annualized growth rates. The short-term interest rate is
the effective Federal Funds rate, which is also obtained from the Federal Reserve Bank of
St. Louis economic database. The sample period covers the quarters 1954Q3 to 2014Q4.
The data are plotted in Figure 1.
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Figure 1: Plots of the GDP deflator inflation (left), real GDP growth (middle) and interest
rate equation (right).

Following Primiceri (2005), we order the interest rate last and treat it as the monetary pol-
icy instrument. The identified monetary policy shocks are interpreted as “non-systematic
policy actions” that capture both policy mistakes and interest rate movements that are
responses to variables other than inflation and GDP growth. In our baseline results we
set the lag length to be p = 2.1

We compute the log marginal likelihoods and DICs for the competing models listed in
Table 1. Each log marginal likelihood estimate is based on 10000 evaluations of the
integrated likelihood, where the importance sampling density is constructed using 20000
posterior draws after a burn-in period of 5000. Each DIC estimate (and the corresponding
numerical standard error) is computed using 10 parallel chains, each consists of 20000
posterior draws after a burn-in period of 5000. The integrated likelihood is evaluated
every 20-th post burn-in draw—a total of 10000 evaluations. To calculate the plug-in
estimate D(%) in (6), where 1 is the vector of posterior means, 500 draws are used

"n Appendix C we report results with p = 3 lags. For all models, the additional lag makes both
model selection criteria worse, suggesting that two lags seem to be sufficient.
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for the integrated likelihood evaluation. To give an indication of computation time, we
implement the algorithms using MATLAB on a standard desktop with an Intel Core i5-
4590S @3.0 GHz processor and 8 GB of RAM. It takes 2 minutes to compute the marginal
likelihood for the CVAR-SV and 205 minutes for the TVP-SV.

The model comparison results are reported in Table 3 and Table 4. For comparison,
we also compute the marginal likelihood of the CVAR-SV model using a brute-force
approach. Specifically, let y1., = (y],...,y;) denote all the data up to time ¢. Then, we
can factor the marginal likelihood of model M, as follows:

T-1
p(y | My) = p(y1 | My) [ [ p(res [y, M),

t=1

where p(yii1 | Y1, My) is the predictive likelihood under model M. Each predictive
likelihood p(yii1|¥y14, Mk) is not available analytically, but it can be estimated with
an MCMC run using data yi,...,y;. Hence, to estimate the marginal likelihood this
way would require a total of T — 1 separate MCMC runs, which is generally very time-
consuming.!? Using five independent runs, we obtain an estimate of —1171.6 with a
numerical standard error of 0.71. This is essentially identical to our estimate of —1171.7
from the proposed importance sampling approach.

Table 3 reports the model comparison results for the time-varying VARs as well as the
standard CVAR with constant coefficients and homoscedastic innovations. A few broad
conclusions can be drawn from these results. Firstly, compared to the standard CVAR,
the TVP-SV with both time-varying parameters and stochastic volatility is overwhelm-
ingly favored by the data—e.g., the Bayes factor in favor of the latter model is 2.5 x 1098,
However, most of the gains in model fit appear to have come from allowing for stochastic
volatility rather than time variation in the VAR coefficients or contemporaneous relation-
ships.

In fact, the most general TVP-SV is not the best model according to both criteria.
For instance, the Bayes factor in favor of CVAR-SV against TVP-SV is about 4900,
indicating overwhelming support for the former model; the difference in DICs is 66.6 in
favor of the former. In contrast to the findings in Koop, Leon-Gonzalez, and Strachan
(2009), our results suggest that when stochastic volatility is allowed, time variation in the
VAR coefficients is not important in explaining the data.'® This conclusion is in line with
Primiceri (2005), who computes posterior model probabilities of different hyperparameter
values. His selected model is the one that implies the smallest prior variances in the state
equation for the time-varying parameters.

12Computing the marginal likelihood of the CVAR-SV model using this approach is feasible, but it is
too time-consuming for other more complex stochastic volatility models.

13To check the robustness of this conclusion, in Appendix C we provide additional results using a more
diffuse prior on Xy, the error covariance matrix of the VAR coeflicients. For all models with time-varying
parameters, this more diffuse prior makes both model selection criteria worse, suggesting that the data
do not favor substantial time-variation in the VAR coefficients.
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Table 3: Log marginal likelihood and DIC estimates for various time-varying VARs (nu-
merical standard errors in parentheses).
TVP-SV  TVP  TVP-R1-SV TVP-R2-SV TVP-R3-S5V CVAR-SV  CVAR

log ML —1180.2 —1303.7 —1171.0 —11775 11721 —1171.7  —13377
(0.12)  (0.12) (0.04) (0.26) (0.07) (0.05)  (0.003)

DIC 22155  2400.4 2154.9 2202.8 2166.5 2148.9  2503.1
(1.01)  (1.79) (0.29) (0.50) (0.50) (0.36) (0.17)

PD 29.9 29.2 31.9 28.7 30.0 31.9 26.8
(0.26)  (0.86) (0.15) (0.21) (0.50) (0.25) (0.08)

The three restricted versions of TVP-SV, namely, TVP-R1-SV, TVP-R2-SV and TVP-
R3-SV, all compare more favorably to the more general TVP-SV, but they receive similar
support as CVAR-SV. Perhaps it is surprising that allowing for only time-varying inter-
cepts, as in TVP-R3-SV, does not substantially improve model fit—even though one
might expect structural breaks in mean for variables like inflation or interest rate. In-
deed, there seems to be some time variation in the estimated intercepts (see Figure 4
in Appendix C). However, the associated credible intervals are relatively wide that one
cannot, draw definitive conclusion.

Our results thus support the so-called “Sims critique” (see Sims, 2001) that earlier finding
of time variation in VAR coefficients was due to the failure to account for heteroscedas-
ticity in a TVP model with a constant covariance matrix. Our findings also complement
the results in Sims and Zha (2006), who consider various regime-switching models and
find the best model to be the one that allows time variation in disturbance variances only.

Secondly, the two model comparison criteria mostly agree in the ranking of the models.
The only disagreement is the first and the second models—the marginal likelihood slightly
prefers TVP-R1-SV, whereas the DIC favors CVAR-SV at the margin—and the order for
the remaining models is exactly the same for both criteria. Given these results, one may
feel comfortable using CVAR-SV as the default model. This also provides a feasible route
to construct flexible high-dimensional VARs. In particular, one can consider a constant
coefficients VAR with constant impact matrix and shrinkage priors as in Banbura et al.
(2010) and Koop (2013), but extend the diagonal covariance matrix to allow for stochastic
volatility; see Carriero, Clark, and Marcellino (2016) for such a modeling approach.

Thirdly, when the covariance matrix is restricted to be constant (comparing CVAR and
TVP), allowing for time variation in the parameters improves model fit. This finding
supports the conclusion in Cogley and Sargent (2001), who find substantial time variation
in the VAR coefficients in a model with constant variance. In addition, our finding is
also in line with the model comparison results in Grant (2015) and Chan and Eisenstat
(2015), who find that a time-varying parameter VAR with constant variance compares
favorably to a constant coefficients VAR.

In addition, Table 4 reports the marginal likelihood estimates for various regime-switching
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VARs.!* Recall that RS-VAR denotes the model where both VAR coefficients and vari-
ances can differ across regimes, whereas RS-VAR-R1 and RS-VAR-R2 allow only variances
or VAR coefficients to be different, respectively. Our results broadly support the conclu-
sions in Sims and Zha (2006). In particular, according to the marginal likelihood, the
top models are RS-VAR-R1 (with two and three regimes), followed by the more general
RS-VAR. In other words, the VAR variances seem to be different across regimes but not
the VAR coefficients.

Table 4: Log marginal likelihood for various regime-switching VARs (numerical standard
errors in parentheses).

RS-VAR RS-VAR-R1 RS-VAR-R2 RS-VAR RS-VAR-R1 RS-VAR-R2

(r=2) (r=2) (r=2) (r=3)  (r=3) (r=23)
log ML —1277.5  —1226.3 —1203.5  —1280.4  —1231.1 —1324.6
(0.06) (0.01) (0.03) (0.04) (0.14) (1.73)

Finally, comparing the two main classes of models—VARs with stochastic volatility and
regime-switching VARs—we find strong evidence in favor of the former. In particular, the
Bayes factor in favor of CVAR-SV against the best regime-switching VAR, RS-VAR-R1
with two regimes, is 5.2 x 10?3, indicating overwhelming support for the former model.
Hence, the data support the conclusion that the volatility process is better modeled as a
random walk with a gradual drift instead of a process with discrete breaks.
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Figure 2: Estimated standard deviation of the innovation in the inflation equation (left),
GDP growth equation (middle) and interest rate equation (right).

We plot the posterior means of the standard deviations of the innovations for selected
models in Figure 2. The volatilities of the innovations are typically quite high in the 1970s,
followed by a marked decline during the Great Moderation, until they increase again

4We do not report DIC estimates for the regime-switching models because the posterior distribu-
tions under these models typically have multiple modes. As such, the choice of the plug-in estimate in
computing the DIC can be problematic.
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following the aftermath of the Great Recession. Given these drastic changes in volatilities,
it is no surprise that models that assume homoscedastic innovations cannot fit the data
well. In addition, it is interesting to note that the volatility estimates are remarkably
similar under the three models—although those of the CVAR-SV are slightly larger in
the 1970s. This may reflect that some parameter instability in the VAR coeflicients is
treated as an increase in variance under CVAR-SV.

In Figure 3 we plot the impulse responses of inflation and GDP growth to a one percent
monetary shock. In particular, a “positive” shock here refers to an increase in the policy
rate. For the TVP models, the VAR coefficients used to compute the impulse responses
are fixed at the 2014Q4 estimates. The two TVP models give very similar impulse
response functions, whereas those from the constant coefficients model are quite different.
For example, the impulse response of inflation under the constant coefficients model is
much more persistent than those of the two TVP models, highlighting the importance of
performing model selection or model averaging.
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Figure 3: Impulse responses of inflation (left) and GDP growth (right) to monetary shock
at 2014Q4

7 Extensions

In this paper we have focused on TVP-VARs, but the proposed algorithms can be readily
applied to other similar settings. Below we discuss a general framework in which the
proposed algorithms are applicable. We then outline how the algorithms can be modified
to fit that framework.

Let y; denote a vector of observations at time ¢ and let v represent a vector of time-
invariant parameters. Consider a state space model with two types of states, a; and A;.
Specifically, suppose the measurement equation is characterized by the Gaussian density
p(y | @, Ar, 1), where the equation is linear in a; but not in A;. The latent states in turn
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follow the following VAR(1) processes:

o, =P, 1 + 17, ny ~ N(O> 3a), (12)
At =P + 772\, 772\ ~ N(Q ), (13)

where the initial conditions ag and Ay are treated as unknown parameters and are in-
cluded in 7.

This general framework naturally includes the TVP-VAR with VAR(1) state equations
as a special case, in which a; = 6, and A; = h;. Another example is a dynamic factor
model with stochastic volatility. More specifically, consider

yi=p+ Af, +e, e ~N(0X),

where p is a vector of intercepts, ¥, = diag(exp(hi¢), ..., exp(hy)) is the time-varying
covariance matrix, and f; is a vector of latent factors. Further, the latent factors are
assumed to follow the following VAR(1) process:

ftzéfftfl—i_n{v n{NN«)’Ef)’

and the log-volatilities h = (h/,..., h’.)" follow a random walk process as before. Then,

this dynamic factor model can be written as a special case of the general framework with
o; = f, and \; = h;.

Next, we outline how one can estimate the integrated likelihood implied by this more
general framework. Given the VAR state equations (12) and (13), the prior densities of
a=(a),...,ay) and A = (X],...,A}), denoted as p(a|1) and p(X|v)), are both
Gaussian. In addition, due to the VAR(1) structure, the precision matrices of the Gaus-
sian densities are also banded.

Since p(y; | oy, A, ) is Gaussian and linear in oy, one can compute analytically the
(partial) integrated likelihood

Py | A ) = / p(y | e A, )pler | ) den.

To integrate out A by importance sampling, as before we can approximate the ideal
zero-variance importance sampling density, in this case p(A|y, %), by a Gaussian ap-
proximation. That is, we use the EM algorithm to locate the mode of log p(A |y, ),
which is used as the mean vector of the Gaussian approximation. We then compute the
associated negative Hessian evaluated at the mode, and use it as the precision matrix.
Then Algorithm 1 can be implemented as before.

8 Concluding Remarks and Future Research

We have developed importance sampling estimators for evaluating the integrated likeli-
hoods of TVP-VARs with stochastic volatility. The proposed methods are then used to
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compute the marginal likelihood and DIC in a model comparison exercise. Using US data,
we find overwhelming support for the model of Primiceri (2005) against a conventional
VAR. Nevertheless, most of the gains appear to have come from allowing for stochastic
volatility rather than time variation in the VAR coefficients or contemporaneous rela-
tionships. Indeed, according to both the marginal likelihood and the DIC, a constant
coefficients VAR with stochastic volatility receives similar support compared to the more
general model of Primiceri (2005).

However, our results do not rule out the possibility that a model in which some of the
VAR coefficients are constant while others are time-varying might perform even better. To
investigate this possibility, one could build upon the proposed methods of integrated like-
lihood evaluation to construct a reversible jump MCMC to explore the vast model space
of hybrid models—e.g., we can have a model in which only one equation has time-varying
coefficients or only the nominal variables have stochastic volatility. This provides an
alternative to the stochastic model specification search approach of Frihwirth-Schnatter
and Wagner (2010), which has been extended to TVP-VARs in Belmonte, Koop, and
Korobilis (2014) and Eisenstat, Chan, and Strachan (2016).

In addition, it would also be interesting to compare large TVP-VARs. Since the number
of model choices vastly increases in large systems, such a model comparison exercise
would provide useful guidelines for practitioners. In particular, it would be useful to
understand the effects of various shrinkage priors recently proposed in the literature.
One line of investigation would be to compute the effective number of parameters and
DICs for models with these shrinkage priors to see which one receives more support from
the data.

Furthermore, the proposed importance sampling estimators for integrated likelihoods can
be used in other settings, such as in developing more efficient MCMC samplers (e.g., as
an input for particle MCMC methods; see Andrieu, Doucet, and Holenstein 2010) or
designing reversible jump MCMC algorithms to explore models of different dimensions.
We leave these possibilities for future research. Moreover, we have only considered TVP-
VARs with simple stochastic volatility processes. It would be useful to develop similar
importance sampling methods for other richer stochastic volatility models, such as those
in Eisenstat and Strachan (2015).
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Appendix A: Estimation Details

In this appendix we outline the estimation details for fitting the model in (2)—(4) and
other restricted models.

Estimation of TVP-SV

For notational convenience, let y = (y},...,y%7) and 8 = (67,...,0%)". Then, poste-
rior draws can be obtained by sequentially sampling from the following full conditional
distributions:

1. p(@|y,h,3, 3, 00,h);
2. p(hly, 0,39, %4, 00, ho);
3. p(Xg, X1 |y,0,h,00, hy);
4. p(@o,ho|y,0,h, Xy, 3p).

To implement Step 1, we first show that the conditional distribution of 8 is Gaussian.
To that end, rewrite (3) as a seemingly unrelated regression:

y=X60+¢e, e~N(0X), (14)

where e = (e,...,¢e})', ¥ = diag(X,...,3r) and X = diag(Xy,...,Xr). Next, let Hy
denote the first difference matrix, i.e.,

L, 0 - 0
f,— | T T '
0 o —L, I

Then, we can rewrite (4) as
Hyb = ay+mn, n~N(0,S),
where ag = (6,0, ...,0) and Sy = I+ ® 3y. Or equivalently
(01X, 60) ~ N(aw, (HyS; 'Hy) ™),

where ay = H;l&g. Using standard linear regression results, one can show that (see,
e.g., Kroese and Chan, 2014, Corollary 8.1):

(0 | y’ h’ 29) Eha 007 h()) ~ N(/é, Ke_l),
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where 8 = K 'd, with
Ky, = H/GSEIHQ + X’E_lX, dy = HgS;lHQO{@ + X’E_ly. (15)

Note that the precision matrix Ky is a band matrix—i.e., the nonzero elements are all
confined within a narrow band along the main diagonal. As such, the precision sampler
of Chan and Jeliazkov (2009) can be used to sample from N(6, K, ") efficiently.

To implement Step 2, we can apply the auxiliary mixture sampler of Kim et al. (1998) in
conjunction of the precision sampler to sequentially draw each slice of h;e = (i1, ..., hir)’,
1 =1,...,n. Next, the elements of 3y and 3, are conditionally independent and follow
inverse-gamma distributions:

T
T 1 ,
(0: |y, 6.1, 600, ho) ~ IG (uez- + 5050+ 5 ;(eit - ei,t_o?) . i=Loky,

T

T 1 :

(975 1. 8.1.80.b0) ~ TG | vy + 5. S+ 5 D (e =) | . G =L
2 2 —

Lastly, 8y and hy are conditionally independent and follow Gaussian distributions:

(60]y.0.0,%9, %) ~ N (00. K1), (ho|y,0,h, %, %,) ~ N(hy, Ky D),

where Ko, = V;' + 271, 8 = K'(V;'ag + 5;0,), K, = V' + ;" and hy =
K. (V' ay + 3, 'hy).

Estimation of Other Restricted Models

Here we outline the estimation of various restricted versions of TVP-SV. To start, consider
TVP-SV-R1 with the restrictions 3, = B3, for ¢ = 1,...,7T. Then, the model can be
written as: _

Yt = Xt/g() + Wiy, +e&, &~ N(07 Et)?

where X, = I,, ® (L, yi 1, ,¥i,) and Wy is an n x k, matrix that contains appropriate
elements of —y; as defined in the main text. Recall that the prior on 8y = (B, ;)
is @y ~ N(ag, V). Let ag and a, denote respectively the prior means of 3, and ~,.
Similarly define Vg and V..

Then, the posterior sampler for TVP-SV can be modified to fit this restricted version.
More specifically, we obtain posterior draws by sequentially drawing from

1' p(7|ya h7 Ewazhw@Oa’YOahD);
2. p(h|Y77a 2772h7/607707h0);
3. p(z’w Eh | Y, 7, h7 /807 Yo, hO)u
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4. p(ﬁm Yo, hO | Y. 7, ha 277 Eh)

To implement Step 1, define W = diag(Wy,..., Wy) and X = (X/,..., X/, a, =
(76,0,...,0) and S, = Ir ® X,. Further let H, denote the first difference matrix of
appropriate dimension. Then, using a similar derivation as in the previous section, one
can show that

(’7 ‘ Yy, h7 E’Ya Eh> /607 Yo hO) ~ N(%a K;l)>

where

K, =HS'H,+WS'W, 5=K'(HS Ha, +W(y-Xa))
We then use the precision sampler of Chan and Jeliazkov (2009) to sample from this
Gaussian distribution.

Step 2 and Step 3 can be carried out similarly as before. For Step 4, first note that 3, v,,
and hgy are conditionally independent given the data and other parameters.

In fact, they are conditionally independent Gaussian random vectors:
(/60 | y,7, hv 277 Eh) ~ N(ﬁOa K;};)v
(707 | Y., h7 277 Eh) ~ N(:)\,Oa K;Ol)v
(hO ‘ y,7, ha 277 Eh) ~ N<h07 K}:O1>7
where Kg, = V' +X'27'X, B, = K (V'as + X3y - W7)), Ky, = VI 4+ 27,
Yo =K (Vi'a, + 371), K, = V' + 3,1 and hy = K (Va4 25 hy).

For TVP-SV-R2 with the restrictions v, = 7o for t = 1,...,7, we can write the model
as:
ye=XiB, + Wivp+e&, e ~N(0X).

Hence, compared to TVP-SV-R1, the roles of 8, and ~, are now swapped, and we can
use the same Gibbs sampler to estimate TVP-SV-R2.

For CVAR-SV, we impose the restrictions 3, = 3, and v, = 7o for t = 1,...,T. The
model is therefore B
yi =XiBg+ Wiy + e, & ~N(0,X). (16)

We can then obtain posterior draws by sequentially drawing from

1. p(h | Y. 7, 277 Eh? /807 Yo, hU);
2. p(zh | Yy, h7 /807 Yo> hO)u

3. p(ﬁOa Yo> hO ’ y, h? Eh)
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Step 1 and Step 2 can be carried similarly as before. For Step 3, first note that 8, =
(By,s) and hg are conditionally independent given the data and other parameters. We
can sample hy from its conditional distribution as before. For sampling 8, we first stack
(16) over t =1,...,T:

y =260 +¢e, & ~N(0,%),
where _
X W,
Z = : : )
Xy Wr
With the prior 8y ~ N (ag, Vj), the conditional distribution of 6y is therefore

(00 | Yy, h7 Eh) ~ N(b\O? K;;)’

where Ko, = V, ' +Z'~7'Z and 6o = Ko, (V, 'ag+Z'Sy). For other simpler restricted
models, we only need to modify the above algorithms to fit them.
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Appendix B: Details on Integrated Likelihood Estima-
tion

In this appendix we provide the technical details for estimating the integrated likelihood
outlined in Section 4.1. Recall that the integrated likelihood estimation consists of two
steps. In the first step we integrate out @ analytically:

p(y ‘ 297 2}” 007 hO) = /P(y ’ 07 ha Eea 2h> 007 hU)p(e ‘ 29, HO)p<h ‘ Eha hO)d<97 h)
= /P(Y|ha 3, 35,00, ho)p(h | X, hy)dh,

In the second step, we integrate out h using importance sampling.

Analytical Integration with respect to 0

To implement the first step, we first give an analytical expression of the marginal density
p(y | h, Xy, Xy, 00, hg) unconditional of :

p(y | h’ 297 Zhy 007 hO) = /p(y | Oa ha 297 Z}” 007 hO)p(O | 297 GO)de

We showed in Appendix A that (y|60,h,X4, X;,600,hy) = (y|h,0) ~ N(X0,X) and
(0]%9,00) ~ N(ay, (H,S, Hg)"!). Then, using a similar derivation as in Chan and
Grant (2016a), one can obtain the log-density as follows:

T 1 T
logp(y | h, 39, X, 00, hg) = — Tn log(27) — §1LLTh )

1
— 5 (27y + oS, THyoy — djK, 'dy)

1
10g|29| - 510g|K9|

where 1,7 is a T'n x 1 column of ones, Ky and dy are given in (15) in Appendix A. This
expression can also be derived using the identity

p<y | 0’ ha 297 Z}“ 007 hO)p(O | 297 00)

h, 3y, 3,,00,hy) =
p(y| 0 3in, 00, ho) p(@|y,h,Xy, 3,00, hy)

and setting @ = 0. Since Ky, 3, Hy and Sy are all band matrices, the expression in (17)
can be evaluated quickly; see Chan and Grant (2016a) for computational details.

Importance Sampling for Integrating out h

Next, we discuss the second step that integrates out h using importance sampling. The
ideal zero-variance importance sampling density in this case is the marginal density of
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h unconditional on 8, i.e., p(h|y,Xg, Xy, 0, hg). But this density cannot be used as
an importance sampling density because its normalization constant is unknown. We
therefore approximate it using a Gaussian density, which is then used as the importance
sampling density.

EM Algorithm to Obtain the Mode of p(h|y, ¥y, ¥, 0, hy)

To that end, we first use the EM algorithm to find the maximum of the log marginal
density log p(h |y, X4, 3y, 09, ho).

To implement the E-step, we compute the following conditional expectation

Q(h | fl) = IE:’0|fl [logp(ha 0 | Yy, E@a Ehv 00a hO)] 5

where the expectation is taken with respect to p(0 |y, h, 3¢, =4, 00, hy) for an arbitrary
vector h. As shown in Appendix A,

(6]y,h, 2y, S, 00, ho) ~ N (0, K; ),

where 8 = K;ldg, and dy and Ky are given in (15). Note that both the mean vector [
and precision matrix Ky are functions of h—that is, 8 and Ky are computed using h.

Then, an explicit expression of Q(h | ﬂ) can be derived as follows:

~ 1 1
Q(h|h) = — 5(h —ay)H, (Iy @ 2, HYHu(h — a) — =1 7h

2 nT
1 o /
— 5tr (ding(e ™)Eyg [(y — X0)(y — X0)]) + 1
1 1
- _ 5(h —ay)H, (Ir @ 2, HH,(h — o) — 51;Th
1 . _h I n n\/
— §tr (dlag(e ) (XKG X'+ (y — X0)(y — X0) >> + ¢, (18)

where tr(+) is the trace operator, ¢; is a constant not dependent on h,

Hh — _In In
0 -1, 1,

and o = H;lah with &h = (h67 0, e ,O)I.

In the M-step, we maximize the function Q(h|h) with respect to h. This can be done
using the Newton-Raphson method (see, e.g., Kroese et al., 2011). The gradient is given
by

1 .
go=-H,(I; ® £, )H,(h — o) — 3 (1,r —e ™ 02),
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and the Hessian is
1 ~
Ho = -H),(Ir @ =, HH), — 5 diag (e ®32), (19)

where ® denotes the entry-wise product, z = (s? + £7,...,8%, + €24), s? is the i-th
diagonal element of XK, 'X’ and ; is the i-th element of y — X6.

We emphasize that both go and Hg can be computed efficiently using sparse and band
matrix algorithms.'® Also note that the Hessian Hg is negative definite for all h. This
guarantees fast convergence of the Newton-Raphson method.

Given the E- and M-steps above, the EM algorithm can be implemented as follows. We
initialize the algorithm with h = h/EO) for some constant vector h(®). At the j-th iteration,
we obtain gg and Hg, where both @ and Ky are evaluated using h=Y. Then, we compute

h") = argmax Q(h|hV~Y),
h

using the Newton-Raphson method. We repeat the E- and M-steps until some con-
vergence criterion is met, e.g., the norm between consecutive h¥) is less than a pre-
determined tolerance value. At the end of the EM algorithm, we obtain the mode of the
density p(h|y, 3g, X, 09, hg), which is denoted by h. We summarize the EM algorithm
in Algorithm 4.

Algorithm 4 EM algorithm to obtain the mode of p(h |y, %y, 35, 69, hy).

Suppose we have an initial guess h(®) and error tolerance levels e and e, say, &1 = €5 =
10~%. The EM algorithm consists of iterating the following steps for j = 1,2, ...

1. E-Step: Given the current value hU=Y compute Ky, 0 and Z

2. M-Step: Maximize Q(h | hU=Y) with respect to h by the Newton-Raphson method.
That is, set h(%7=1 = hU=1 and iterate the following steps for k = 1,2, .. .:

(a) Compute go and Hg using Kpy, 6 and Z obtained in the E-step, and set
h = hk—1i-D)

(b) Update h*=1) = h(t=1i-1) — Hi'gg

(c) If, for example, ||h*=1) — h(*=15=D|| < £,  terminate the iteration and set
h) = ki1

3. Stopping condition: if, for example, ||h") — hU=Y|| < g5, terminate the algorithm.

15In particular, note that we only need the diagonal elements of XK, 'X’. Since Ky is a band matrix,
its Cholesky factor Lg such that LyLj, = Ky can be obtained quickly. Then, U = L;lX can be computed
by solving the linear system LgU = X for U. Finally, the diagonal elements of XK, 1X’ are the row
sums of squares of U.
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Computing the Hessian of logp(h |y, 34, 3, 00, ho)

After obtaining the mode h of the log marginal density logp(h |y, 3y, X5, 09, hg), next
we compute the Hessian evaluated at h. If we take the log of both sides of (9) and then
take the expectation with respect to p(0 |y, h, 3y, X5, 09, hg), we obtain the identity

logp(h|y, 3, 25,00, ho) = Q(h|h) + H(h|h), (20)

where H(h|h) = —Egn [logp(@ |y, h, Xy, Xp, 00, hg)]. It follows that the Hessian of the

log marginal density evaluated at h is simply the sum of the Hessians of Q and H with
h = h. The former comes out as a by-product of the EM algorithm; an analytical
expression is given in (19). The latter is computed below.

To that end, we first derive an explicit expression of H(h |h):

H(h|h) = —Egp [logp(0 |y, h, X, 3y, 0, hy)]
kT 1 1 . ~
= - log(2) — 5 log [ K| + 5o [(e —9)K,y(0 — )
1
= —5log 1 X'diag(e ™)X + H},S,  Hy| + ¢,

where ¢ is a constant not dependent on h. Note that under p(0 |y, h, 3y, 35, 8¢, hg), the

quadratic form (6 — 5)’ Ky(0 — /é) is a chi-squared random variable and its expectation
does not depend on h.

To compute the Hessian of H, we first introduce some notations. Let x; be a kT x 1
vector that consists of the elements in the ¢-th row of X. With a slight abuse of notations,
we let h; denote the i-th element of h. Then, it is easy to check that

8K9

j hi . /
on. an, diag(e = an Ze XX = XiX;.

Next, using standard results of matrix differentiation, we obtain

1 K 1
0 H(h|h) = —=tr (K;la 9) = —e_h"ngg_lxi,

Oh; 2 Oh; 2
0? 1 —hi g —1 —hi T — 8K9 —1
8h2 H(h|h) = —5 (e x K, 'x; +e xiKg an, )

1
. —hi ! —1 —h; /! —1
=—5e Ky x (1 — e "x K, x;),

2

1

8h8~8h-7—[(h |h) = §e_(hi+hj)X;Kglij;Kglxi.
10

In matrix form, the Hessian of H(h|h) is therefore

1
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where Z = diag(e ™) XK, 'X'.
Finally, let Hg denote the Hessian of Q(h|h) evaluated at h = h. Then, the negative

Hessian of the log marginal density of h evaluated at h = h is simply K, = —(Hg+Hy),
which is used as the precision matrix of the Gaussian approximation.
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Appendix C: Additional Results

Prior Sensitivity Analysis

In this section we provide additional results using a different set of priors to assess our
main conclusion that when stochastic volatility is allowed, time variation in the VAR
coefficients is not important in explaining the data.

In particular, we consider larger prior means for the error variance of VAR coefficients
Y9. Recall that in the baseline results we set the hyperparameters so that the prior mean
of o3, is 0.01% if it is associated with a VAR coefficient and 0.1% for an intercept. Here
the hyperparameters are chosen so that the prior means are 0.12 and 12, respectively. All
other priors are the same as in Section 2.

The results are reported in Table 5 (the values for CVAR-SV and CVAR are the same
as before). For all models with time-varying parameters, this alternative prior makes
both model selection criteria worse, suggesting that the data do not favor substantial
time-variation in the VAR coefficients.

Table 5: Log marginal likelihood and DIC estimates for various time-varying VARs (nu-
merical standard errors in parentheses) under an alternative prior on the error variance

of VAR coefficients.
TVP-SV TVP TVP-R1-SV TVP-R2-SV TVP-R3-SV CVAR-SV CVAR

logML —13855 —1531.8 —1216.6 —13528 —12244  —1171.7 —1337.7
(0.22)  (0.03) (0.11) (0.29) (0.25) (0.05)  (0.003)

DIC 2600.4  2819.6 2249.3 2537.4 2262.7 21489  2503.1
(0.52)  (0.43) (0.82) (0.73) (0.99) (0.36) (0.17)

o 26.7 28.6 33.7 27.4 35.2 31.9 26.8
(0.47)  (0.15) (0.75) (0.45) (0.90) (0.25) (0.08)

Results from VARs with p = 3 Lags

In the baseline results reported in the main text, we set the number of lags to be two.
Here we present the log marginal likelihood and DIC estimates for VARs with three lags
in Table 6. For all models, the additional lag makes both model selection criteria worse,
suggesting that two lags seem to be sufficient.
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Table 6: Log marginal likelihood and DIC estimates for various time-varying VARs (nu-
merical standard errors in parentheses) with p = 3.

TVP-SV  TVP  TVP-R1-SV TVP-R2-SV TVP-R3-S5V CVAR-SV  CVAR

logML —12133 —1322.6  —1193.7 —12104 —11974  —11938 —1349.9
(0.20)  (0.18) (0.07) (0.16) (0.09) (0.04)  (0.004)

DIC 22351  2390.9 2144.1 2223.3 2163.5 2136.1  2474.8
(0.59)  (2.90) (0.36) (0.70) (1.05) (0.35) (0.04)

Pp 39.7 36.0 41.6 39.3 42.3 40.7 35.7
(0.36)  (0.86) (0.26) (0.55) (0.95) (0.22) (0.02)

Results from TVP-R3-SV

Figure 4 plots the posterior means of the time-varying intercepts under the TVP-R3-SV
model as well as the corresponding 90% credible intervals.

inflation

1960 1970 1980 1990 2000 2010

GDP growth

1960 1970 1980 1990 2000 2010

interest rate

Pl -~ - - -
05 \ - 1 \ VA

1960 1970 1980 1990 2000 2010

Figure 4: Estimated time-varying intercepts under TVP-R3-SV for the inflation equation
(top), the GDP growth equation (middle) and the interest rate equation (bottom). The
dotted lines denote the 90% credible intervals.
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