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Preface

Statistics provides one of the few principled means to extract information
from random data, and has perhaps more interdisciplinary connections than
any other field of science. However, for a beginning student of statistics the
abundance of mathematical concepts, statistical philosophies, and numerical
techniques can seem overwhelming. The purpose of this book is to provide a
comprehensive and accessible introduction to modern statistics, illuminating
its many facets, both from a classical (frequentist) and Bayesian point of
view. The book offers an integrated treatment of mathematical statistics and
modern statistical computation.

The book is aimed at beginning students of statistics and practitioners
who would like to fully understand the theory and key numerical techniques
of statistics. It is based on a progression of undergraduate statistics courses at
The University of Queensland and The Australian National University. Parts
of the book have also been successfully tested at The University of New South
Wales. Emphasis is laid on the mathematical and computational aspects of
statistics. No prior knowledge of statistics is required, but we assume that the
reader has a basic knowledge of mathematics, which forms an essential basis
for the development of the statistical theory. Starting from scratch, the book
gradually builds up to an advanced undergraduate level, providing a solid
basis for possible postgraduate research. Throughout the text we illustrate the
theory by providing working code in MATLAB, rather than relying on black-
box statistical packages. We make frequent use of the symbol + in the margin
to facilitate cross-referencing between related pages. The book is accompanied
by the website www.statmodcomp.org from which the MATLAB code and data
files can be downloaded. In addition, we provide an R equivalent for each
MATLAB program.

The book is structured into three parts. In Part I we introduce the fun-
damentals of probability theory. We discuss models for random experiments,
conditional probability and independence, random variables, and probability
distributions. Moreover, we explain how to carry out random experiments on
a computer.
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viii Preface

In Part II we introduce the general framework for statistical modeling and
inference, both from a classical and Bayesian perspective. We discuss a vari-
ety of common models for data, such as independent random samples, linear
regression, and ANOVA models. Once a model for the data is determined one
can carry out a mathematical analysis of the model on the basis of the avail-
able data. We discuss a wide range of concepts and techniques for statistical
inference, including likelihood-based estimation and hypothesis testing, suf-
ficiency, confidence intervals, and kernel density estimation. We encompass
both classical and Bayesian approaches, and also highlight popular Monte
Carlo sampling techniques.

In Part III we address the statistical analysis and computation of a vari-
ety of advanced models, such as generalized linear models, autoregressive and
moving average models, Gaussian models, and state space models. Particu-
lar attention is paid to fast numerical techniques for classical and Bayesian
inference on these models. Throughout the book our leading principle is that
the mathematical formulation of a statistical model goes hand in hand with
the specification of its simulation counterpart.

The book contains a large number of illustrative examples and problem
sets (with solutions). To keep the book fully self-contained, we include the
more technical proofs and mathematical theory in an appendix. A separate
appendix features a concise introduction to MATLAB.

Brisbane and Canberra, Dirk Kroese
July 19, 2013 Joshua Chan
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Mathematical Notation

Throughout this book we use notation in which different fonts and letter
cases signify different types of mathematical objects. For example, vectors
a,b,x, . . . are written in lowercase boldface font, and matrices A, B, X in
uppercase normal font. Sans serif fonts indicate probability distributions, such
as N, Exp, and Bin. Probability and expectation symbols are written in black
board bold font: P and E. MATLAB code and functions will always be written
in typewriter font.

Traditionally, classical and Bayesian statistics use a different notation sys-
tem for random variables and their probability density functions. In classical
statistics and probability theory random variables usually are denoted by up-
percase lettersX,Y, Z, . . ., and their outcomes by lower case letters x, y, z, . . ..
Bayesian statisticians typically use lower case letters for both. More impor-
tantly, in the Bayesian notation system it is common to use the same letter
f (or p) for different probability densities, as in f(x, y) = f(x)f(y). Clas-
sical statisticians and probabilists would prefer a different symbol for each
function, as in f(x, y) = fX(x)fY (y). We will predominantly use the classical
notation, especially in the first part of the book. However, when dealing with
Bayesian models and inference, such as in Chapters 8 and 11, it will be con-
venient to switch to the Bayesian notation system. Here is a list of frequently
used symbols:

≈ is approximately
∝ is proportional to
∞ infinity
⊗ Kronecker product
def
= is defined as

∼ is distributed as
iid∼, ∼iid are independent and identically distributed as
approx.∼ is approximately distributed as
7→ maps to
A ∪B union of sets A and B
A ∩B intersection of sets A and B
Ac complement of set A
A ⊂ B A is a subset of B
∅ empty set
‖x‖ Euclidean norm of vector x
∇f gradient of f
∇2f Hessian of f
A⊤, x⊤ transpose of matrix A or vector x
diag(a) diagonal matrix with diagonal entries defined by a
tr(A) trace of matrix A
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xx Mathematical Notation

det(A) determinant of matrix A
|A| absolute value of the determinant of matrix A. Also, number of

elements in set A, or absolute value of real number A
argmax argmax f(x) is a value x∗ for which f(x∗) > f(x) for all x
d differential symbol
E expectation
e Euler’s constant limn→∞(1 + 1/n)n = 2.71828 . . .
i the square root of −1
IA, I{A} indicator function: equal to 1 if the condition/event A holds, and

0 otherwise.
ln (natural) logarithm
N set of natural numbers {0, 1, . . .}
ϕ pdf of the standard normal distribution
Φ cdf of the standard normal distribution
P probability measure
O big-O order symbol: f(x) = O(g(x)) if |f(x)| 6 αg(x) for some

constant α as x→ a
o little-o order symbol: f(x) = o(g(x)) if f(x)/g(x) → 0 as x→ a
R the real line = one-dimensional Euclidean space
R+ positive real line: [0,∞)
Rn n-dimensional Euclidean space
θ̂ estimate/estimator
x,y vectors
X,Y random vectors
Z set of integers {. . . ,−1, 0, 1, . . .}
Probability Distributions

Ber Bernoulli distribution
Beta beta distribution
Bin binomial distribution
Cauchy Cauchy distribution
χ2 chi-squared distribution
Dirichlet Dirichlet distribution
DU discrete uniform distribution
Exp exponential distribution
F F distribution
Gamma gamma distribution
Geom geometric distribution
InvGamma inverse-gamma distribution
Mnom multinomial distribution
N normal or Gaussian distribution
Poi Poisson distribution
t Student’s t distribution
TN truncated normal distribution
U uniform distribution
Weib Weibull distribution



Part I

Fundamentals of Probability



In Part I of the book we consider the probability side of statistics. In
particular, we will consider how random experiments can be modelled math-
ematically, and how such modeling enables us to compute various properties
of interest for those experiments.



Chapter 1

Probability Models

1.1 Random Experiments

The basic notion in probability is that of a random experiment: an ex-
periment whose outcome cannot be determined in advance, but which is
nevertheless subject to analysis. Examples of random experiments are:

1. tossing a die and observing its face value,
2. measuring the amount of monthly rainfall in a certain location,
3. counting the number of calls arriving at a telephone exchange during a

fixed time period,
4. selecting at random fifty people and observing the number of left-handers,
5. choosing at random ten people and measuring their heights.

The goal of probability is to understand the behavior of random experi-
ments by analyzing the corresponding mathematical models. Given a math-
ematical model for a random experiment one can calculate quantities of in-
terest such as probabilities and expectations. Moreover, such mathematical
models can typically be implemented on a computer, so that it becomes pos-
sible to simulate the experiment. Conversely, any computer implementation
of a random experiment implicitly defines a mathematical model. Mathemat-
ical models for random experiments are also the basis of statistics, where the
objective is to infer which of several competing models best fits the observed
data. This often involves the estimation of model parameters from the data.

Example 1.1 (Coin Tossing). One of the most fundamental random ex-
periments is the one where a coin is tossed a number of times. Indeed, much
of probability theory can be based on this simple experiment. To better un-
derstand how this coin toss experiment behaves, we can carry it out on a
computer, using programs such as MATLAB. The following simple MATLAB

program simulates a sequence of 100 tosses with a fair coin (that is, Heads
and Tails are equally likely), and plots the results in a bar chart.

3



4 1 Probability Models

x = (rand(1,100) < 0.5) % generate the coin tosses

bar(x) % plot the results in a bar chart

The function rand draws uniform random numbers from the interval [0, 1]
— in this case a 1 × 100 vector of such numbers. By testing whether the
uniform numbers are less than 0.5, we obtain a vector x of 1s and 0s, indicating
Heads and Tails, say. Typical outcomes for three such experiments are given
in Figure 1.1.

1 50 100

Fig. 1.1 Three experiments where a fair coin is tossed 100 times. The dark bars
indicate when “Heads” (=1) appears.

We can also plot the average number of Heads against the number of
tosses. In the same MATLAB program, this is accomplished by adding two
lines of code:

y = cumsum(x)./[1:100] % calculate the cumulative sum and

% divide this elementwise by the vector [1:100]

plot(y) % plot the result in a line graph

The result of three such experiments is depicted in Figure 1.2. Notice that
the average number of Heads seems to converge to 0.5, but there is a lot of
random fluctuation.
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Fig. 1.2 The average number of Heads in n tosses, where n = 1, . . . , 100.

Similar results can be obtained for the case where the coin is biased, with
a probability of Heads of p, say. Here are some typical probability questions.

• What is the probability of x Heads in 100 tosses?
• What is the expected number of Heads?
• How long does one have to wait until the first Head is tossed?
• How fast does the average number of Heads converge to p?

A statistical analysis would start from observed data of the experiment — for
example, all the outcomes of 100 tosses are known. Suppose the probability
of Heads p is not known. Typical statistics questions are:

• Is the coin fair?
• How can p be best estimated from the data?
• How accurate/reliable would such an estimate be?

The mathematical models that are used to describe random experiments
consist of three building blocks: a sample space, a set of events, and a proba-
bility. We will now describe each of these objects.

1.2 Sample Space

Although we cannot predict the outcome of a random experiment with cer-
tainty, we usually can specify a set of possible outcomes. This gives the first
ingredient in our model for a random experiment.

Definition 1.1. (Sample Space). The sample space Ω of a random
experiment is the set of all possible outcomes of the experiment.
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Examples of random experiments with their sample spaces are:

1. Cast two dice consecutively and observe their face values.

Ω = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6)} .

2. Measure the lifetime of a machine in days.

Ω = R+ = { positive real numbers } .

3. Count the number of arriving calls at an exchange during a specified time
interval.

Ω = {0, 1, . . .} .
4. Measure the heights of 10 people.

Ω = {(x1, . . . , x10) : xi > 0, i = 1, . . . , 10} = R
10
+ .

Here (x1, . . . , x10) represents the outcome that the height of the first
selected person is x1, the height of the second person is x2, and so on.

Notice that for modeling purposes it is often easier to take the sample
space larger than is strictly necessary. For example, the actual lifetime of
a machine would in reality not span the entire positive real axis, and the
heights of the 10 selected people would not exceed 9 feet.

1.3 Events

Often we are not interested in a single outcome but in whether or not one of
a group of outcomes occurs.

Definition 1.2. (Event). An event is a subset of the sample space Ω
to which a probability can be assigned.

Events will be denoted by capital letters A,B,C, . . . . We say that event
A occurs if the outcome of the experiment is one of the elements in A.

Examples of events are:

1. The event that the sum of two dice is 10 or more:

A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)} .

2. The event that a machine is functioning for less than 1000 days:

A = [0, 1000) .
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3. The event that out of a group of 50 people 5 are left-handed:

A = {5} .

Example 1.2 (Coin Tossing). Suppose that a coin is tossed 3 times, and
that we record either Heads or Tails at every toss. The sample space can then
be written as

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} ,

where, for instance, HTH means that the first toss is Heads, the second Tails,
and the third Heads. An alternative (but equivalent) sample space is the set
{0, 1}3 of binary vectors of length 3; for example, HTH corresponds to (1,0,1)
and THH to (0,1,1).

The event A that the third toss is Heads is

A = {HHH, HTH, THH, TTH} .

Since events are sets, we can apply the usual set operations to them, as
illustrated in the Venn diagrams in Figure 1.3.

1. The set A∩B (A intersection B) is the event that A and B both occur.
2. The set A ∪B (A union B) is the event that A or B or both occur.
3. The event Ac (A complement) is the event that A does not occur.
4. If B ⊂ A (B is a subset of A) then event B is said to imply event A.

A∪BA∩B A
c

B⊂ A

A BABA BA

Fig. 1.3 Venn diagrams of set operations. Each square represents the sample space
Ω.

Two events A and B which have no outcomes in common, that is, A∩B = ∅
(empty set), are called disjoint events.

Example 1.3 (Casting Two Dice). Suppose we cast two dice consecu-
tively. The sample space is Ω = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6)}.
Let A = {(6, 1), . . . , (6, 6)} be the event that the first die is 6, and let
B = {(1, 6), . . . , (6, 6)} be the event that the second die is 6. Then A ∩ B =
{(6, 1), . . . , (6, 6)} ∩ {(1, 6), . . . , (6, 6)} = {(6, 6)} is the event that both dice
are 6.
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Example 1.4 (System Reliability). In Figure 1.4 three systems are de-
picted, each consisting of 3 unreliable components. The series system works
if all components work; the parallel system works if at least one of the compo-
nents works; and the 2-out-of-3 system works if at least 2 out of 3 components
work.

1 2 3

Series

Parallel

1

1

2

2

3

3

2-out-of-3

Fig. 1.4 Three unreliable systems.

Let Ai be the event that the i-th component is functioning, i = 1, 2, 3; and
let Da, Db, Dc be the events that respectively the series, parallel, and 2-out-
of-3 system is functioning. Then, Da = A1 ∩A2 ∩A3 and Db = A1 ∪A2 ∪A3.
Also,

Dc = (A1 ∩A2 ∩A3) ∪ (Ac
1 ∩A2 ∩A3) ∪ (A1 ∩Ac

2 ∩A3) ∪ (A1 ∩A2 ∩Ac
3)

= (A1 ∩A2) ∪ (A1 ∩A3) ∪ (A2 ∩A3) .

Two useful results in the theory of sets are the following, due to De Morgan:

Theorem 1.1. (De Morgan’s Laws). If {Ai} is a collection of sets,
then (⋃

i

Ai

)c

=
⋂

i

Ac
i (1.1)

and (⋂

i

Ai

)c

=
⋃

i

Ac
i . (1.2)

Proof. If we interpret Ai as the event that component i works in Example 1.4,
then the left-hand side of (1.1) is the event that the parallel system is not
working. The right-hand side of (1.1) is the event that all components are not
working. Clearly these two events are identical. The proof for (1.2) follows
from a similar reasoning; see also Problem 1.2. 2+ 18
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1.4 Probability

The third ingredient in the model for a random experiment is the specification
of the probability of the events. It tells us how likely it is that a particular
event will occur.

Definition 1.3. (Probability). A probability P is a function which
assigns a number between 0 and 1 to each event, and which satisfies the
following rules:

1. 0 6 P(A) 6 1.
2. P(Ω) = 1.
3. For any sequence A1, A2, . . . of disjoint events we have

Sum Rule: P
(⋃

i

Ai

)
=
∑

i

P(Ai) . (1.3)

The crucial property (1.3) is called the sum rule of probability. It simply
states that if an event can happen in several distinct ways (expressed as a
union of events, none of which are overlapping), then the probability that
at least one of these events happens (that is, the probability of the union)
is simply the sum of the probabilities of the individual events. Figure 1.5
illustrates that the probability P has the properties of a measure. However,
instead of measuring lengths, areas, or volumes, P(A) measures the likelihood
or probability of an event A as a number between 0 and 1.

Fig. 1.5 A probability
rule P has exactly the
same properties as an area
measure. For example, the
total area of the union
of the non-overlapping
triangles is equal to the
sum of the areas of the
individual triangles.

The following theorem lists some important properties of a probability
measure. These properties are direct consequences of the three rules defining
a probability measure.
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Theorem 1.2. (Properties of a Probability). Let A and B be
events and P a probability. Then,

1. P(∅) = 0 ,
2. if A ⊂ B, then P(A) 6 P(B) ,
3. P(Ac) = 1 − P(A) ,
4. P(A ∪B) = P(A) + P(B) − P(A ∩B) .

Proof.

1. Since Ω = Ω ∪ ∅ and Ω ∩ ∅ = ∅, it follows from the sum rule that
P(Ω) = P(Ω) + P(∅). Therefore, by Rule 2 of Definition 1.3, we have
1 = 1 + P(∅); from which it follows that P(∅) = 0.

2. If A ⊂ B, then B = A ∪ (B ∩ Ac), where A and B ∩ Ac are disjoint.
Hence, by the sum rule, P(B) = P(A) + P(B ∩Ac), which (by Rule 1) is
greater than or equal to P(A).

3. Ω = A ∪ Ac, where A and Ac are disjoint. Hence, by the sum rule and
Rule 2: 1 = P(Ω) = P(A) + P(Ac), and thus P(Ac) = 1 − P(A).

4. Write A ∪ B as the disjoint union of A and B ∩ Ac. Then, P(A ∪ B) =
P(A) + P(B ∩Ac). Also, B = (A ∩B) ∪ (B ∩Ac), so that P(B) = P(A ∩
B)+P(B∩Ac). Combining these two equations gives P(A∪B) = P(A)+
P(B) − P(A ∩B). 2

We have now completed our general model for a random experiment. Of
course for any specific model we must carefully specify the sample space Ω
and probability P that best describe the random experiment.

Example 1.5 (Casting a Die). Consider the experiment where a fair die
is cast. How should we specify Ω and P? Obviously, Ω = {1, 2, . . . , 6}; and
common sense dictates that we should define P by

P(A) =
|A|
6
, A ⊂ Ω ,

where |A| denotes the number of elements in set A. For example, the proba-
bility of getting an even number is P({2, 4, 6}) = 3/6 = 1/2.

In many applications the sample space is countable: Ω = {a1, a2, . . . , an}
or Ω = {a1, a2, . . .}. Such a sample space is said to be discrete. The easiest
way to specify a probability P on a discrete sample space is to first assign a
probability pi to each elementary event {ai} and then to define

P(A) =
∑

i:ai∈A

pi for all A ⊂ Ω .



1.4 Probability 11

Fig. 1.6 A discrete sam-
ple space.

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��

�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

���
���
���

���
���
���

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���
���

���
���
���
���
���

A

Ω

This idea is graphically represented in Figure 1.6. Each element ai in the
sample space is assigned a probability weight pi represented by a black dot.
To find the probability of an event A we have to sum up the weights of all
the elements in the set A.

Again, it is up to the modeler to properly specify these probabilities. For-
tunately, in many applications all elementary events are equally likely, and
thus the probability of each elementary event is equal to 1 divided by the to-
tal number of elements in Ω. In such case the probability of an event A ⊂ Ω
is simply

P(A) =
|A|
|Ω| =

Number of elements in A

Number of elements in Ω
,

provided that the total number of elements in Ω is finite. The calculation of
such probabilities thus reduces to counting; see Problem 1.6. + 19

When the sample space is not countable, for example Ω = R+, it is said
to be continuous.

Example 1.6 (Drawing a Random Point in the Unit Interval). We
draw at random a point in the interval [0, 1] such that each point is equally
likely to be drawn. How do we specify the model for this experiment?

The sample space is obviously Ω = [0, 1], which is a continuous sample
space. We cannot define P via the elementary events {x}, x ∈ [0, 1] because
each of these events has probability 0. However, we can define P as follows.
For each 0 6 a 6 b 6 1, let

P([a, b]) = b− a .

This completely defines P. In particular, the probability that a point will fall
into any (sufficiently nice) set A is equal to the length of that set.

Describing a random experiment by specifying explicitly the sample space
and the probability measure is not always straightforward or necessary. Some-
times it is useful to model only certain observations on the experiment. This
is where random variables come into play, and we will discuss these in Chap-
ter 2. + 23
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1.5 Conditional Probability and Independence

How do probabilities change when we know that some event B ⊂ Ω has
occurred? Thus, we know that the outcome lies in B. Then A will occur if
and only if A ∩B occurs, and the relative chance of A occurring is therefore
P(A∩B)/P(B), which is called the conditional probability of A given B. The
situation is illustrated in Figure 1.7.

Fig. 1.7 What is the
probability that A occurs
given that the outcome is
known to lie in B?

Definition 1.4. (Conditional Probability). The conditional
probability of A given B (with P(B) 6= 0) is defined as:

P(A |B) =
P(A ∩B)

P(B)
. (1.4)

Example 1.7 (Casting Two Dice). We cast two fair dice consecutively.
Given that the sum of the dice is 10, what is the probability that one 6 is
cast? Let B be the event that the sum is 10:

B = {(4, 6), (5, 5), (6, 4)} .

Let A be the event that one 6 is cast:

A = {(1, 6), . . . , (5, 6), (6, 1), . . . , (6, 5)} .

Then, A ∩ B = {(4, 6), (6, 4)}. And, since for this experiment all elementary
events are equally likely, we have

P(A |B) =
2/36

3/36
=

2

3
.
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Example 1.8 (Monty Hall Problem). Consider a quiz in which the final
contestant is to choose a prize which is hidden behind one of three curtains
(A, B, or C). Suppose without loss of generality that the contestant chooses
curtain A. Now the quiz master (Monty) always opens one of the other cur-
tains: if the prize is behind B, Monty opens C; if the prize is behind C, Monty
opens B; and if the prize is behind A, Monty opens B or C with equal prob-
ability, e.g., by tossing a coin (of course the contestant does not see Monty
tossing the coin!).

Fig. 1.8 Given that
Monty opens curtain B,
should the contestant
stay with his/her original
choice (A) or switch to the
other unopened curtain
(C)? A CB

Suppose, again without loss of generality, that Monty opens curtain B.
The contestant is now offered the opportunity to switch to curtain C. Should
the contestant stay with his/her original choice (A) or switch to the other
unopened curtain (C)?

Notice that the sample space here consists of 4 possible outcomes: Ac: The
prize is behind A, and Monty opens C; Ab: The prize is behind A, and Monty
opens B; Bc: The prize is behind B, and Monty opens C; and Cb: The prize
is behind C, and Monty opens B. Let A, B, C be the events that the prize is
behind A, B, and C, respectively. Note that A = {Ac,Ab}, B = {Bc}, and
C = {Cb}; see Figure 1.9.

Fig. 1.9 The sample
space for the Monty Hall
problem.

Ab

Cb Bc

1/6 1/6

1/3 1/3

Ac

Now, obviously P(A) = P(B) = P(C), and since Ac and Ab are equally
likely, we have P({Ab}) = P({Ac}) = 1/6. Monty opening curtain B means
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that we have information that event {Ab,Cb} has occurred. The probability
that the prize is behind A given this event is therefore

P(A |B is opened) =
P({Ac,Ab} ∩ {Ab,Cb})

P({Ab,Cb}) =
P({Ab})

P({Ab,Cb}) =
1
6

1
6 + 1

3

=
1

3
.

This is what is to be expected: the fact that Monty opens a curtain does
not give any extra information that the prize is behind A. Obviously,
P(B |B is opened) = 0. It follows then that P(C |B is opened) must be 2/3,
since the conditional probabilities must sum up to 1. Indeed,

P(C |B is opened) =
P({Cb} ∩ {Ab,Cb})

P({Ab,Cb}) =
P({Cb})

P({Ab,Cb}) =
1
3

1
6 + 1

3

=
2

3
.

Hence, given the information that B is opened, it is twice as likely that the
prize is behind C than behind A. Thus, the contestant should switch!

1.5.1 Product Rule

By the definition of conditional probability (1.4) we have

P(A ∩B) = P(A) P(B |A) .

It is not difficult to generalize this to n intersections A1∩A2∩· · ·∩An, which
we abbreviate as A1A2 · · ·An. This gives the product rule of probability.
We leave the proof as an exercise; see Problem 1.11.+ 20

Theorem 1.3. (Product Rule). Let A1, . . . , An be a sequence of
events with P(A1 · · ·An−1) > 0. Then,

P(A1 · · ·An) =

P(A1) P(A2 |A1) P(A3 |A1A2) · · ·P(An |A1 · · ·An−1) .
(1.5)

Example 1.9 (Urn Problem). We draw consecutively 3 balls from an urn
with 5 white and 5 black balls, without putting them back. What is the
probability that all drawn balls will be black?

Let Ai be the event that the i-th ball is black. We wish to find the prob-
ability of A1A2A3, which by the product rule (1.5) is

P(A1) P(A2 |A1) P(A3 |A1A2) =
5

10

4

9

3

8
≈ 0.083 .
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Example 1.10 (Birthday Problem). What is the probability that in a
group of n people all have different birthdays? We can use the product rule.
Let Ai be the event that the first i people have different birthdays, i = 1, 2, . . ..
Note that · · · ⊂ A3 ⊂ A2 ⊂ A1. Therefore, An = A1∩A2∩ · · ·∩An, and thus
by the product rule

P(An) = P(A1) P(A2 |A1) P(A3 |A2) · · ·P(An |An−1) .

Now P(Ak |Ak−1) = (365 − k + 1)/365, because given that the first k − 1
people have different birthdays, there are no duplicate birthdays among the
first k people if and only if the birthday of the k-th person is chosen from
the 365 − (k − 1) remaining birthdays. Thus, we obtain

P(An) =
365

365
× 364

365
× 363

365
× · · · × 365 − n+ 1

365
, n > 1 . (1.6)

A graph of P(An) against n is given in Figure 1.10. Note that the probability
P(An) rapidly decreases to zero. For n = 23 the probability of having no
duplicate birthdays is already less than 1/2.

Fig. 1.10 The probabil-
ity of having no duplicate
birthday in a group of n
people against n.
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1.5.2 Law of Total Probability and Bayes’ Rule

Suppose that B1, B2, . . . , Bn is a partition of Ω. That is, B1, B2, . . . , Bn are
disjoint and their union is Ω; see Figure 1.11.

Fig. 1.11 A partition
B1, . . . , B6 of the sample
space Ω. Event A is parti-
tioned into events A∩B1,
. . . , A ∩ B6.
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A partitioning of the state space can sometimes make it easier to calculate
probabilities via the following theorem.

Theorem 1.4. (Law of Total Probability). Let A be an event and
let B1, B2, . . . , Bn be a partition of Ω. Then,

P(A) =

n∑

i=1

P(A |Bi) P(Bi) . (1.7)

Proof. The sum rule gives P(A) =
∑n

i=1 P(A ∩Bi), and by the product rule
we have P(A ∩Bi) = P(A |Bi) P(Bi). 2

Combining the law of total probability with the definition of conditional
probability gives Bayes’ Rule:

Theorem 1.5. (Bayes Rule). Let A be an event with P(A) > 0 and
let B1, B2, . . . , Bn be a partition of Ω. Then,

P(Bj |A) =
P(A |Bj) P(Bj)∑n
i=1 P(A |Bi) P(Bi)

. (1.8)

Proof. By definition, P(Bj |A) = P(A ∩ Bj)/P(A) = P(A |Bj)P(Bj)/P(A).
Now apply the law of total probability to P(A). 2

Example 1.11 (Quality Control Problem). A company has three facto-
ries (1, 2, and 3) that produce the same chip, each producing 15%, 35%, and
50% of the total production. The probability of a faulty chip at factory 1, 2,
3 is 0.01, 0.05, 0.02, respectively. Suppose we select randomly a chip from the
total production and this chip turns out to be faulty. What is the conditional
probability that this chip has been produced in factory 1?

Let Bi denote the event that the chip has been produced in factory i. The
{Bi} form a partition of Ω. Let A denote the event that the chip is faulty.
We are given the information that P(B1) = 0.15,P(B2) = 0.35,P(B3) = 0.5
as well as P(A |B1) = 0.01, P(A |B2) = 0.05, P(A |B3) = 0.02.

We wish to find P(B1 |A), which by Bayes’ rule is given by

P(B1 |A) =
0.15 × 0.01

0.15 × 0.01 + 0.35 × 0.05 + 0.5 × 0.02
= 0.052 .
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1.5.3 Independence

Independence is a very important concept in probability and statistics.
Loosely speaking it models the lack of information between events. We say
events A and B are independent if the knowledge that B has occurred does
not change the probability that A occurs. More precisely, A and B are said
to be independent if P(A |B) = P(A). Since P(A |B) = P(A ∩ B)/P(B),
an alternative definition of independence is: A and B are independent if
P(A ∩B) = P(A) P(B). This definition covers the case where B = ∅.

We can extend the definition to arbitrarily many events (compare with
the product rule (1.5)):

Definition 1.5. (Independence). The events A1, A2, . . . , are said to
be independent if for any k and any choice of distinct indices i1, . . . , ik,

P(Ai1 ∩Ai2 ∩ · · · ∩Aik
) = P(Ai1) P(Ai2) · · ·P(Aik

) . (1.9)

Remark 1.1. In most cases independence of events is a model assumption.
That is, P is chosen such that certain events are independent.

Example 1.12 (Coin Tossing and the Binomial Law). We toss a coin
n times. The sample space can be written as the set of binary n-tuples:

Ω = {(0, . . . , 0︸ ︷︷ ︸
n times

), . . . , (1, . . . , 1)} .

Here, 0 represents Tails and 1 represents Heads. For example, the outcome
(0, 1, 0, 1, . . .) means that the first time Tails is thrown, the second time Heads,
the third times Tails, the fourth time Heads, etc.

How should we define P? Let Ai denote the event of Heads at the i-th
throw, i = 1, . . . , n. Then, P should be such that the following holds.

• The events A1, . . . , An should be independent under P.
• P(Ai) should be the same for all i. Call this known or unknown probability
p (0 6 p 6 1).

These two rules completely specify P. For example, the probability that
the first k throws are Heads and the last n− k are Tails is

P({(1, 1, . . . , 1︸ ︷︷ ︸
k times

, 0, 0, . . . , 0︸ ︷︷ ︸
n−k times

)}) = P(A1 ∩ · · · ∩Ak ∩Ac
k+1 ∩ · · · ∩Ac

n)

= P(A1) · · ·P(Ak) P(Ac
k+1) · · ·P(Ac

n) = pk(1 − p)n−k.
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Note that if Ai and Aj are independent, then so are Ai and Ac
j ; see Prob-

lem 1.12.
Let Bk be the event that k Heads are thrown in total. The probability of

this event is the sum of the probabilities of elementary events {(x1, . . . , xn)}
for which x1+ · · ·+xn = k. Each of these events has probability pk(1−p)n−k,
and there are

(
n
k

)
of these. We thus obtain the binomial law:

P(Bk) =

(
n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n . (1.10)

Example 1.13 (Geometric Law). There is another important law associ-
ated with the coin toss experiment. Let Ck be the event that Heads appears
for the first time at the k-th toss, k = 1, 2, . . .. Then, using the same events
{Ai} as in the previous example, we can write

Ck = Ac
1 ∩Ac

2 ∩ · · · ∩Ac
k−1 ∩Ak .

Using the independence of Ac
1, . . . , A

c
k−1, Ak, we obtain the geometric law:

P(Ck) = P(Ac
1) · · ·P(Ac

k−1) P(Ak)

= (1 − p) · · · (1 − p)︸ ︷︷ ︸
k−1 times

p = (1 − p)k−1 p .

1.6 Problems

1.1. For each of the five random experiments at the beginning of Section 1.1
define a convenient sample space.

1.2. Interpret De Morgan’s rule (1.2) in terms of an unreliable series system.

1.3. Let P(A) = 0.9 and P(B) = 0.8. Show that P(A ∩B) > 0.7.

1.4. Throw two fair dice one after the other.

a. What is the probability that the second die is 3, given that the sum of the
dice is 6?

b. What is the probability that the first die is 3 and the second is not 3?

1.5. An “expert” wine taster has to try to match 6 glasses of wine to 6 wine
labels. Each label can only be chosen once.

a. Formulate a sample space Ω for this experiment.
b. Assuming the wine taster is a complete fraud, define an appropriate prob-

ability P on the sample space.
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c. What is the probability that the wine taster guesses 4 labels correctly,
assuming he/she guesses them randomly?

1.6. Many counting problems can be cast into the framework of drawing k
balls from an urn with n balls, numbered 1, . . . , n; see Figure 1.12.

Fig. 1.12 Draw k balls
from an urn with n = 10
numbered balls.

The drawing can be done in several ways. Firstly, the k balls could be
drawn one-by-one or all at the same time. In the first case the order in which
the balls are drawn can be noted. In the second case we can still assume that
the balls are drawn one-by-one, but we do not note the order. Secondly, once
a ball is drawn, it can either be put back into the urn or be left out. This is
called drawing with and without replacement, respectively. There are thus
four possible random experiments. Prove that for each of these experiments
the total number of possible outcomes is the following.

1. Ordered, with replacement: nk.

2. Ordered, without replacement: nPk = n(n− 1) · · · (n− k + 1).

3. Unordered, without replacement: nCk =
(
n
k

)
=

nPk

k! = n!
(n−k)! k! .

4. Unordered, with replacement:
(
n+k−1

k

)
.

Provide a sample space for each of these experiments. Hint: it is important to
use a notation that clearly shows whether the arrangements of numbers are
ordered or not. Denote ordered arrangements by vectors, e.g., (1, 1, 2), and
unordered arrangements by sets, e.g., {1, 2, 3} or multisets, e.g., {1, 1, 2}.

1.7. Formulate the birthday problem in terms of an urn experiment, as in
Problem 1.6, and derive the probability (1.6) by counting.

1.8. Three cards are drawn from a full deck of cards, noting the order. The
cards may be numbered from 1 to 52.

a. Give the sample space. Is each elementary event equally likely?
b. What is the probability that we draw three Aces?
c. What is the probability that we draw one Ace, one King, and one Queen

(not necessarily in that order)?
d. What is the probability that we draw no pictures (no A, K, Q, or J)?
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1.9. In a group of 20 people there are three brothers. The group is separated
at random into two groups of 10. What is the probability that the brothers
are in the same group?

1.10. Two fair dice are thrown.

a. Find the probability that both dice show the same face.
b. Find the same probability, using the extra information that the sum of the

dice is not greater than 4.

1.11. Prove the product rule (1.5). Hint: first show it for the case of 3 events:

P(A ∩B ∩ C) = P(A) P(B |A) P(C |A ∩B) .

1.12. If A and B are independent events, then A and Bc are also independent.
Prove this.

1.13. Select at random 3 people from a large population. What is the prob-
ability that they all have the same birthday?

1.14. In a large population 40% votes for A and 60% for B. Suppose we select
at random 10 people. What is the probability that in this group exactly 4
people will vote for A?

1.15. A certain AIDS test has a 0.98 probability of giving a Positive result
when the blood is infected, and a 0.07 probability of giving a Positive result
when the blood is not infected (a so-called false positive). Suppose 1% of the
population carries the HIV virus.

a. Using the law of total probability, what is the probability that the test is
Positive for a randomly selected person?

b. What is the probability that a person is indeed infected, given that the
test yields a Positive result?

1.16. A box has three identical-looking coins. However the probability of
success (Heads) is different for each coin: coin 1 is fair, coin 2 has a success
probability of 0.4 and coin 3 has a success probability of 0.6. We pick one
coin at random and throw it 100 times. Suppose 43 Heads come up. Using
this information assess the probability that coin 1, 2, or 3 was chosen.

1.17. In a binary communication channel, 0s and 1s are transmitted with
equal probability. The probability that a 0 is correctly received (as a 0) is
0.95. The probability that a 1 is correctly received (as a 1) is 0.99. Suppose
we receive a 0, what is the probability that, in fact, a 1 was sent?

1.18. A fair coin is tossed 20 times.

a. What is the probability of exactly 10 Heads?
b. What is the probability of 15 or more Heads?
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1.19. Two fair dice are cast (at the same time) until their sum is 12.

a. What is the probability that we have to wait exactly 10 tosses?
b. What is the probability that we do not have to wait more than 100 tosses?

1.20. Independently throw 10 balls into one of three boxes, numbered 1, 2,
and 3, with probabilities 1/4, 1/2, and 1/4, respectively.

a. What is the probability that box 1 has 2 balls, box 2 has 5 balls, and box
3 has 3 balls?

b. What is the probability that box 1 remains empty?

1.21. Implement a MATLAB program that performs 100 tosses with a fair die.
Hint: use the rand and ceil functions, where ceil(x) returns the smallest
integer larger than or equal to x.

1.22. For each of the four urn experiments in Problem 1.6 implement a
MATLAB program that simulates the experiment. Hint: in addition to the
functions rand and ceil, you may wish to use the sort function.

1.23. Verify your answers for Problem 1.20 with a computer simulation,
where the experiment is repeated many times.





Chapter 2

Random Variables and Probability
Distributions

Specifying a model for a random experiment via a complete description of
the sample space Ω and probability measure P may not always be necessary
or convenient. In practice we are only interested in certain numerical mea-
surements pertaining to the experiment. Such random measurements can be
included into the model via the notion of a random variable.

2.1 Random Variables

Definition 2.1. (Random Variable). A random variable is a func-
tion from the sample space Ω to R.

Example 2.1 (Sum of Two Dice). We throw two fair dice and note the
sum of their face values. If we throw the dice consecutively and observe both
throws, the sample space is Ω = {(1, 1), . . . , (6, 6)}. The function X defined
by X(i, j) = i+ j is a random variable which maps the outcome (i, j) to the
sum i+ j, as depicted in Figure 2.1.

1 2 3 4 5 6

1

2

3

4

5

6

2 3 4 5 6 7 8 9 10 11 12

Fig. 2.1 Random variable X represents the sum of two dice.

23
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Note that five outcomes in the sample space are mapped to 8. A natural
notation for the corresponding set of outcomes is {X = 8}. Since all outcomes
in Ω are equally likely, we have

P({X = 8}) =
5

36
.

This notation is very suggestive and convenient. From a non-mathematical
viewpoint we can interpret X as a “random” variable. That is, a variable
that can take several values with certain probabilities. In particular, it is not
difficult to check that

P({X = x}) =
6 − |7 − x|

36
, x = 2, . . . , 12 .

Although random variables are, mathematically speaking, functions, it is
often convenient to view them as observations of a random experiment that
has not yet taken place. In other words, a random variable is considered as a
measurement that becomes available tomorrow, while all the thinking about
the measurement can be carried out today. For example, we can specify today
exactly the probabilities pertaining to the random variables.

We often denote random variables with capital letters from the last part
of the alphabet, e.g., X, X1, X2, . . . , Y, Z. Random variables allow us to use
natural and intuitive notations for certain events, such as {X = 10}, {X >
1000}, {max(X,Y ) 6 Z}, etc.

Example 2.2 (Coin Tossing). In Example 1.12 we constructed a proba-+ 17

bility model for the random experiment where a biased coin is tossed n times.
Suppose we are not interested in a specific outcome but only in the total num-
ber of Heads, X, say. In particular, we would like to know the probability
that X takes certain values between 0 and n. Example 1.12 suggests that

P(X = k) =

(
n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n , (2.1)

providing all the information about X that we could possibly wish to know.
To justify (2.1) mathematically, we can reason as in Example 2.1. First, define
X as the function that assigns to each outcome ω = (x1, . . . , xn) the number
x1 + · · · + xn. Thus, X is a random variable in mathematical terms; that is,
a function. Second, the event Bk that there are exactly k Heads in n throws
can be written as

Bk = {ω ∈ Ω : X(ω) = k} .
If we write this as {X = k}, and further abbreviate P({X = k}) to P(X = k),
then we obtain (2.1) directly from (1.10).

We give some more examples of random variables without specifying the
sample space.
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1. The number of defective transistors out of 100 inspected ones.
2. The number of bugs in a computer program.
3. The amount of rain in a certain location in June.
4. The amount of time needed for an operation.

The set of all possible values that a random variable X can take is called
the range of X. We further distinguish between discrete and continuous
random variables:

• Discrete random variables can only take countably many values.
• Continuous random variables can take a continuous range of values; for

example, any value on the positive real line R+.

2.2 Probability Distribution

Let X be a random variable. We would like to designate the probabilities of
events such as {X = x} and {a 6 X 6 b}. If we can specify all probabilities
involving X, we say that we have determined the probability distribution
of X. One way to specify the probability distribution is to give the probabil-
ities of all events of the form {X 6 x}, x ∈ R. This leads to the following
definition.

Definition 2.2. (Cumulative Distribution Function). The cu-
mulative distribution function (cdf) of a random variable X is the
function F : R → [0, 1] defined by

F (x) = P(X 6 x), x ∈ R .

Note that we have used P(X 6 x) as a shorthand notation for P({X 6 x}).
From now on we will use this type of abbreviation throughout the book. In
Figure 2.2 the graph of a general cdf is depicted.

Fig. 2.2 A cumulative
distribution function
(cdf).
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Theorem 2.1. (Properties of Cdf). Let F be the cdf of a random
variable X. Then,

1. F is bounded between 0 and 1: 0 6 F (x) 6 1,

2. F is increasing: if x 6 y, then F (x) 6 F (y),

3. F is right-continuous: limh↓0 F (x+ h) = F (x).

Proof.

1. Let A = {X 6 x}. By Rule 1 in Definition 1.3, 0 6 P(A) 6 1.+ 9

2. Suppose x 6 y. Define A = {X 6 x} and B = {X 6 y}. Then, A ⊂ B
and, by Theorem 1.2, P(A) 6 P(B).+ 10

3. Take any sequence x1, x2, . . . decreasing to x. We have to show that
limn→∞ P(X 6 xn) = P(X 6 x) or, equivalently, limn→∞ P(An) = P(A),
where An = {X > xn} and A = {X > x}. Let Bn = {xn−1 > X > xn},
n = 1, 2, . . . , with x0 defined as ∞. Then, An = ∪n

i=1Bi and A = ∪∞
i=1Bi.

Since the {Bi} are disjoint, we have by the sum rule:

P(A) =
∞∑

i=1

P(Bi)
def
= lim

n→∞

n∑

i=1

P(Bi) = lim
n→∞

P(An) ,

as had to be shown. 2

Conversely, any function F with the above properties can be used to specify
the distribution of a random variable X.

If X has cdf F , then the probability that X takes a value in the interval
(a, b] (excluding a, including b) is given by

P(a < X 6 b) = F (b) − F (a) .

To see this, note that P(X 6 b) = P({X 6 a} ∪ {a < X 6 b}), where
the events {X 6 a} and {a < X 6 b} are disjoint. Thus, by the sum rule:
F (b) = F (a) + P(a < X 6 b), which leads to the result above. Note however
that

P(a 6 X 6 b) = F (b) − F (a) + P(X = a)

= F (b) − F (a) + F (a) − F (a−)

= F (b) − F (a−) ,

where F (a−) denotes the limit from below: limx↑a F (x).
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2.2.1 Discrete Distributions

Definition 2.3. (Discrete Distribution). A random variable X is
said to have a discrete distribution if P(X = xi) > 0, i = 1, 2, . . . for
some finite or countable set of values x1, x2, . . ., such that

∑
i P(X =

xi) = 1. The discrete probability density function (pdf) of X is
the function f defined by f(x) = P(X = x).

We sometimes write fX instead of f to stress that the discrete probability
density function refers to the discrete random variable X. The easiest way
to specify the distribution of a discrete random variable is to specify its pdf.
Indeed, by the sum rule, if we know f(x) for all x, then we can calculate all + 9

possible probabilities involving X. Namely,

P(X ∈ B) =
∑

x∈B

f(x) (2.2)

for any subset B in the range of X, as illustrated in Figure 2.3.

Fig. 2.3 Discrete proba-
bility density function.

f(x)

x︸ ︷︷ ︸
B

Example 2.3 (Sum of Two Dice, Continued). Toss two fair dice and
let X be the sum of their face values. The discrete pdf is given in Table 2.1,
which follows directly from Example 2.1.

Table 2.1 Discrete pdf of the sum of two fair dice.

x 2 3 4 5 6 7 8 9 10 11 12

f(x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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2.2.2 Continuous Distributions

Definition 2.4. (Continuous Distribution). A random variable X
with cdf F is said to have a continuous distribution if there exists a
positive function f with total integral 1 such that for all a < b,

P(a < X 6 b) = F (b) − F (a) =

∫ b

a

f(u) du . (2.3)

Function f is called the probability density function (pdf) of X.

Remark 2.1. Note that we use the same notation f for both the discrete
and the continuous pdf, to stress the similarities between the discrete and
continuous case. We will even drop the qualifier “discrete” or “continuous”
when it is clear from the context with which case we are dealing. Henceforth
we will use the notation X ∼ f and X ∼ F to indicate that X is distributed
according to pdf f or cdf F .

In analogy to the discrete case (2.2), once we know the pdf, we can calculate
any probability of interest by means of integration:

P(X ∈ B) =

∫

B

f(x) dx , (2.4)

as illustrated in Figure 2.4.

Fig. 2.4 Probability
density function (pdf).

x︸ ︷︷ ︸
B

f(x)

Suppose that f and F are the pdf and cdf of a continuous random vari-
able X, as in Definition 2.4. Then F is simply a primitive (also called anti-
derivative) of f :

F (x) = P(X 6 x) =

∫ x

−∞
f(u) du .
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Conversely, f is the derivative of the cdf F :

f(x) =
d

dx
F (x) = F ′(x) .

It is important to understand that in the continuous case f(x) is not equal
to the probability P(X = x), because the latter is 0 for all x. Instead, we
interpret f(x) as the density of the probability distribution at x, in the sense
that for any small h,

P(x 6 X 6 x+ h) =

∫ x+h

x

f(u) du ≈ h f(x) . (2.5)

Note that P(x 6 X 6 x+ h) is equal to P(x < X 6 x+ h) in this case.

Example 2.4 (Random Point in an Interval). Draw a random number
X from the interval of real numbers [0, 2], where each number is equally likely
to be drawn. What are the pdf f and cdf F of X? Using the same reasoning
as in Example 1.6, we see that + 11

P(X 6 x) = F (x) =





0 if x < 0,

x/2 if 0 6 x 6 2,

1 if x > 2.

By differentiating F we find

f(x) =

{
1/2 if 0 6 x 6 2,

0 otherwise.

Note that this density is constant on the interval [0, 2] (and zero elsewhere),
reflecting the fact that each point in [0, 2] is equally likely to be drawn.

2.3 Expectation

Although all probability information about a random variable is contained in
its cdf or pdf, it is often useful to consider various numerical characteristics of
a random variable. One such number is the expectation of a random variable,
which is a “weighted average” of the values that X can take. Here is a more
precise definition.

Definition 2.5. (Expectation of a Discrete Random Variable).
Let X be a discrete random variable with pdf f . The expectation (or
expected value) of X, denoted as EX, is defined as

EX =
∑

x

xP(X = x) =
∑

x

x f(x) . (2.6)
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The expectation of X is sometimes written as µX . It is assumed that the
sum in (2.6) is well-defined — possibly ∞ or −∞. One way to interpret the
expectation is as a long-run average payout. Suppose in a game of dice the
payout X (dollars) is the largest of the face values of two dice. To play the
game a fee of d dollars must be paid. What would be a fair amount for d?
The answer is

d = EX = 1 × P(X = 1) + 2 × P(X = 2) + · · · + 6 × P(X = 6)

= 1 × 1

36
+ 2 × 3

36
+ 3 × 5

36
+ 4 × 7

36
+ 5 × 9

36
+ 6 × 11

36
=

161

36
≈ 4.47 .

Namely, if the game is played many times, the long-run fraction of tosses
where the maximum face value is 1, 2,. . . , 6, is 1

36 ,
3
36 , . . . ,

11
36 , respectively.

Hence, the long-run average payout of the game is the weighted sum of
1, 2, . . . , 6, where the weights are the long-run fractions (probabilities). The
game is “fair” if the long-run average profit EX − d is zero.

The expectation can also be interpreted as a center of mass. Imagine that
point masses with weights p1, p2, . . . , pn are placed at positions x1, x2, . . . , xn

on the real line; see Figure 2.5.

Fig. 2.5 The expectation as a center of mass.

The center of mass — the place where the weights are balanced — is

center of mass = x1 p1 + · · · + xn pn ,

which is exactly the expectation of the discrete variable X that takes val-
ues x1, . . . , xn with probabilities p1, . . . , pn. An obvious consequence of this
interpretation is that for a symmetric pdf the expectation is equal to the
symmetry point (provided that the expectation exists). In particular, sup-
pose that f(c+ y) = f(c− y) for all y. Then,

EX = c f(c) +
∑

x>c

xf(x) +
∑

x<c

xf(x)

= c f(c) +
∑

y>0

(c+ y)f(c+ y) +
∑

y>0

(c− y)f(c− y)

= c f(c) +
∑

y>0

c f(c+ y) + c
∑

y>0

f(c− y) = c
∑

x

f(x) = c .
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For continuous random variables we can define the expectation in a similar
way, replacing the sum with an integral.

Definition 2.6. (Expectation of a Continuous Random Vari-
able). Let X be a continuous random variable with pdf f . The expec-
tation (or expected value) of X, denoted as EX, is defined as

EX =

∫ ∞

−∞
x f(x) dx . (2.7)

If X is a random variable, then a function of X, such as X2 or sin(X), is
also a random variable. The following theorem simply states that the expected
value of a function ofX is the weighted average of the values that this function
can take.

Theorem 2.2. (Expectation of a Function of a Random Vari-
able). If X is discrete with pdf f , then for any real-valued function
g

E g(X) =
∑

x

g(x) f(x) .

Similarly, if X is continuous with pdf f , then

E g(X) =

∫ ∞

−∞
g(x) f(x) dx .

Proof. The proof is given for the discrete case only, as the continuous case
can be proven in a similar way. Let Y = g(X), where X is a discrete random
variable with pdf fX and g is a function. Let fY be the (discrete) pdf of the
random variable Y . It can be expressed in terms of fX in the following way:

fY (y) = P(Y = y) = P(g(X) = y) =
∑

x:g(x)=y

P(X = x) =
∑

x:g(x)=y

fX(x) .

Thus, the expectation of Y is

EY =
∑

y

y fY (y) =
∑

y

y
∑

x:g(x)=y

fX(x) =
∑

y

∑

x:g(x)=y

yfX(x)

=
∑

x

g(x) fX(x) .

2
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Example 2.5 (Die Experiment and Expectation). Find EX2 if X is
the outcome of the toss of a fair die. We have

EX2 = 12 × 1

6
+ 22 × 1

6
+ 32 × 1

6
+ · · · + 62 × 1

6
=

91

6
.

An important consequence of Theorem 2.2 is that the expectation is “lin-
ear”.

Theorem 2.3. (Properties of the Expectation). For any real num-
bers a and b, and functions g and h,

1. E[aX + b] = aEX + b ,
2. E[g(X) + h(X)] = Eg(X) + Eh(X) .

Proof. Suppose X has pdf f . The first statement follows (in the discrete case)
from

E(aX + b) =
∑

x

(ax+ b)f(x) = a
∑

x

x f(x) + b
∑

x

f(x) = aEX + b .

Similarly, the second statement follows from

E(g(X) + h(X)) =
∑

x

(g(x) + h(x))f(x) =
∑

x

g(x)f(x) +
∑

x

h(x)f(x)

= Eg(X) + Eh(X) .

The continuous case is proven analogously, simply by replacing sums with
integrals. 2

Another useful numerical characteristic of the distribution of X is the
variance of X. This number, sometimes written as σ2

X , measures the spread
or dispersion of the distribution of X.

Definition 2.7. (Variance and Standard Deviation). The vari-
ance of a random variable X, denoted as Var(X), is defined as

Var(X) = E(X − EX)2 . (2.8)

The square root of the variance is called the standard deviation. The
number EXr is called the r-th moment of X.
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Theorem 2.4. (Properties of the Variance). For any random vari-
able X the following properties hold for the variance.

1. Var(X) = EX2 − (EX)2 .
2. Var(a+ bX) = b2 Var(X) .

Proof. Write EX = µ, so that Var(X) = E(X − µ)2 = E(X2 − 2µX + µ2).
By the linearity of the expectation, the last expectation is equal to the sum
EX2 − 2µEX + µ2 = EX2 − µ2, which proves the first statement. To prove
the second statement, note that the expectation of a+ bX is equal to a+ bµ.
Consequently,

Var(a+ bX) = E(a+ bX − (a+ bµ))2 = E(b2(X − µ)2) = b2Var(X) .

2

Note that Property 1 in Theorem 2.4 implies that EX2 > (EX)2, because
Var(X) > 0. This is a special case of a much more general result, regarding
the expectation of convex functions. A real-valued function h(x) is said to be
convex if for each x0 there exist constants a and b such that (1) h(x) > ax+b
for all x and (2) h(x0) = ax0+b. Examples are the functions x 7→ x2, x 7→ ex,
and x 7→ − lnx.

Theorem 2.5. (Jensen’s Inequality). Let h(x) be a convex function
and X a random variable. Then,

Eh(X) > h(EX) . (2.9)

Proof. Let x0 = EX. Because h is convex, there exists constants a and b such
that h(X) > aX + b and h(x0) = ax0 + b. Hence, Eh(X) > E(aX + b) =
ax0 + b = h(x0) = h(EX). 2

2.4 Transforms

Many probability calculations — such as the evaluation of expectations and
variances — are facilitated by the use of transforms. We discuss here a number
of such transforms.
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Definition 2.8. (Probability Generating Function). Let X be a
non-negative and integer-valued random variable with discrete pdf f .
The probability generating function (PGF) of X is the function G
defined by

G(z) = E zX =

∞∑

x=0

zx f(x) , |z| < R ,

where R > 1 is the radius of convergence.

Example 2.6 (Poisson Distribution). Let X have a discrete pdf f given
by

f(x) = e−λ λ
x

x!
, x = 0, 1, 2, . . . .

X is said to have a Poisson distribution. The PGF of X is given by

G(z) =
∞∑

x=0

zx e−λ λ
x

x!

= e−λ
∞∑

x=0

(zλ)x

x!

= e−λezλ = e−λ(1−z) .

As this is finite for every z, the radius of convergence is here R = ∞.

Theorem 2.6. (Derivatives of a PGF). The k-th derivative of a
PGF EzX can be obtained by differentiation under the expectation sign:

dk

dzk
EzX = E

dk

dzk
zX

= E
[
X(X − 1) · · · (X − k + 1)zX−k

]
for |z| < R ,

where R > 1 is the radius of convergence of the PGF.

Proof. The proof is deferred to Appendix B.2. 2+ 381

Let G(z) be the PGF of a random variable X. Thus, G(z) = z0 P(X = 0)+
z1 P(X = 1)+z2 P(X = 2)+ · · · . Substituting z = 0 gives, G(0) = P(X = 0).
By Theorem 2.6 the derivative of G is

G′(z) = P(X = 1) + 2z P(X = 2) + 3z2
P(X = 3) + · · · .
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In particular, G′(0) = P(X = 1). By differentiating G′(z), we see that the
second derivative of G at 0 is G′′(0) = 2 P(X = 2). Repeating this procedure
gives the following corollary to Theorem 2.6.

Corollary 2.1. (Probabilities from PGFs). Let X be a non-
negative integer-valued random variable with PGF G(z). Then,

P(X = k) =
1

k!

dk

dzk
G(0) .

The PGF thus uniquely determines the discrete pdf. Another consequence
of Theorem 2.6 is that expectations, variances, and moments can be easily
found from the PGF.

Corollary 2.2. (Moments from PGFs). Let X be a non-negative
integer-valued random variable with PGF G(z) and k-th derivative
G(k)(z). Then,

lim
z→1
|z|<1

dk

dzk
G(z) = E [X(X − 1) · · · (X − k + 1)] . (2.10)

In particular, if the expectation and variance of X are finite, then EX =
G′(1) and Var(X) = G′′(1) +G′(1) − (G′(1))2.

Proof. The proof is deferred to Appendix B.2. 2 + 381

Definition 2.9. (Moment Generating Function). The moment
generating function (MGF) of a random variable X is the function
M : R → [0,∞] given by

M(s) = E esX .

In particular, for a discrete random variable with pdf f ,

M(s) =
∑

x

esx f(x) ,

and for a continuous random variable with pdf f ,

M(s) =

∫ ∞

−∞
esx f(x) dx .
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Note that M(s) can be infinite for certain values of s. We sometimes write
MX to stress the role of X.

Similar to the PGF, the MGF has the uniqueness property: two MGFs
are the same if and only if their corresponding cdfs are the same. In addition,
the integer moments of X can be computed from the derivatives of M , as
summarized in the next theorem. The proof is similar to that of Theorem 2.6
and Corollary 2.2 and is given in Appendix B.3.+ 382

Theorem 2.7. (Moments from MGFs). If the MGF is finite in an
open interval containing 0, then all moments EXn, n = 0, 1, . . . are
finite and satisfy

EXn = M (n)(0) ,

where M (n)(0) is the n-th derivative of M evaluated at 0.

Note that under the conditions of Theorem 2.7, the variance of X can be
obtained from the moment generating function as

Var(X) = M ′′(0) − (M ′(0))2 .

2.5 Common Discrete Distributions

In this section we give a number of common discrete distributions and list
some of their properties. Note that the discrete pdf of each of these distri-
butions, denoted f , depends on one or more parameters; so in fact we are
dealing with families of distributions.

2.5.1 Bernoulli Distribution

Definition 2.10. (Bernoulli Distribution). A random variable X
is said to have a Bernoulli distribution with success probability p if X
can only assume the values 0 and 1, with probabilities

f(0) = P(X = 0) = 1 − p and f(1) = P(X = 1) = p .

We write X ∼ Ber(p).
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The Bernoulli distribution is the most fundamental of all probability distri-
butions. It models a single coin toss experiment. Three important properties
of the Bernoulli are summarized in the following theorem.

Theorem 2.8. (Properties of the Bernoulli Distribution). Let
X ∼ Ber(p). Then,

1. EX = p ,
2. Var(X) = p(1 − p) ,
3. the PGF is G(z) = 1 − p+ zp .

Proof. The expectation and the variance of X can be obtained by direct
computation:

EX = 0 × P(X = 0) + 1 × P(X = 1) = 0 × (1 − p) + 1 × p = p

and

Var(X) = EX2 − (EX)2 = EX − (EX)2 = p− p2 = p(1 − p) ,

where we have used the fact that in this case X2 = X. Finally, the PGF is
given by G(z) = z0(1 − p) + z1p = 1 − p+ zp. 2

2.5.2 Binomial Distribution

Definition 2.11. (Binomial Distribution). A random variable X is
said to have a binomial distribution with parameters n and p if X has
pdf

f(x) = P(X = x) =

(
n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n . (2.11)

We write X ∼ Bin(n, p).

From Example 2.2 we see that X can be interpreted as the total number of + 17

Heads in n successive coin flip experiments, with probability of Heads equal
to p. An example of the graph of the pdf is given in Figure 2.6. Theorem 2.9
lists some important properties of the binomial distribution.
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Fig. 2.6 The pdf of the
Bin(10, 0.7)-distribution.
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Theorem 2.9. (Properties of the Binomial Distribution). Let
X ∼ Bin(n, p). Then,

1. EX = np ,
2. Var(X) = np(1 − p) ,
3. the PGF is G(z) = (1 − p+ zp)n .

Proof. Using Newton’s binomial formula:

(a+ b)n =

n∑

k=0

(
n

k

)
ak bn−k ,

we see that

G(z) =

n∑

k=0

zk

(
n

k

)
pk (1− p)n−k =

n∑

k=0

(
n

k

)
(z p)k(1− p)n−k = (1− p+ zp)n .

From Corollary 2.2 we obtain the expectation and variance via G′(1) = np+ 35

and G′′(1) +G′(1) − (G′(1))2 = (n− 1)np2 + np− n2p2 = np(1 − p). 2

2.5.3 Geometric Distribution

Definition 2.12. (Geometric Distribution). A random variable X
is said to have a geometric distribution with parameter p if X has pdf

f(x) = P(X = x) = (1 − p)x−1p, x = 1, 2, 3, . . . . (2.12)

We write X ∼ Geom(p).
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From Example 1.13 we see that X can be interpreted as the number of tosses + 18

needed until the first Heads occurs in a sequence of coin tosses, with the
probability of Heads equal to p. An example of the graph of the pdf is given
in Figure 2.7. Theorem 2.10 summarizes some properties of the geometric
distribution.

Fig. 2.7 The pdf of the
Geom(0.3)-distribution.
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Theorem 2.10. (Properties of the Geometric Distribution). Let
X ∼ Geom(p). Then,

1. EX = 1/p ,
2. Var(X) = (1 − p)/p2 ,
3. the PGF is

G(z) =
z p

1 − z (1 − p)
, |z| < 1

1 − p
. (2.13)

Proof. The PGF of X follows from

G(z) =

∞∑

x=1

zxp(1 − p)x−1 = z p

∞∑

k=0

(z(1 − p))k =
z p

1 − z (1 − p)
,

using the well-known result for geometric sums: 1 + a+ a2 + · · · = (1− a)−1,
for |a| < 1. By Corollary 2.2 the expectation is therefore + 35

EX = G′(1) =
1

p
.

By differentiating the PGF twice we find the variance:

Var(X) = G′′(1) +G′(1) − (G′′(1))2 =
2(1 − p)

p2
+

1

p
− 1

p2
=

1 − p

p2
. 2
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One property of the geometric distribution that deserves extra attention
is the memoryless property. Consider again the coin toss experiment.
Suppose we have tossed the coin k times without a success (Heads). What is
the probability that we need more than x additional tosses before getting a
success? The answer is, obviously, the same as the probability that we require
more than x tosses if we start from scratch, that is, P(X > x) = (1 − p)x,
irrespective of k. The fact that we have already had k failures does not make
the event of getting a success in the next trial(s) any more likely. In other
words, the coin does not have a memory of what happened — hence the name
memoryless property.

Theorem 2.11. (Memoryless Property). Let X ∼ Geom(p). Then
for any x, k = 1, 2, . . .,

P(X > k + x |X > k) = P(X > x) .

Proof. By the definition of conditional probability,+ 12

P(X > k + x |X > k) =
P({X > k + x} ∩ {X > k})

P(X > k)
.

The event {X > k + x} is a subset of {X > k}, hence their intersection is
{X > k + x}. Moreover, the probabilities of the events {X > k + x} and
{X > k} are (1 − p)k+x and (1 − p)k, respectively. Therefore,

P(X > k + x |X > k) =
(1 − p)k+x

(1 − p)k
= (1 − p)x = P(X > x) ,

as required. 2

2.5.4 Poisson Distribution

Definition 2.13. (Poisson Distribution). A random variable X is
said to have a Poisson distribution with parameter λ > 0 if X has pdf

f(x) = P(X = x) =
λx

x!
e−λ, x = 0, 1, 2, . . . . (2.14)

We write X ∼ Poi(λ).

The Poisson distribution may be viewed as the limit of the Bin(n, λ/n) dis-
tribution. Namely, if Xn ∼ Bin(n, λ/n), then
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P(Xn = x) =

(
n

x

)(
λ

n

)x (
1 − λ

n

)n−x

=
λx

x!

n× (n− 1) × · · · × (n− x+ 1)

n× n× · · · × n

(
1 − λ

n

)n (
1 − λ

n

)−x

.

As n→ ∞ the second and fourth factors converge to 1, and the third factor
to e−λ (this is one of the defining properties of the exponential function).
Hence, we have

lim
n→∞

P(Xn = x) =
λx

x!
e−λ.

An example of the graph of the Poisson pdf is given in Figure 2.8. Theo-
rem 2.12 summarizes some properties of the Poisson distribution.

Fig. 2.8 The pdf of the
Poi(10)-distribution.
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Theorem 2.12. (Properties of the Poisson Distribution). Let
X ∼ Poi(λ). Then,

1. EX = λ ,
2. Var(X) = λ ,
3. the PGF is G(z) = e−λ(1−z) .

Proof. The PGF was derived in Example 2.6. It follows from Corollary 2.2 + 34

that EX = G′(1) = λ and

Var(X) = G′′(1) +G′(1) − (G′(1))2 = λ2 + λ− λ2 = λ .

Thus, the parameter λ can be interpreted as both the expectation and vari-
ance of X. 2
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2.6 Common Continuous Distributions

In this section we give a number of common continuous distributions and
list some of their properties. Note that the pdf of each of these distributions
depends on one or more parameters; so, as in the previous section, we are
dealing with families of distributions.

2.6.1 Uniform Distribution

Definition 2.14. (Uniform Distribution). A random variable X is
said to have a uniform distribution on the interval [a, b] if its pdf is
given by

f(x) =
1

b− a
, a 6 x 6 b .

We write X ∼ U[a, b] (and X ∼ U(a, b) for a uniform random variable
on an open interval (a, b)).

The random variable X ∼ U[a, b] can model a randomly chosen point from
the interval [a, b], where each choice is equally likely. A graph of the pdf is
given in Figure 2.9.

Fig. 2.9 The pdf of the
uniform distribution on
[a, b].
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Theorem 2.13. (Properties of the Uniform Distribution). Let
X ∼ U[a, b]. Then,

1. EX = (a+ b)/2 ,
2. Var(X) = (b− a)2/12 .

Proof. We have

EX =

∫ b

a

x

b− a
dx =

1

b− a

[
b2 − a2

2

]
=
a+ b

2



2.6 Common Continuous Distributions 43

and

Var(X) = EX2 − (EX)2 =

∫ b

a

x2

b− a
dx−

(
a+ b

2

)2

=
b3 − a3

3(b− a)
−
(
a+ b

2

)2

=
(b− a)2

12
.

2

2.6.2 Exponential Distribution

Definition 2.15. (Exponential Distribution). A random variable
X is said to have an exponential distribution with parameter λ if its
pdf is given by

f(x) = λ e−λ x, x > 0 . (2.15)

We write X ∼ Exp(λ).

The exponential distribution can be viewed as a continuous version of the
geometric distribution. Graphs of the pdf for various values of λ are given
in Figure 2.10. Theorem 2.14 summarizes some properties of the exponential
distribution.

Fig. 2.10 The pdf of the
Exp(λ)-distribution for
various λ.
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Theorem 2.14. (Properties of the Exponential Distribution).
Let X ∼ Exp(λ). Then,

1. EX = 1/λ ,
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2. Var(X) = 1/λ2 ,
3. The MGF of X is M(s) = λ/(λ− s), s < λ,
4. the cdf of X is F (x) = 1 − e−λx, x > 0,
5. the memoryless property holds: for any s, t > 0,

P(X > s+ t |X > s) = P(X > t) . (2.16)

Proof. 3. The moment generating function is given by

M(s) =

∫ ∞

0

esxλe−λxdx = λ

∫ ∞

0

e−(λ−s)x dx = λ

[−e−(λ−s)x

λ− s

]∞

0

=
λ

λ− s
, s < λ (and M(s) = ∞ for s > λ).

1. From Theorem 2.7, we obtain+ 36

EX = M ′(0) =
λ

(λ− s)2

∣∣∣∣
s=0

=
1

λ
.

2. Similarly, the second moment is EX2 = M ′′(0) = 2λ
(λ−s)3

∣∣
s=0

= 2/λ2, so

that the variance is

Var(X) = EX2 − (EX)2 =
2

λ2
− 1

λ2
=

1

λ2
.

4. The cdf of X is given by

F (x) = P(X 6 x) =

∫ x

0

λe−λudu =
[
−e−λu

]x
0

= 1 − e−λx, x > 0 .

Note that the tail probability P(X > x) is exponentially decaying:

P(X > x) = e−λx, x > 0 .

5. Similar to the proof of the memoryless property for the geometric distri-
bution (Theorem 2.11), we have+ 40

P(X > s+ t |X > s) =
P(X > s+ t, X > s)

P(X > s)
=

P(X > s+ t)

P(X > s)

=
e−λ(t+s)

e−λs
= e−λt = P(X > t) .

2
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The memoryless property can be interpreted as a “non-aging” property.
For example, when X denotes the lifetime of a machine then, given the fact
that the machine is alive at time s, the remaining lifetime of the machine,
X−s, has the same exponential distribution as a completely new machine. In
other words, the machine has no memory of its age and does not deteriorate
(although it will break down eventually).

2.6.3 Normal (Gaussian) Distribution

In this section we introduce the most important distribution in the study
of statistics: the normal (or Gaussian) distribution. Additional properties of
this distribution will be given in Section 3.6. + 79

Definition 2.16. (Normal Distribution). A random variable X is
said to have a normal distribution with parameters µ and σ2 if its pdf
is given by

f(x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )2

, x ∈ R . (2.17)

We write X ∼ N(µ, σ2).

The parameters µ and σ2 turn out to be the expectation and variance of
the distribution, respectively. If µ = 0 and σ = 1 then

f(x) =
1√
2π

e−x2/2,

and the distribution is known as the standard normal distribution. The
cdf of the standard normal distribution is often denoted by Φ and its pdf by
ϕ. In Figure 2.11 the pdf of the N(µ, σ2) distribution for various µ and σ2 is
plotted.

Fig. 2.11 The pdf of the
N(µ, σ2) distribution for
various µ and σ2.
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We next consider some important properties of the normal distribution.

Theorem 2.15. (Standardization). Let X ∼ N(µ, σ2) and define
Z = (X − µ)/σ. Then Z has a standard normal distribution.

Proof. The cdf of Z is given by

P(Z 6 z) = P((X − µ)/σ 6 z) = P(X 6 µ+ σz)

=

∫ µ+σz

−∞

1

σ
√

2π
e−

1
2 (

x−µ
σ )2

dx =

∫ z

−∞

1√
2π

e−y2/2dy = Φ(z) ,

where we make a change of variable y = (x − µ)/σ in the fourth equation.
Hence, Z ∼ N(0, 1). 2

The rescaling procedure in Theorem 2.15 is called standardization. It
follows from Theorem 2.15 that any X ∼ N(µ, σ2) can be written as

X = µ+ σZ, where Z ∼ N(0, 1) .

In other words, any normal random variable can be viewed as an affine
transformation — that is, a linear transformation plus a constant — of a
standard normal random variable.

Next we prove the earlier claim that the parameters µ and σ2 are respec-
tively the expectation and variance of the distribution.

Theorem 2.16. (Expectation and Variance for the Normal Dis-
tribution). If X ∼ N(µ, σ2), then EX = µ and Var(X) = σ2.

Proof. Since the pdf is symmetric around µ and EX < ∞, it follows that
EX = µ. To show that the variance of X is σ2, we first write X = µ + σZ,
where Z ∼ N(0, 1). Then, Var(X) = Var(µ + σZ) = σ2Var(Z). Hence, it
suffices to show that Var(Z) = 1. Now, since the expectation of Z is 0, we
have

Var(Z) = EZ2 =

∫ ∞

−∞
z2 1√

2π
e−z2/2 dz =

∫ ∞

−∞
z × z√

2π
e−z2/2 dz .

We apply integration by parts to the last integral to find

EZ2 =

[
− z√

2π
e−z2/2

]∞

−∞
+

∫ ∞

−∞

1√
2π

e−z2/2 dz = 1 ,

since the last integrand is the pdf of the standard normal distribution. 2
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Theorem 2.17. (MGF for the Normal Distribution). The MGF
of X ∼ N(µ, σ2) is

EesX = esµ+s2σ2/2, s ∈ R . (2.18)

Proof. Write X = µ+ σZ, where Z ∼ N(0, 1). We have

EesZ =

∫ ∞

−∞
esz 1√

2π
e−z2/2 dz = es2/2

∫ ∞

−∞

1√
2π

e−(z−s)2/2

︸ ︷︷ ︸
pdf of N(s,1)

dz = es2/2 ,

so that EesX = Ees(µ+σZ) = esµ EesσZ = esµeσ2s2/2 = esµ+σ2s2/2. 2

2.6.4 Gamma and χ2 Distribution

Definition 2.17. (Gamma Distribution). A random variable X is
said to have a gamma distribution with shape parameter α > 0 and
scale parameter λ > 0 if its pdf is given by

f(x) =
λαxα−1e−λx

Γ (α)
, x > 0 , (2.19)

where Γ is the gamma function. We write X ∼ Gamma(α, λ).

The gamma function Γ (α) is an important special function in mathematics,
defined by

Γ (α) =

∫ ∞

0

uα−1 e−u du . (2.20)

We mention a few properties of the Γ function.

1. Γ (α+ 1) = αΓ (α), for α ∈ R+.
2. Γ (n) = (n− 1)! for n = 1, 2, . . . ..
3. Γ (1/2) =

√
π.

Two special cases of the Gamma(α, λ) distribution are worth mentioning.
Firstly, the Gamma(1, λ) distribution is simply the Exp(λ) distribution. Sec-
ondly, the Gamma(n/2, 1/2) distribution, where n ∈ {1, 2, . . .}, is called the
chi-squared distribution with n degrees of freedom. We write X ∼ χ2

n. A
graph of the pdf of the χ2

n distribution for various n is given in Figure 2.12.
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Fig. 2.12 The pdf of the
χ2

n distribution for various
degrees of freedom n.
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The following theorem summarizes some properties of the gamma distri-
bution.

Theorem 2.18. (Properties of the Gamma Distribution). Let
X ∼ Gamma(α, λ). Then,

1. EX = α/λ ,
2. Var(X) = α/λ2 ,
3. the MGF is M(s) = [λ/(λ− s)]α, s < λ (and ∞ otherwise).

Proof. 3. For s < λ, the MGF of X at s is given by

M(s) = E esX =

∫ ∞

0

e−λx λα xα−1

Γ (α)
esx dx

=

(
λ

λ− s

)α ∫ ∞

0

e−(λ−s)x (λ− s)α xα−1

Γ (α)︸ ︷︷ ︸
pdf of Gamma(α,λ−s)

dx

=

(
λ

λ− s

)α

. (2.21)

1. Consequently, by Theorem 2.7,+ 36

EX = M ′(0) =
α

λ

(
λ

λ− s

)α+1 ∣∣∣∣
s=0

=
α

λ
.

2. Similarly, Var(X) = M ′′(0) − (M ′(0))2 = (α+ 1)α/λ2 − (α/λ)2 = α/λ2.
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2.6.5 F Distribution

Definition 2.18. (F Distribution). Let m and n be strictly positive
integers. A random variable X is said to have an F distribution with
degrees of freedom m and n if its pdf is given by

f(x) =
Γ (m+n

2 ) (m/n)m/2x(m−2)/2

Γ (m
2 )Γ (n

2 ) [1 + (m/n)x](m+n)/2
, x > 0 , (2.22)

where Γ denotes the gamma function. We write X ∼ F(m,n).

The F distribution plays an important role in classical statistics, through
Theorem 3.11. A graph of the pdf of the F(m,n) distribution for various m + 85

and n is given in Figure 2.13.

Fig. 2.13 The pdf of the
F(m,n) distribution for
various degrees of freedom
m and n.
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2.6.6 Student’s t Distribution

Definition 2.19. (Student’s t Distribution). A random variable X
is said to have a Student’s t distribution with parameter ν > 0 if its
pdf is given by

f(x) =
Γ ( ν+1

2 )√
νπ Γ ( ν

2 )

(
1 +

x2

ν

)−(ν+1)/2

, x ∈ R , (2.23)

where Γ denotes the gamma function. We write X ∼ tν . For integer
values the parameter ν is referred to as the degrees of freedom of the
distribution.
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A graph of the pdf of the tν distribution for various ν is given in Figure 2.14.
Note that the pdf is symmetric. Moreover, it can be shown that the pdf of
the tν distribution converges to the pdf of the N(0, 1) distribution as ν → ∞.
The t1 distribution is called the Cauchy distribution.

Fig. 2.14 The pdfs of
t1 (Cauchy), t2, t10 and
t∞(N(0, 1)) distributions. −6 −4 −2 0 2 4 6
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ν = 10
ν = 2

ν = ∞

ν = 1
(Cauchy pdf)

(N(0, 1) pdf)

For completeness we mention that if X ∼ tν , then

EX = 0 (ν > 1) and Var(X) =
ν

ν − 2
, (ν > 2) .

The t and F distributions are related in the following way.

Theorem 2.19. (Relationship between the t and F Distribu-
tion). For integer n > 1, if X ∼ tn, then X2 ∼ F(1, n).

Proof. Let Z = X2. We can express the cdf of Z in terms of the cdf of X.
Namely, for every z > 0 we have

FZ(z) = P(X2
6 z) = P(−√

z 6 X 6
√
z) = FX(

√
z) − FX(−√

z) .

Differentiating with respect to z gives the following relation between the two
pdfs:

fZ(z) = fX(
√
z)

1

2
√
z

+ fX(−√
z)

1

2
√
z

= fX(
√
z)

1√
z
,

using the symmetry of the t distribution. Substituting (2.23) into the last
equation yields

fZ(z) = c(n)
z−1/2

(1 + z/n)(n+1)/2
, z > 0

for some constant c(n). The only pdf of this form is that of the F(1, n) dis-
tribution. 2
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2.7 Generating Random Variables

This section shows how to generate random variables on a computer. We
first discuss a modern uniform random generator and then introduce two
general methods for drawing from an arbitrary one-dimensional distribution:
the inverse-transform method and the acceptance–rejection method.

2.7.1 Generating Uniform Random Variables

The MATLAB rand function simulates the drawing of a uniform random num-
ber on the interval (0, 1) by generating pseudo-random numbers; that is, num-
bers that, although not actually random (because the computer is a determin-
istic device), behave for all intended purposes as truly random. The following
algorithm [L’Ecuyer, 1999] uses simple recurrences to produce high-quality
pseudo-random numbers, in the sense that the numbers pass all currently
known statistical tests for randomness and uniformity.

Algorithm 2.1. (Combined Multiple-Recursive Generator).

1. Suppose N random numbers are required. Define m1 = 232 − 209
and m2 = 232 − 22853.

2. Initialize a vector (X−2, X−1, X0) = (12345, 12345, 12345) and a
vector (Y−2, Y−1, Y0) = (12345, 12345, 12345).

3. For t = 1 to N let

Xt = (1403580Xt−2 − 810728Xt−3) mod m1 ,

Yt = (527612Yt−1 − 1370589Yt−3) mod m2 ,

and output the t-th random number as

Ut =





Xt − Yt +m1

m1 + 1
if Xt 6 Yt ,

Xt − Yt

m1 + 1
if Xt > Yt .

Here, x mod m means the remainder of x when divided by m. The initial-
ization in Step 2 determines the initial state — the so-called seed — of the
random number stream. Restarting the stream from the same seed produces
the same sequence.
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Algorithm 2.1 is implemented as a core MATLAB uniform random number
generator from Version 7. Currently the default generator in MATLAB is the
Mersenne twister, which also passes (most) statistical tests, and tends to be a
little faster. However, it is considerably more difficult to implement. A typical
usage of MATLAB’s uniform random number generator is as follows.

>>rng(1,’combRecursive’) % use the CMRG with seed 1

>>rand(1,5) % draw 5 random numbers

ans =

0.4957 0.2243 0.2073 0.6823 0.6799

>>rng(1234) % set the seed to 1234

>>rand(1,5)

ans =

0.2830 0.2493 0.3600 0.9499 0.8071

>>rng(1234) % reset the seed to 1234

>>rand(1,5)

ans =

0.2830 0.2493 0.3600 0.9499 0.8071

2.7.2 Inverse-Transform Method

Once we have a method for drawing a uniform random number, we can, in
principle, simulate a random variableX from any cdf F by using the following
algorithm.

Algorithm 2.2. (Inverse-Transform Method).

1. Generate U from U(0, 1).
2. Return X = F−1(U), where F−1 is the inverse function of F .

Figure 2.15 illustrates the inverse-transform method. We see that the ran-
dom variable X = F−1(U) has cdf F , since

P(X 6 x) = P(F−1(U) 6 x) = P(U 6 F (x)) = F (x) . (2.24)
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Fig. 2.15 The inverse-
transform method. 0

1

X

U
F (x)

x
Example 2.7 (Generating Uniformly on a Unit Disk). Suppose we
wish to draw a random point (X,Y ) uniformly on the unit disk; see Fig-
ure 2.16. In polar coordinates we have X = R cosΘ and Y = R sinΘ, where
Θ has a U(0, 2π) distribution. The cdf of R is given by

F (r) = P(R 6 r) =
πr2

π
= r2, 0 < r < 1 .

Its inverse is F−1(u) =
√
u, 0 < u < 1. We can thus generate R via the

inverse transform method as R =
√
U1, where U1 ∼ U(0, 1). In addition, we

can simulate Θ as Θ = 2πU2, where U2 ∼ U(0, 1). Note that U1 and U2

should be independent draws from U(0, 1).

Fig. 2.16 Draw a point
(X,Y ) uniformly on the
unit disk.

The inverse-transform method holds for general cdfs F . Note that F for
discrete random variables is a step function, as illustrated in Figure 2.17. The
algorithm for generating a random variable X from a discrete distribution
that takes values x1, x2, . . . with probabilities p1, p2, . . . is thus as follows.
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Algorithm 2.3. (Discrete Inverse-Transform Method).

1. Generate U ∼ U(0, 1).
2. Find the smallest positive integer k such that F (xk) > U and return
X = xk.

Fig. 2.17 The inverse-
transform method for a
discrete random variable.
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Drawing one of the numbers 1, . . . , n according to a probability vector
(p1, . . . , pn) can be done in one line of MATLAB code:

min(find(cumsum(p)> rand));

Here p is the vector of probabilities, such as (0.3, 0.2, 0.5), cumsum gives the
cumulative vector, e.g., (0.3, 0.5, 1), find(· · · ) finds the indices i such that
the cumulative probability is greater than some random number rand, and
min takes the smallest of these indices.

2.7.3 Acceptance–Rejection Method

The inverse-transform method may not always be easy to implement, in
particular when the inverse cdf is difficult to compute. In that case the
acceptance–rejection method may prove to be useful. The idea of this
method is depicted in Figure 2.18. Suppose we wish to sample from a pdf
f . Let g be another pdf such that for some constant C > 1 we have that
Cg(x) > f(x) for all x. It is assumed that it is easy to sample from g; for
example, via the inverse-transform method.
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x

Cg(x)

f(x)

Fig. 2.18 Illustration of the acceptance–rejection method.

It is intuitively clear that if a random point (X,Y ) is uniformly distributed
under the graph of f — that is, on the set {(x, y) : 0 6 y 6 f(x)} —
then X must have pdf f . To construct such a point, let us first draw a
random point (Z, V ) by drawing Z from g and then drawing V uniformly on
[0, Cg(Z)]. The point (Z, V ) is uniformly distributed under the graph of Cg.
If we keep drawing such a point (Z, V ) until it lies under the graph of f , then
the resulting point (X,Y ) must be uniformly distributed under the graph of
f and hence the X coordinate must have pdf f . This leads to the following
algorithm.

Algorithm 2.4. (Acceptance–Rejection Method).

1. Generate Z ∼ g.
2. Generate Y ∼ U(0, C g(Z)).
3. If Y 6 f(Z) return X = Z; otherwise, repeat from Step 1.

Example 2.8 (Generating from the Standard Normal Distribution).
To sample from the standard normal pdf via the inverse-transform method
requires knowledge of the inverse of the corresponding cdf, which involves nu-
merical integration. Instead, we can use acceptance–rejection. First, observe
that the standard normal pdf is symmetric around 0. Hence, if we can gen-
erate a random variable X from the positive normal pdf (see Figure 2.19),

f(x) =

√
2

π
e−x2/2, x > 0 , (2.25)

then we can generate a standard normal random variable by multiplying X
with 1 or −1, each with probability 1/2. We can bound f(x) by C g(x), where
g(x) = e−x is the pdf of the Exp(1) distribution. The smallest constant C
such that f(x) 6 Cg(x) is

√
2e/π.
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Fig. 2.19 Bounding the positive normal density (solid curve) via an Exp(1) pdf
(times C ≈ 1.3155).

Drawing from the Exp(1) distribution can be easily done via the inverse-
transform method, noting that the corresponding cdf is the function 1 −
e−x, x > 0, whose inverse is the function − ln(1 − u), u ∈ (0, 1). This gives
the following specification of Algorithm 2.4, where f and C are defined above.

Algorithm 2.5. (N(0, 1) Generator).

1. Draw U1 ∼ U(0, 1), and let Z = − lnU1.
2. Draw U2 ∼ U(0, 1), and let Y = U2 C e−Z .
3. If Y 6 f(Z), let X = Z and continue with Step 4. Otherwise, repeat

from Step 1.
4. Draw U3 ∼ U(0, 1) and return X̃ = X (2 I{U3<1/2}−1) as a standard

normal random variable.

In Step 1, we have used the fact that if U ∼ U(0, 1) then also 1 − U ∼
U(0, 1). In Step 4, I{U3<1/2} denotes the indicator of the event {U3 < 1/2};
which is 1 if U3 < 1/2 and 0 otherwise. An alternative generation method
is given in Algorithm 3.2. In MATLAB normal random variable generation is+ 79

implemented via the randn function.

2.8 Problems

2.1. Two fair dice are thrown and the smallest of the face values, M say, is
noted.

a. Give the discrete pdf of M in table form, as in Table 2.1.+ 27
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b. What is the probability that M is at least 3?
c. Calculate the expectation and variance of M .

2.2. A continuous random variable X has cdf

F (x) =





0, x < 0

x2/5, 0 6 x 6 1
1
5

(
−x2 + 6x− 4

)
, 1 < x 6 3

1, x > 3 .

a. Find the corresponding pdf and plot its graph.
b. Calculate the following probabilities.

i. P(X 6 2)
ii. P(1 < X 6 2)
iii. P(1 6 X 6 2).
iv. P(X > 1/2).

c. Show that EX = 22/15.

2.3. In this book most random variables are either discrete or continuous;
that is, they have either a discrete or continuous pdf. It is also possible to
define random variables that have a mix of discrete and continuous charac-
teristics. A simple example is a random variable X with cdf

F (x) =

{
0, x < 0

1 − c e−x, x > 0

for some fixed 0 < c < 1.

a. Sketch the cdf F .
b. Find the following probabilities.

i. P(0 6 X 6 x), x > 0.
ii. P(0 < X 6 x), x > 0.
iii. P(X = x), x > 0.

c. Describe how the inverse-transform method can be used to draw samples
from this distribution.

2.4. Let X be a positive random variable with cdf F . Prove that

EX =

∫ ∞

0

(1 − F (x)) dx . (2.26)

2.5. Let X be a random variable that can possibly take values −∞ and ∞
with probabilities P(X = −∞) = a and P(X = ∞) = b, respectively. Show
that the corresponding cdf F satisfies limx→−∞ F (x) = a and limx→∞ F (x) =
1 − b.
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2.6. Suppose that in a large population the fraction of left-handers is 12%.
We select at random 100 people from this population. Let X be the number of
left-handers among the selected people. What is the distribution of X? What
is the probability that at most 7 of the selected people are left-handed?

2.7. Let X ∼ Geom(p). Show that

P(X > k) = (1 − p)k.

2.8. Find the moment generating function (MGF) of X ∼ U[a, b].

2.9. Let X = a + (b − a)U , where U ∼ U[0, 1]. Prove that X ∼ U[a, b]. Use
this to provide a more elegant proof of Theorem 2.13.+ 42

2.10. Show that the exponential distribution is the only continuous (positive)
distribution that possesses the memoryless property. Hint: show that the
memoryless property implies that the tail probability g(x) = P(X > x)
satisfies g(x+ y) = g(x)g(y).

2.11. Let X ∼ Exp(2). Calculate the following quantities.

a. P(−1 6 X 6 1).
b. P(X > 4).
c. P(X > 4 |X > 2).
d. EX2.

2.12. What is the expectation of a random variable X with the following
discrete pdf on the set of integer numbers, excluding 0:

f(x) =
3

π2

1

x2
, x ∈ Z \ {0} .

What is the pdf of the absolute value |X| and what is its expectation?

2.13. A random variableX is said to have a discrete uniform distribution
on the set {a, a+ 1, . . . , b} if

P(X = x) =
1

b− a+ 1
, x = a, a+ 1, . . . , b .

a. What is the expectation of X?
b. Show that Var(X) = (b− a)(b− a+ 2)/12.
c. Find the probability generating function (PGF) of X.
d. Describe a simple way to generate X using a uniform number generator.

2.14. Let X and Y be random variables. Prove that if X 6 Y , then EX 6

EY .
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2.15. A continuous random variable is said to have a logistic distribution if
its pdf is given by

f(x) =
e−x

(1 + e−x)2
, x ∈ R . (2.27)

a. Plot the graph of the pdf.
b. Show that P(X > x) = 1/(1 + ex) for all x.
c. Write an algorithm based on the inverse-transform method to generate

random variables from this distribution.

2.16. An electrical component has a lifetime (in years) that is distributed
according to an exponential distribution with expectation 3. What is the
probability that the component is still functioning after 4.5 years, given that
it still works after 4 years? Answer the same question for the case where the
component’s lifetime is normally distributed with the same expected value
and variance as before.

2.17. Consider the pdf given by

f(x) =

{
4 e−4(x−1), x > 1 ,
0, x < 1 .

a. If X is distributed according to this pdf f , what is its expectation?
b. Specify how one can generate a random variable X ∼ f using a uniform

random number generator.

2.18. Let X ∼ N(4, 9).

a. Plot the graph of the pdf.
b. Express the following probabilities in terms of the cdf Φ of the standard

normal distribution.

i. P(X 6 3).
ii. P(X > 4).
iii. P(−1 6 X 6 5).

c. Find E[2X + 1].
d. Calculate EX2.

2.19. Let Φ be the cdf of X ∼ N(0, 1). The integral

Φ(x) =

∫ x

−∞

1√
2π

e−
1
2 u2

du

needs to be evaluated numerically. In MATLAB there are several ways to do
this.

1. If the Statistics Toolbox is available, the cdf can be evaluated via the
functions normcdf or cdf. The inverse cdf can be evaluated using norminv
or icdf. See also their replacements cumdf and icumdf in Appendix A.9. + 377
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2. Or one could use the built-in error function erf, defined as

erf(x) =
2√
π

∫ x

0

e−u2

du , x ∈ R .

The inverse of the error function, erf−1 is implemented in MATLAB as
erfinv.

3. A third alternative is to use numerical integration (quadrature) via the
quad function. For example, quad(@f,0,1) integrates a MATLAB function
f.m on the interval [0, 1].

a. Show that Φ(x) = (erf(x/
√

2) + 1)/2.
b. Evaluate Φ(x) for x = 1, 2, and 3 via (a) the error function and (b) nu-

merical integration of the pdf, using the fact that Φ(0) = 1/2.
c. Show that the inverse of Φ is given by

Φ−1(y) =
√

2 erf−1(2y − 1) , 0 < y < 1 .

2.20. Based on MATLAB’s rand and randn functions only, implement algo-
rithms that generate random variables from the following distributions.

a. U[2, 3].
b. N(3, 9).
c. Exp(4).
d. Bin(10, 1/2).
e. Geom(1/6).

2.21. The Weibull distribution Weib(α, λ) has cdf

F (x) = 1 − e−(λx)α

, x > 0 . (2.28)

It can be viewed as a generalization of the exponential distribution. Write a
MATLAB program that draws 1000 samples from the Weib(2, 1) distribution
using the inverse-transform method. Give a histogram of the sample.

2.22. Consider the pdf

f(x) = c e−xx(1 − x), 0 6 x 6 1 .

a. Show that c = e/(3 − e).
b. Devise an acceptance–rejection algorithm to generate random variables

that are distributed according to f .
c. Implement the algorithm in MATLAB.

2.23. Implement two different algorithms to draw 100 uniformly generated
points on the unit disk: one based on Example 2.7 and the other using (two-+ 53

dimensional) acceptance–rejection.



Chapter 3

Joint Distributions

Often a random experiment is described via more than one random variable.
Here are some examples.

1. We randomly select n = 10 people and observe their heights. Let
X1, . . . , Xn be the individual heights.

2. We toss a coin repeatedly. Let Xi = 1 if the i-th toss is Heads and Xi = 0
otherwise. The experiment is thus described by the sequence X1, X2, . . .
of Bernoulli random variables.

3. We randomly select a person from a large population and measure his/her
weight X and height Y .

How can we specify the behavior of the random variables above? We should
not just specify the pdf of the individual random variables, but also say some-
thing about the interaction (or lack thereof) between the random variables.
For example, in the third experiment above if the height Y is large, then
most likely X is large as well. In contrast, in the first two experiments it is
reasonable to assume that the random variables are “independent” in some
way; that is, information about one of the random variables does not give
extra information about the others. What we need to specify is the joint dis-
tribution of the random variables. The theory below for multiple random
variables follows a similar path to that of a single random variable described
in Sections 2.1–2.3. + 23

Let X1, . . . , Xn be random variables describing some random experiment.
We can accumulate the {Xi} into a random vector X = (X1, . . . , Xn) (row
vector) or X = (X1, . . . , Xn)⊤ (column vector). Recall that the distribu-
tion of a single random variable X is completely specified by its cumulative
distribution function. For multiple random variables we have the following
generalization.

Definition 3.1. (Joint Cdf). The joint cdf ofX1, . . . , Xn is the func-
tion F : Rn → [0, 1] defined by

F (x1, . . . , xn) = P(X1 6 x1, . . . , Xn 6 xn) .

61
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Notice that we have used the abbreviation P({X1 6 x1} ∩ · · · ∩ {Xn 6

xn}) = P(X1 6 x1, . . . , Xn 6 xn) to denote the probability of the intersection
of events. We will use this abbreviation throughout the book.

As in the univariate (that is, single-variable) case we distinguish between
discrete and continuous distributions.

3.1 Discrete Joint Distributions

Example 3.1 (Dice Experiment). In a box there are three dice. Die 1
is an ordinary die; die 2 has no 6 face, but instead two 5 faces; die 3 has
no 5 face, but instead two 6 faces. The experiment consists of selecting a
die at random followed by a toss with that die. Let X be the die number
that is selected and let Y be the face value of that die. The probabilities
P(X = x, Y = y) in Table 3.1 specify the joint distribution of X and Y . Note
that it is more convenient to specify the joint probabilities P(X = x, Y = y)
than the joint cumulative probabilities P(X 6 x, Y 6 y). The latter can
be found, however, from the former by applying the sum rule. For example,
P(X 6 2, Y 6 3) = P(X = 1, Y = 1) + · · · + P(X = 2, Y = 3) = 6/18 = 1/3.
Moreover, by that same sum rule, the distribution of X is found by summing
the P(X = x, Y = y) over all values of y — giving the last column of Table 3.1.
Similarly, the distribution of Y is given by the column totals in the last row
of the table.

Table 3.1 The joint distribution of X (die number) and Y (face value).

x

y

1 2 3 4 5 6
P

1 1
18

1
18

1
18

1
18

1
18

1
18

1
3

2 1
18

1
18

1
18

1
18

1
9

0 1
3

3 1
18

1
18

1
18

1
18

0 1
9

1
3

P 1
6

1
6

1
6

1
6

1
6

1
6

1

In general, for discrete random variables X1, . . . , Xn the joint distribution
is easiest to specify via the joint pdf.

Definition 3.2. (Discrete Joint Pdf). The joint pdf f of discrete
random variables X1, . . . , Xn is given by the function

f(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn) .
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We sometimes write fX1,...,Xn
instead of f to show that this is the pdf of the

random variables X1, . . . , Xn. Or, if X = (X1, . . . , Xn) is the corresponding
random vector, we can write fX instead.

If the joint pdf f is known, we can calculate the probability of any event
{X ∈ B}, B in Rn, via the sum rule as

P(X ∈ B) =
∑

x∈B

f(x) .

Compare this with (2.2). In particular, as explained in Example 3.1, we can + 27

find the pdf of Xi — often referred to as a marginal pdf, to distinguish it
from the joint pdf — by summing the joint pdf over all possible values of the
other variables:

P(Xi = x) =
∑

x1

· · ·
∑

xi−1

∑

xi+1

· · ·
∑

xn

f(x1, . . . , xi−1, x, xi+1, xn) . (3.1)

The converse is not true: from the marginal distributions one cannot in gen-
eral reconstruct the joint distribution. For example, in Example 3.1 we cannot
reconstruct the inside of the two-dimensional table if only given the column
and row totals.

However, there is one important exception, namely when the random vari-
ables are independent. We have so far only defined what independence is
for events. We can define random variables X1, . . . , Xn to be independent + 17

if events {X1 ∈ B1}, . . . , {Xn ∈ Bn} are independent for any choice of sets
{Bi}. Intuitively, this means that any information about one of the random
variables does not affect our knowledge about the others.

Definition 3.3. (Independence). Random variables X1, . . . , Xn are
called independent if for all events {Xi ∈ Bi} with Bi ⊂ R, i =
1, . . . , n

P(X1 ∈ B1, . . . , Xn ∈ Bn) = P(X1 ∈ B1) · · ·P(Xn ∈ Bn) . (3.2)

A direct consequence of the above definition is the following important
theorem.

Theorem 3.1. (Independence and Product Rule). Random vari-
ables X1, . . . , Xn with joint pdf f are independent if and only if

f(x1, . . . , xn) = fX1
(x1) · · · fXn

(xn) (3.3)

for all x1, . . . , xn, where {fXi
} are the marginal pdfs.
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Proof. The theorem is true in both the discrete and continuous case. We
only show the discrete case, where (3.3) is a special case of (3.2). It follows
that (3.3) is a necessary condition for independence. To see that it is also a
sufficient condition, let X = (X1, . . . , Xn) and observe that

P(X1 ∈ B1, . . . , Xn ∈ Bn) = P(X ∈ B1 × · · · ×Bn︸ ︷︷ ︸
A

) =
∑

x∈A

f(x)

=
∑

x∈A

fX1
(x1) · · · fXn

(xn) =
∑

x1∈B1

fX1
(x1) · · ·

∑

xn∈Bn

fXn
(xn)

= P(X1 ∈ B1) · · ·P(Xn ∈ Bn) .

Here A = B1 × · · · ×Bn denotes the Cartesian product of B1, . . . , Bn. 2

Example 3.2 (Dice Experiment Continued). We repeat the experiment
in Example 3.1 with three ordinary fair dice. Since the events {X = x} and
{Y = y} are now independent, each entry in the pdf table is 1

3 × 1
6 . Clearly

in the first experiment not all events {X = x} and {Y = y} are independent.

Remark 3.1. An infinite sequence X1, X2, . . . of random variables is said to
be independent if for any finite choice of positive integers i1, i2, . . . , in (none
of them the same) the random variables Xi1 , . . . , Xin

are independent. Many
statistical models involve random variables X1, X2, . . . that are indepen-
dent and identically distributed, abbreviated as iid. We will use this
abbreviation throughout this book and write the corresponding model as

X1, X2, . . .
iid∼ Dist (or f or F ) ,

where Dist is the common distribution with pdf f and cdf F .

Example 3.3 (Bernoulli Process). Consider the experiment where we
toss a biased coin n times, with probability p of Heads. We can model this
experiment in the following way. For i = 1, . . . , n let Xi be the result of the
i-th toss: {Xi = 1} means Heads (or success), {Xi = 0} means Tails (or
failure). Also, let

P(Xi = 1) = p = 1 − P(Xi = 0), i = 1, 2, . . . , n .

Finally, assume that X1, . . . , Xn are independent. The sequence

X1, X2, . . .
iid∼ Ber(p)

is called a Bernoulli process with success probability p. Let X = X1+ · · ·+
Xn be the total number of successes in n trials (tosses of the coin). Denote
by Bk the set of all binary vectors x = (x1, . . . , xn) such that

∑n
i=1 xi = k.

Note that Bk has
(
n
k

)
elements. We have for every k = 0, . . . , n,
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P(X = k) =
∑

x∈Bk

P(X1 = x1, . . . , Xn = xn)

=
∑

x∈Bk

P(X1 = x1) · · ·P(Xn = xn) =
∑

x∈Bk

pk(1 − p)n−k

=

(
n

k

)
pk(1 − p)n−k .

In other words, X ∼ Bin(n, p). Compare this with Example 2.2. + 24

For the joint pdf of dependent discrete random variables we can write, as
a consequence of the product rule (1.5), + 14

f(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn)

= P(X1 = x1) P(X2 = x2 |X1 = x1) × · · ·
· · · × P(Xn = xn |X1 = x1, . . . , Xn−1 = xn−1) ,

assuming that all probabilities P(X = x1), . . . ,P(X1 = x1, . . . , Xn−1 = xn−1)
are nonzero. The function which maps, for a fixed x1, each variable x2 to the
conditional probability

P(X2 = x2 |X1 = x1) =
P(X1 = x1, X2 = x2)

P(X1 = x1)
(3.4)

is called the conditional pdf of X2 given X1 = x1. We write it as
fX2 |X1

(x2 |x1). Similarly, the function xn 7→ P(Xn = xn |X1 = x1, . . . ,
Xn−1 = xn−1) is the conditional pdf of Xn given X1 = x1, . . . , Xn−1 = xn−1,
which is written as fXn |X1,...,Xn−1

(xn |x1, . . . , xn−1).

Example 3.4 (Generating Uniformly on a Triangle). We uniformly
select a point (X,Y ) from the triangle T = {(x, y) : x, y ∈ {1, . . . , 6}, y 6 x}
in Figure 3.1.

Fig. 3.1 Uniformly select
a point from the triangle.

6

1 2 3 4 5 6

1

2

3

4

5

Because each of the 21 points is equally likely to be selected, the joint pdf
is constant on T :

f(x, y) =
1

21
, (x, y) ∈ T .
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The pdf of X is found by summing f(x, y) over all y. Hence,

fX(x) =
x

21
, x ∈ {1, . . . , 6} .

Similarly,

fY (y) =
7 − y

21
, y ∈ {1, . . . , 6} .

For a fixed x ∈ {1, . . . , 6} the conditional pdf of Y given X = x is

fY |X(y |x) =
f(x, y)

fX(x)
=

1/21

x/21
=

1

x
, y ∈ {1, . . . , x} ,

which simply means that, given X = x, Y has a discrete uniform distribution
on {1, . . . , x}.

3.1.1 Multinomial Distribution

An important discrete joint distribution is the multinomial distribution. It
can be viewed as a generalization of the binomial distribution. We give the
definition and then an example of how this distribution arises in applications.

Definition 3.4. (Multinomial Distribution). A random vector
(X1, X2, . . . , Xk) is said to have a multinomial distribution with pa-
rameters n and p1, p2, . . . , pk (positive and summing up to 1), if

P(X1 = x1, . . . , Xk = xk) =
n!

x1! x2! · · ·xk!
px1
1 px2

2 · · · pxk

k , (3.5)

for all x1, . . . , xk ∈ {0, 1, . . . , n} such that x1 + x2 + · · · + xk = n. We
write (X1, . . . , Xk) ∼ Mnom(n, p1, . . . , pk).

Example 3.5 (Urn Problem). We independently throw n balls into k urns,
such that each ball is thrown in urn i with probability pi, i = 1, . . . , k; see
Figure 3.2.

Fig. 3.2 Throwing n
balls into k urns with
probabilities p1, . . . , pk.
The random configuration
of balls has a multinomial
distribution.
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Let Xi be the total number of balls in urn i, i = 1, . . . , k. We show that
(X1, . . . , Xk) ∼ Mnom(n, p1, . . . , pk). Let x1, . . . , xk be integers between 0
and n that sum up to n. The probability that the first x1 balls fall in the
first urn, the next x2 balls fall in the second urn, etc., is

px1
1 px2

2 · · · pxk

k .

To find the probability that there are x1 balls in the first urn, x2 in the second,
and so on, we have to multiply the probability above with the number of ways
in which we can fill the urns with x1, x2, . . . , xk balls, i.e., n!/(x1! x2! · · ·xk!).
This gives (3.5).

Remark 3.2. Note that for the binomial distribution there are only two pos-
sible urns. Also, note that for each i = 1, . . . , k, Xi ∼ Bin(n, pi).

3.2 Continuous Joint Distributions

Joint distributions for continuous random variables are usually defined via
their joint pdf. The theoretical development below follows very similar lines
to both the univariate continuous case in Section 2.2.2 and the multivariate + 28

discrete case in Section 3.1. + 62

Definition 3.5. (Continuous Joint Pdf). Continuous random vari-
ables X1, . . . , Xn are said to have a joint pdf f if

P(a1 < X1 6 b1, . . . , an < Xn 6 bn) =

∫ b1

a1

· · ·
∫ bn

an

f(x1, . . . , xn) dx1 · · ·dxn

for all a1, . . . , bn.

This implies, similar to the univariate case in (2.3), that the probability + 28

of any event pertaining to X = (X1, . . . , Xn) — say event {X ∈ B}, where
B is some subset of Rn — can be found by integration:

P(X ∈ B) =

∫

B

f(x1, . . . , xn) dx1 . . .dxn . (3.6)

As in (2.5) we can interpret f(x1, . . . , xn) as the density of the probability + 29

distribution at (x1, . . . , xn). For example, in the two-dimensional case, for
small h > 0,
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P(x1 6 X1 6 x1 + h, x2 6 X2 6 x2 + h)

=

∫ x1+h

x1

∫ x2+h

x2

f(u, v) du dv ≈ h2 f(x1, x2) .

Similar to the discrete multivariate case in (3.1), the marginal pdfs can be
recovered from the joint pdf by integrating out the other variables:

fXi
(x) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(x1, . . . , xi−1, x, xi+1, . . . , xn) dx1 . . .dxi−1 dxi+1 . . .dxn .

We illustrate this for the two-dimensional case. We have

FX1
(x) = P(X1 6 x,X2 6 ∞) =

∫ x

−∞

(∫ ∞

−∞
f(x1, x2) dx2

)
dx1 .

By differentiating the last integral with respect to x, we obtain

fX1
(x) =

∫ ∞

−∞
f(x, x2) dx2 .

It is not possible, in general, to reconstruct the joint pdf from the marginal
pdfs. An exception is when the random variables are independent; see Defi-
nition 3.3. By modifying the arguments in the proof of Theorem 3.3 to the
continuous case — basically replacing sums with integrals — it is not diffi-
cult to see that the theorem also holds in the continuous case. In particular,
continuous random variables X1, . . . , Xn are independent if and only if their
joint pdf, f say, is the product of the marginal pdfs:

f(x1, . . . , xn) = fX1
(x1) · · · fXn

(xn) (3.7)

for all x1, . . . , xn. Independence for an infinite sequence of random variables
is discussed in Remark 3.1.+ 64

Example 3.6 (Generating a General iid Sample). Consider the se-
quence of numbers produced by a uniform random number generator such
as MATLAB’s rand function. A mathematical model for the output stream is:
U1, U2, . . . , are independent and U(0, 1)-distributed; that is,

U1, U2, . . .
iid∼ U(0, 1) .

Using the inverse-transform method it follows that for any cdf F ,+ 52

F−1(U1), F
−1(U2), . . .

iid∼ F .

Example 3.7 (Quotient of Two Independent Random Variables).
Let X and Y be independent continuous random variables, with Y > 0.
What is the pdf of the quotient U = X/Y in terms of the pdfs of X and Y ?
Consider first the cdf of U . We have
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FU (u) = P(U 6 u) = P(X/Y 6 u) = P(X 6 Y u)

=

∫ ∞

0

∫ yu

−∞
fX(x)fY (y) dx dy =

∫ u

−∞

∫ ∞

0

yfX(yz)fY (y) dy dz ,

where we have used the change of variable z = x/y and changed the order of
integration in the last equation. It follows that the pdf is given by

fU (u) =
d

du
FU (u) =

∫ ∞

0

yfX(yu) fY (y) dy . (3.8)

As a particular example, suppose that X and V both have a standard normal
distribution. Note that X/V has the same distribution as U = X/Y , where
Y = |V | > 0 has a positive normal distribution. It follows from (3.8) that + 55

fU (u) =

∫ ∞

0

y
1√
2π

e−
1
2y2u2 2√

2π
e−

1
2y2

dy

=

∫ ∞

0

y
1

π
e−

1
2 y2(1+u2) dy =

1

π

1

1 + u2
, u ∈ R .

This is the pdf of the Cauchy distribution. + 50

Definition 3.6. (Conditional Pdf). Let X and Y have joint pdf f
and suppose fX(x) > 0. The conditional pdf of Y given X = x is
defined as

fY |X(y |x) =
f(x, y)

fX(x)
for all y . (3.9)

For the discrete case, this is just a rewrite of (3.4). For the continuous
case, the interpretation is that fY |X(y |x) is the density corresponding to the
cdf FY |X(y |x) defined by the limit

FY |X(y |x) = lim
h↓0

P(Y 6 y |x 6 X 6 x+h) = lim
h↓0

P(Y 6 y, x 6 X 6 x+ h)

P(x 6 X 6 x+ h)
.

In many statistical situations, the conditional and marginal pdfs are known
and (3.9) is used to find the joint pdf via

f(x, y) = fX(x) fY |X(y |x) ,

or, more generally for the n-dimensional case:

f(x1, . . . , xn) =

fX1
(x1) fX2|X1

(x2 |x1) · · · fXn|X1,...,Xn−1
(xn |x1, . . . , xn−1) ,

(3.10)

which in the discrete case is just a rephrasing of the product rule in terms + 14
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of probability densities. For independent random variables (3.10) reduces
to (3.7). Equation (3.10) also shows how one could sequentially generate
a random vector X = (X1, . . . , Xn) according to a pdf f , provided that
it is possible to generate random variables from the successive conditional
distributions, as summarized in the following algorithm.

Algorithm 3.1. (Dependent Random Variable Generation).

1. Generate X1 from pdf fX1
. Set t = 1.

2. While t < n, given X1 = x1, . . . , Xt = xt, generate Xt+1 from the
conditional pdf fXt+1|X1,...,Xt

(xt | x1, . . . , xt) and set t = t+ 1.
3. Return X = (X1, . . . , Xn).

Example 3.8 (Non-Uniform Distribution on Triangle). We select a
point (X,Y ) from the triangle (0, 0)-(1, 0)-(1, 1) in such a way that X has a
uniform distribution on (0, 1) and the conditional distribution of Y givenX =
x is uniform on (0, x). Figure 3.3 shows the result of 1000 independent draws
from the joint pdf f(x, y) = fX(x) fY |X(y |x), generated via Algorithm 3.1.
It is clear that the points are not uniformly distributed over the triangle.

%nutriang.m

N = 1000;

x = rand(N,1);

y = rand(N,1).*x;

plot(x,y,’.’)

0 1
0

1

x

y

Fig. 3.3 1000 realizations from the joint density f(x, y), generated using the
MATLAB program on the left, which implements Algorithm 3.1.

Random variable X has a uniform distribution on (0, 1); hence, its pdf is
fX(x) = 1 on x ∈ (0, 1). For any fixed x ∈ (0, 1), the conditional distribution
of Y given X = x is uniform on the interval (0, x), which means that

fY |X(y |x) =
1

x
, 0 < y < x .
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It follows that the joint pdf is given by

f(x, y) = fX(x) fY |X(y |x) =
1

x
, 0 < x < 1, 0 < y < x .

From the joint pdf we can obtain the pdf of Y as

fY (y) =

∫ ∞

−∞
f(x, y) dx =

∫ 1

y

1

x
dx = − ln y, 0 < y < 1 .

Finally, for any fixed y ∈ (0, 1) the conditional pdf of X given Y = y is

fX|Y (x | y) =
f(x, y)

fY (y)
=

−1

x ln y
, y < x < 1 .

3.3 Mixed Joint Distributions

So far we have only considered joint distributions in which the random vari-
ables are all discrete or all continuous. The theory can be extended to mixed
cases in a straightforward way. For example, the joint pdf of a discrete vari-
able X and a continuous variable Y is defined as the function f(x, y) such
that for all events {(X,Y ) ∈ A}, where A ⊂ R2,

P((X,Y ) ∈ A) =
∑

x

∫
I{(x,y)∈A} f(x, y) dy ,

where I denotes the indicator. The pdf is often specified via (3.10).

Example 3.9 (Beta Distribution). Let Θ ∼ U(0, 1) and (X |Θ = θ) ∼
Bin(n, θ). Using (3.10), the joint pdf of X and Θ is given by

f(x, θ) =

(
n

x

)
θx(1 − θ)n−x, θ ∈ (0, 1), x = 0, 1, . . . , n .

By integrating out θ, we find the pdf of X:

fX(x) =

∫ 1

0

(
n

x

)
θx(1 − θ)n−xdθ =

(
n

x

)
B(x+ 1, n− x+ 1) ,

where B is the beta function, defined as

B(α, β) =

∫ 1

0

tα−1(1 − t)β−1dt =
Γ (α)Γ (β)

Γ (α+ β)
, (3.11)

and Γ is the gamma function in (2.20). The conditional pdf of Θ given X = x, + 47

where x ∈ {0, . . . , n}, is

fΘ|X(θ |x) =
f(θ, x)

fX(x)
=

θx(1 − θ)n−x

B(x+ 1, n− x+ 1)
, θ ∈ (0, 1) .
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The continuous distribution with pdf

f(x;α, β) =
θα−1(1 − θ)β−1

B(α, β)
, x ∈ (0, 1) (3.12)

is called the beta distribution with parameters α and β. Both parameters
are assumed to be strictly positive. We write Beta(α, β) for this distribution.
For this example we have thus (Θ |X = x) ∼ Beta(x+ 1, n− x+ 1).

3.4 Expectations for Joint Distributions

Similar to the univariate case in Theorem 2.2, the expected value of a real-+ 31

valued function h of (X1, . . . , Xn) ∼ f is a weighted average of all values that
h(X1, . . . , Xn) can take. Specifically, in the continuous case,

Eh(X1, . . . , Xn) =

∫
· · ·
∫
h(x1, . . . , xn) f(x1, . . . , xn) dx1 . . .dxn . (3.13)

In the discrete case replace the integrals above with sums.
Two important special cases are the expectation of the sum (or more gen-

erally affine transformations) of random variables and the product of random
variables.

Theorem 3.2. (Properties of the Expectation). Let X1, . . . , Xn

be random variables with expectations µ1, . . . , µn. Then,

E[a+ b1X1 + b2X2 + · · · + bnXn] = a+ b1µ1 + · · · + bnµn (3.14)

for all constants a, b1, . . . , bn. Also, for independent random variables,

E[X1X2 · · ·Xn] = µ1 µ2 · · ·µn . (3.15)

Proof. We show it for the continuous case with two variables only. The general
case follows by analogy and, for the discrete case, by replacing integrals with
sums. Let X1 and X2 be continuous random variables with joint pdf f . Then,
by (3.13),

E[a+ b1X1 + b2X2] =

∫∫
(a+ b1x1 + b2x2) f(x1, x2) dx1 dx2

= a+ b1

∫∫
x1f(x1, x2) dx1 dx2 + b2

∫∫
x2f(x1, x2) dx1 dx2

= a+ b1

∫
x1

(∫
f(x1, x2) dx2

)
dx1 + b2

∫
x2

(∫
f(x1, x2) dx1

)
dx2

= a+ b1

∫
x1fX1

(x1) dx1 + b2

∫
x2fX2

(x2) dx2 = a+ b1µ1 + b2µ2 .
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Next, assume that X1 and X2 are independent, so that f(x1, x2) = fX1
(x1)×

fX2
(x2). Then,

E[X1X2] =

∫∫
x1 x2 fX1

(x1)fX2
(x2) dx1 dx2

=

∫
x1fX1

(x1) dx1 ×
∫
x2fX2

(x2) dx2 = µ1 µ2 .

2

Definition 3.7. (Covariance). The covariance of two random vari-
ables X and Y with expectations EX = µX and EY = µY is defined
as

Cov(X,Y ) = E[(X − µX)(Y − µY )] .

The covariance is a measure of the amount of linear dependency between
two random variables. A scaled version of the covariance is given by the
correlation coefficient:

̺(X,Y ) =
Cov(X,Y )

σX σY
, (3.16)

where σ2
X = Var(X) and σ2

Y = Var(Y ). The correlation coefficient always lies
between −1 and 1; see Problem 3.16. + 92

For easy reference Theorem 3.3 lists some important properties of the
variance and covariance.

Theorem 3.3. (Properties of the Variance and Covariance). For
random variables X, Y and Z, and constants a and b, we have

1. Var(X) = EX2 − (EX)2.
2. Var(a+ bX) = b2Var(X).
3. Cov(X,Y ) = EXY − EX EY .
4. Cov(X,Y ) = Cov(Y,X).
5. Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y, Z).
6. Cov(X,X) = Var(X).
7. Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X,Y ).
8. If X and Y are independent, then Cov(X,Y ) = 0.
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Proof. For simplicity of notation we write EZ = µZ for a generic random
variable Z. Properties 1 and 2 were already shown in Theorem 2.4.+ 33

3. Cov(X,Y ) = E[(X−µX)(Y −µY )] = E[X Y −X µY −Y µX +µX µY ] =
E[X Y ] − µX µY .

4. Cov(X,Y ) = E[(X−µX)(Y −µY )] = E[(Y −µY )(X−µX)] = Cov(Y,X).
5. Cov(aX + bY, Z) = E[(aX + bY )Z] − E[aX + bY ] EZ = aE[XZ] −
aEXEZ + bE[Y Z] − bEY EZ = aCov(X,Z) + bCov(Y, Z).

6. Cov(X,X) = E[(X − µX)(X − µX)] = E[(X − µX)2] = Var(X).
7. By Property 6, Var(X+Y ) = Cov(X+Y,X+Y ). By Property 5, Cov(X+
Y,X+Y ) = Cov(X,X)+Cov(Y, Y )+Cov(X,Y )+Cov(Y,X) = Var(X)+
Var(Y ) + 2 Cov(X,Y ), where in the last equation Properties 4 and 6 are
used.

8. IfX and Y are independent, then E[X Y ] = µX µY . Therefore, Cov(X,Y ) =
0 follows immediately from Property 3.

As a consequence of Properties 2 and 7, we have the following general
result for the variance of affine transformations of random variables.

Corollary 3.1. (Variance of an Affine Transformation). Let
X1, . . . , Xn be random variables with variances σ2

1 , . . . , σ
2
n. Then,

Var

(
a+

n∑

i=1

biXi

)
=

n∑

i=1

b2i σ
2
i + 2

∑

i<j

bibjCov(Xi, Xj) (3.17)

for any choice of constants a and b1, . . . , bn. In particular, for indepen-
dent random variables X1, . . . , Xn,

Var(a+ b1X1 + · · · + bnXn) = b21σ
2
1 + · · · + b2nσ

2
n . (3.18)

Let X = (X1, . . . , Xn)⊤ be a random column vector. Sometimes it is con-
venient to write the expectations and covariances in vector notation.

Definition 3.8. (Expectation Vector and Covariance Matrix).
For any random column vector X we define the expectation vector
as the vector of expectations

µ = (µ1, . . . , µn)⊤ = (EX1, . . . ,EXn)⊤ .

The covariance matrix Σ is defined as the matrix whose (i, j)-th
element is

Cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)] .



3.5 Functions of Random Variables 75

If we define the expectation of a matrix to be the matrix of expectations,
then we can write the covariance matrix succinctly as

Σ = E
[
(X − µ)(X− µ)⊤

]
.

Definition 3.9. (Conditional Expectation). The conditional ex-
pectation of Y given X = x, denoted E[Y |X = x], is the expectation
corresponding to the conditional pdf fY |X(y |x). That is, in the contin-
uous case,

E[Y |X = x] =

∫
y fY |X(y |x) dy .

In the discrete case replace the integral with a sum.

Note that E[Y |X = x] is a function of x, say h(x). The corresponding
random variable h(X) is written as E[Y |X]. The expectation of E[Y |X] is,
in the continuous case,

EE[Y |X] =

∫
E[Y |X = x]fX(x) dx =

∫ ∫
y
f(x, y)

fX(x)
fX(x) dy dx

=

∫
y fY (y) dy = EY .

(3.19)

This “stacking” of (conditional) expectations is sometimes referred to as the
tower property.

Example 3.10 (Non-Uniform Distribution on Triangle Continued).
In Example 3.8 the conditional expectation of Y givenX = x, with 0 < x < 1,
is

E[Y |X = x] =
1

2
x ,

because conditioned on X = x, Y is uniformly distributed on the interval
(0, x). Using the tower property we find

EY =
1

2
EX =

1

4
.

3.5 Functions of Random Variables

Suppose X1, . . . , Xn are measurements of a random experiment. What can be
said about the distribution of a function of the data, say Z = g(X1, . . . , Xn),
when the joint distribution of X1, . . . , Xn is known?

Example 3.11 (Pdf of an Affine Transformation). Let X be a continu-
ous random variable with pdf fX and let Z = a+ bX, where b 6= 0. We wish
to determine the pdf fZ of Z. Suppose that b > 0. We have for any z
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FZ(z) = P(Z 6 z) = P
(
X 6 (z − a)/b

)
= FX

(
(z − a)/b

)
.

Differentiating this with respect to z gives fZ(z) = fX

(
(z − a)/b

)
/b. For

b < 0 we similarly obtain fZ(z) = fX

(
(z − a)/b

)
/(−b) . Thus, in general,

fZ(z) =
1

|b| fX

(
z − a

b

)
. (3.20)

Example 3.12 (Pdf of a Monotone Transformation). Generalizing the
previous example, suppose that Z = g(X) for some strictly increasing func-
tion g. To find the pdf of Z from that of X we first write

FZ(z) = P(Z 6 z) = P
(
X 6 g−1(z)

)
= FX

(
g−1(z)

)
,

where g−1 is the inverse of g. Differentiating with respect to z now gives

fZ(z) = fX(g−1(z))
d

dz
g−1(z) =

fX(g−1(z))

g′(g−1(z))
. (3.21)

For strictly decreasing functions, g′ needs to be replaced with its negative
value.

3.5.1 Linear Transformations

Let x = (x1, . . . , xn)⊤ be a column vector in Rn and B an m × n matrix.
The mapping x 7→ z, with z = Bx, is called a linear transformation. Now
consider a random vector X = (X1, . . . , Xn)⊤, and let

Z = BX .

Then Z is a random vector in Rm. In principle, if we know the joint distri-
bution of X, then we can derive the joint distribution of Z. Let us first see
how the expectation vector and covariance matrix are transformed.

Theorem 3.4. (Expectation and Covariance Under a Linear
Transformation). If X has expectation vector µX and covariance ma-
trix ΣX, then the expectation vector and covariance matrix of Z = BX
are given by

µZ = BµX (3.22)

and
ΣZ = B ΣX B⊤ . (3.23)
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Proof. We have µZ = EZ = EBX = B EX = BµX and

ΣZ = E[(Z− µZ)(Z− µZ)⊤] = E[B(X − µX)(B(X− µX))⊤]

= B E[(X − µX)(X − µX)⊤]B⊤

= B ΣX B⊤ .

2

Suppose that B is an invertible n × n matrix. If X has a joint pdf fX,
what is the joint density fZ of Z? Let us consider the continuous case. For
any fixed x, let z = Bx. Hence, x = B−1z. Consider the n-dimensional cube
C = [z1, z1 + h] × · · · × [zn, zn + h]. Then, by definition of the joint density
for Z, we have

P(Z ∈ C) ≈ hn fZ(z) .

Let D be the image of C under B−1 — that is, the parallelepiped of all
points x such that Bx ∈ C; see Figure 3.4.

Fig. 3.4 Linear transformation.

A basic result from linear algebra is that any matrix B linearly trans-
forms an n-dimensional rectangle with volume V into an n-dimensional par-
allelepiped with volume V |B|, where |B| = | det(B)|. Thus, in addition to
the above expression for P(Z ∈ C) we also have

P(Z ∈ C) = P(X ∈ D) ≈ hn|B−1| fX(x) = hn|B|−1 fX(x) .

Equating these two expressions for P(Z ∈ C) and letting h go to 0, we obtain

fZ(z) =
fX(B−1z)

|B| , z ∈ R
n. (3.24)
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3.5.2 General Transformations

We can apply similar reasoning as in the previous subsection to deal with
general transformations x 7→ g(x), written out as




x1

x2

...
xn


 7→




g1(x)
g2(x)

...
gn(x)


 .

For a fixed x, let z = g(x). Suppose g is invertible; hence, x = g−1(z). Any
infinitesimal n-dimensional rectangle at x with volume V is transformed into
an n-dimensional parallelepiped at z with volume V |Jg(x)|, where Jg(x) is
the matrix of Jacobi at x of the transformation g; that is,+ 379

Jg(x) =




∂g1

∂x1
· · · ∂g1

∂xn

...
. . .

...
∂gn

∂x1
· · · ∂gn

∂xn


 .

Now consider a random column vector Z = g(X). Let C be a small cube
around z with volume hn. Let D be the image of C under g−1. Then, as in
the linear case,

hn fZ(z) ≈ P(Z ∈ C) ≈ hn|Jg−1(z)| fX(x) .

Hence, we have the following result.

Theorem 3.5. (Transformation Rule). Let X be a continuous n-
dimensional random vector with pdf fX and g a function from Rn to
Rn with inverse g−1. Then, Z = g(X) has pdf

fZ(z) = fX(g−1(z)) |Jg−1(z)|, z ∈ R
n. (3.25)

Remark 3.3. Note that |Jg−1(z)| = 1/|Jg(x)|.

Example 3.13 (Box-Muller Method). The joint distribution of X,Y
iid∼

N(0, 1) is

fX,Y (x, y) =
1

2π
e−

1
2 (x2+y2), (x, y) ∈ R

2 .

In polar coordinates we have

X = R cosΘ and Y = R sinΘ , (3.26)
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where R > 0 and Θ ∈ (0, 2π). What is the joint pdf of R and Θ? Consider
the inverse transformation g−1, defined by

(
r
θ

)
g−1

7−→
(
r cos θ
r sin θ

)
=

(
x
y

)
.

The corresponding matrix of Jacobi is

Jg−1(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)
,

which has determinant r. Since x2 + y2 = r2(cos2 θ + sin2 θ) = r2, it follows
that

fR,Θ(r, θ) = fX,Y (x, y) r =
1

2π
e−

1
2 r2

r, θ ∈ (0, 2π), r > 0 .

By integrating out θ and r, respectively, we find fR(r) = r e−r2/2 and fΘ(θ) =
1/(2π). Since fR,Θ is the product of fR and fΘ, the random variables R and Θ
are independent. This shows how X and Y could be generated: independently
generateR ∼ fR andΘ ∼ U(0, 2π) and returnX and Y via (3.26). Generation
from fR can be done via the inverse-transform method. In particular, R + 52

has the same distribution as
√
−2 lnU with U ∼ U(0, 1). This leads to the

following method for generating standard normal random variables.

Algorithm 3.2. (Box–Muller Method).

1. Generate U1, U2
iid∼ U(0, 1).

2. Return two independent standard normal variables, X and Y , via

X =
√
−2 lnU1 cos(2πU2) ,

Y =
√
−2 lnU1 sin(2πU2) .

(3.27)

3.6 Multivariate Normal Distribution

It is helpful to view a normally distributed random variable as an affine
transformation of a standard normal random variable. In particular, if Z has
a standard normal distribution, then X = µ+σZ has a N(µ, σ2) distribution;
see Theorem 2.15. + 46

We now generalize this to n dimensions. Let Z1, . . . , Zn be independent
and standard normal random variables. The joint pdf of Z = (Z1, . . . , Zn)⊤
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is given by

fZ(z) =

n∏

i=1

1√
2π

e−
1
2 z2

i = (2π)−
n
2 e−

1
2 z⊤z, z ∈ R

n. (3.28)

We write Z ∼ N(0, I), where I is the identity matrix. Consider the affine
transformation (that is, a linear transformation plus a constant vector)

X = µ+B Z (3.29)

for some m× n matrix B and m-dimensional vector µ. Note that, by Theo-
rem 3.4, X has expectation vector µ and covariance matrix Σ = BB⊤.

Definition 3.10. (Multivariate Normal Distribution). A random
vector X is said to have a multivariate normal or multivariate
Gaussian distribution with mean vector µ and covariance matrix Σ if
it can be written as X = µ + B Z, where Z ∼ N(0, I) and BB⊤ = Σ.
We write X ∼ N(µ, Σ).

Suppose that B is an invertible n×n matrix. Then, by (3.24), the density
of Y = X − µ is given by

fY(y) =
1

|B|
√

(2π)n
e−

1
2 (B−1y)⊤B−1y =

1

|B|
√

(2π)n
e−

1
2 y⊤(B−1)⊤B−1y .

We have |B| =
√
|Σ| and (B−1)⊤B−1 = (B⊤)−1B−1 = (BB⊤)−1 = Σ−1, so

that

fY(y) =
1√

(2π)n |Σ|
e−

1
2 y⊤Σ−1y .

Because X is obtained from Y by simply adding a constant vector µ, we have
fX(x) = fY(x − µ) and therefore

fX(x) =
1√

(2π)n |Σ|
e−

1
2 (x−µ)⊤Σ−1(x−µ), x ∈ R

n . (3.30)

Figure 3.5 shows the pdfs of two bivariate (that is two-dimensional) normal
distributions. In both cases the mean vector is µ = (0, 0)⊤ and the vari-
ances (the diagonal elements of Σ) are 1. The correlation coefficients (or,
equivalently here, the covariances) are respectively ̺ = 0 and ̺ = 0.8.
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Fig. 3.5 Pdfs of bivariate normal distributions with means zero, variances 1, and
correlation coefficients 0 (left) and 0.8 (right).

Conversely, given a covariance matrix Σ = (σij), there exists a unique
lower triangular matrix B such that Σ = BB⊤. In MATLAB, the function
chol accomplishes this so-called Cholesky factorization. Note that it is
important to use the option ’lower’ when calling this function, as MATLAB

produces an upper triangular matrix by default. Once the Cholesky factor-
ization is determined, it is easy to sample from a multivariate normal distri-
bution.

Algorithm 3.3. (Normal Random Vector Generation). To gen-
erate N independent draws from a N(µ, Σ) distribution of dimension n
carry out the following steps.

1. Determine the lower Cholesky factorization Σ = BB⊤.
2. Generate Z = (Z1, . . . , Zn)⊤ by drawing Z1, . . . , Zn ∼iid N(0, 1).
3. Output X = µ+BZ.
4. Repeat Steps 2 and 3 independently N times.

Example 3.14 (Generating from a Bivariate Normal Distribution).
The MATLAB code below draws 1000 samples from the two pdfs in Figure 3.5.
The resulting point clouds are given in Figure 3.6.

%bivnorm.m

N = 1000; rho = 0.8;

Sigma = [1 rho; rho 1];

B=chol(Sigma,’lower’);

x=B*randn(2,N);

plot(x(1,:),x(2,:),’.’)
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Fig. 3.6 1000 realizations of bivariate normal distributions with means zero, vari-
ances 1, and correlation coefficients 0 (left) and 0.8 (right).

The following theorem states that any affine combination of independent
multivariate normal random variables is again multivariate normal.

Theorem 3.6. (Affine Transformation of Normal Random Vec-
tors). Let X1,X2, . . . ,Xr be independent mi-dimensional normal ran-
dom vectors, with Xi ∼ N(µi, Σi), i = 1, . . . , r. Then, for any n × 1
vector a and n×mi matrices B1, . . . , Br,

a +

r∑

i=1

Bi Xi ∼ N

(
a +

r∑

i=1

Bi µi,

r∑

i=1

BiΣiB
⊤
i

)
. (3.31)

Proof. Denote the n-dimensional random vector in the left-hand side of (3.31)
by Y. By Definition 3.10, each Xi can be written as µi + AiZi, where the
{Zi} are independent (because the {Xi} are independent), so that

Y = a +
r∑

i=1

Bi (µi +AiZi) = a +
r∑

i=1

Bi µi +
r∑

i=1

BiAiZi ,

which is an affine combination of independent standard normal random vec-
tors. Hence, Y is multivariate normal. Its expectation vector and covariance
matrix can be found easily from Theorem 3.4. 2

The next theorem shows that the distribution of a subvector of a multi-
variate normal random vector is again normal.
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Theorem 3.7. (Marginal Distributions of Normal Random
Vectors). Let X ∼ N(µ, Σ) be an n-dimensional normal random vec-
tor. Decompose X, µ, and Σ as

X =

(
Xp

Xq

)
, µ =

(
µp

µq

)
, Σ =

(
Σp Σr

Σ⊤
r Σq

)
, (3.32)

where Σp is the upper left p× p corner of Σ and Σq is the lower right
q × q corner of Σ. Then, Xp ∼ N(µp, Σp).

Proof. Let BB⊤ be the lower Cholesky factorization of Σ. We can write

(
Xp

Xq

)
=

(
µp

µq

)
+

(
Bp O
Cr Cq

)

︸ ︷︷ ︸
B

(
Zp

Zq

)
, (3.33)

where Zp and Zq are independent p- and q-dimensional standard normal
random vectors. In particular, Xp = µp + BpZp, which means that Xp ∼
N(µp, Σp), since BpB

⊤
p = Σp. 2

By relabeling the elements of X we see that Theorem 3.7 implies that
any subvector of X has a multivariate normal distribution. For example,
Xq ∼ N(µq, Σq).

Not only the marginal distributions of a normal random vector are normal
but also its conditional distributions.

Theorem 3.8. (Conditional Distributions of Normal Random
Vectors). Let X ∼ N(µ, Σ) be an n-dimensional normal random vector
with det(Σ) > 0. If X is decomposed as in (3.32), then

(Xq |Xp = xp) ∼ N(µq +Σ⊤
r Σ

−1
p (xp −µp), Σq −Σ⊤

r Σ
−1
p Σr) . (3.34)

As a consequence, Xp and Xq are independent if and only if they are
uncorrelated; that is, if Σr = O (zero matrix).

Proof. From (3.33) we see that

(Xq |Xp = xp) = µq + Cr B
−1
p (xp − µp) + CqZq ,

where Zq is a q-dimensional multivariate standard normal random vector. It
follows that Xq conditional on Xp = xp has a N(µq+Cr B

−1
p (xp−µp), CqC

⊤
q )
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distribution. The proof of (3.34) is completed by observing that Σ⊤
r Σ

−1
p =

CrB
⊤
p (B⊤

p )−1B−1
p = Cr B

−1
p , and

Σq −Σ⊤
r Σ

−1
p Σr = CrC

⊤
r + CqC

⊤
q − CrB

−1
p Σr︸︷︷︸

BpC⊤
r

= CqC
⊤
q .

If Xp and Xq are independent, then they are obviously uncorrelated, as Σr =
E[(Xp − µp)(Xq − µq)

⊤] = E(Xp − µp) E(Xq − µq)
⊤ = O. Conversely, if

Σr = O, then by (3.34) the conditional distribution of Xq given Xp is the
same as the unconditional distribution of Xq; that is, N(µq, Σq). In other
words, Xq is independent of Xp. 2

Theorem 3.9. (Relationship between Normal and χ2 Distribu-
tions). If X ∼ N(µ, Σ) is an n-dimensional normal random with vector
with det(Σ) > 0, then

(X − µ)⊤Σ−1(X− µ) ∼ χ2
n . (3.35)

Proof. Let BB⊤ be the Cholesky factorization of Σ, where B is invertible.
Since X can be written as µ + BZ, where Z = (Z1, . . . , Zn)⊤ is a vector of
independent standard normal random variables, we have

(X− µ)⊤Σ−1(X − µ) = (X − µ)⊤(BB⊤)−1(X − µ) = Z⊤Z =

n∑

i=1

Z2
i .

The moment generating function of Y =
∑n

i=1 Z
2
i is given by

E etY = E et(Z2
1+···+Z2

n) = E [etZ2
1 · · · etZ2

n ] =
(
E etZ2

)n

,

where Z ∼ N(0, 1). The moment generating function of Z2 is

E etZ2

=

∫ ∞

−∞
etz2 1√

2π
e−z2/2dz =

1√
2π

∫ ∞

−∞
e−

1
2 (1−2t)z2

dz =
1√

1 − 2t
,

so that

EetY =

( 1
2

1
2 − t

)n
2

, t <
1

2
,

which is the moment generating function of the Gamma(n/2, 1/2) distribu-
tion; that is, the χ2

n distribution — see Theorem 2.18. 2+ 48
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A consequence of Theorem 3.9 is that if X = (X1, . . . , Xn)⊤ is n-
dimensional standard normal, then the squared length ‖X‖2 = X2

1 + · · ·+X2
n

has a χ2
n distribution. If instead Xi ∼ N(µi, 1), i = 1, . . ., then ‖X‖2 is said

to have a noncentral χ2
n distribution. This distribution depends on the

{µi} only through the norm ‖µ‖; see Problem 3.22. We write ‖X‖2 ∼ χ2
n(θ),

where θ = ‖µ‖ is the noncentrality parameter.
Such distributions frequently occur in statistics when considering projec-

tions of multivariate normal random variables. The proof of the following
theorem can be found in Appendix B.4. + 383

Theorem 3.10. (Relationship between Normal and Noncentral
χ2 Distributions). Let X ∼ N(µ, I) be an n-dimensional normal ran-
dom vector and let Vk and Vm be linear subspaces of dimensions k and
m, respectively, with k < m 6 n. Let Xk and Xm be orthogonal pro-
jections of X onto Vk and Vm, and let µk and µm be the corresponding
projections of µ. Then, the following holds.

1. The random vectors Xk, Xm − Xk, and X − Xm are independent.

2. ‖Xk‖2 ∼ χ2
k(‖µk‖), ‖Xm − Xk‖2 ∼ χ2

m−k(‖µm − µk‖), and ‖X −
Xm‖2 ∼ χ2

n−m(‖µ− µm‖).

Theorem 3.10 is frequently used in the statistical analysis of normal linear
models; see Section 5.3.1. In typical situations µ lies in the subspace Vm or + 137

even Vk — in which case ‖Xm − Xk‖2 ∼ χ2
m−k and ‖X − Xm‖2 ∼ χ2

n−m,
independently. The (scaled) quotient then turns out to have an F distribution
— a consquence of the following theorem.

Theorem 3.11. (Relationship between χ2 and F Distribu-
tions). Let U ∼ χ2

m and V ∼ χ2
n be independent. Then,

U/m

V/n
∼ F(m,n) .

Proof. For notational simplicity, let c = m/2 and d = n/2. It follows from
Example 3.7 that the pdf of W = U/V is given by + 68
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fW (w) =

∫ ∞

0

fU (wv) v fV (v) dv

=

∫ ∞

0

(wv)c−1 e−wv/2

Γ (c) 2c
v
vd−1e−v/2

Γ (d) 2d
dv

=
wc−1

Γ (c)Γ (d) 2c+d

∫ ∞

0

vc+d−1 e−(1+w)v/2 dv

=
Γ (c+ d)

Γ (c)Γ (d)

wc−1

(1 + w)c+d
,

where the last equality follows from the fact that the integrand is equal to
Γ (α)λα times the density of the Gamma(α, λ) distribution with α = c + d
and λ = (1 + w)/2. The proof is completed by observing that the density of
Z = n

m
U
V is given by

fZ(z) = fW (z m/n)m/n .

2

Corollary 3.2. (Relationship between Normal, χ2, and t Dis-
tributions). Let Z ∼ N(0, 1) and V ∼ χ2

n be independent. Then,

Z√
V/n

∼ tn .

Proof. Let T = Z/
√
V/n. Because Z2 ∼ χ2

1, we have by Theorem 3.11 that
T 2 ∼ F(1, n). The result follows now from Theorem 2.19 and the symmetry+ 50

around 0 of the pdf of T . 2

3.7 Limit Theorems

Two main results in probability are the law of large numbers and the cen-
tral limit theorem. Both are limit theorems involving sums of independent
random variables. In particular, consider a sequence X1, X2, . . . of iid ran-
dom variables with finite expectation µ and finite variance σ2. For each n
define Sn = X1 + · · · +Xn. What can we say about the (random) sequence
of sums S1, S2, . . . or averages S1, S2/2, S3/3, . . .? By (3.14) and (3.18) we+ 72

have E[Sn/n] = µ and Var(Sn/n) = σ2/n. Hence, as n increases the variance
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of the (random) average Sn/n goes to 0. Informally, this means that (Sn/n)
tends to the constant µ, as n → ∞. This makes intuitive sense, but the im-
portant point is that the mathematical theory confirms our intuition in this
respect. Here is a more precise statement.

Theorem 3.12. (Weak Law of Large Numbers). If X1, . . . , Xn are
iid with finite expectation µ and finite variance σ2, then for all ε > 0

lim
n→∞

P (|Sn/n− µ| > ε) = 0 .

Proof. Let Y = (Sn/n− µ)2 and δ = ε2. We have

Var(Sn/n) = EY = E[Y I{Y >δ}] + E[Y I{Y 6δ}] > E[δ I{Y >δ}] + 0

= δ P(Y > δ) = ε2 P(|Sn/n− µ| > ε) .

Rearranging gives

P(|Sn/n− µ| > ε) 6
Var(Sn/n)

ε2
=

σ2

n ε2
.

The proof is concluded by observing that σ2/(nε2) goes to 0 as n→ ∞. 2

Remark 3.4. In Theorem 3.12 the qualifier “weak” is used to distinguish the
result from the strong law of large numbers, which states that

P( lim
n→∞

Sn/n = µ) = 1 .

In terms of a computer simulation this means that the probability of drawing
a sequence for which the sequence of averages fails to converge to µ is zero.
The strong law implies the weak law, but is more difficult to prove in its full
generality; see, for example, [Feller, 1970].

The central limit theorem describes the approximate distribution of Sn

(or Sn/n), and it applies to both continuous and discrete random variables.
Loosely, it states that

the sum of a large number of iid random variables ap-
proximately has a normal distribution.

Specifically, the random variable Sn has a distribution that is approximately
normal, with expectation nµ and variance nσ2. A more precise statement is
given next.
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Theorem 3.13. (Central Limit Theorem). If X1, . . . , Xn are iid
with finite expectation µ and finite variance σ2, then for all x ∈ R,

lim
n→∞

P

(
Sn − nµ

σ
√
n

6 x

)
= Φ(x) ,

where Φ is the cdf of the standard normal distribution.

Proof. (Sketch) A full proof is out of the scope of this book. However, the
main ideas are not difficult. Without loss of generality assume µ = 0 and
σ = 1. This amounts to replacing Xn by (Xn − µ)/σ. We also assume, for
simplicity, that the moment generating function of Xi is finite in an open
interval containing 0, so that we can use Theorem 2.7. We wish to show+ 36

that the cdf of Sn/
√
n converges to that of the standard normal distribution.

It can be proved (and makes intuitive sense) that this is equivalent (up to
some technical conditions) to demonstrating that the corresponding moment
generating functions converge. That is, we wish to show that

lim
n→∞

E exp

(
t
Sn√
n

)
= e

1
2 t2 , t ∈ R ,

where the right-hand side is the moment generating function of the standard
normal distribution. Because EX1 = 0 and EX2

1 = Var(X1) = 1, we have by
Theorem 2.7 that the moment generation function of X1 has the following
Taylor expansion:+ 381

M(t)
def
= E etX1 = 1 + tEX1 +

1

2
t2 EX2

1 + o(t2) = 1 +
1

2
t2 + o(t2) ,

where o(t2) is a function for which limt↓0 o(t2)/t2 = 0. Because the {Xi} are
iid, it follows that the moment generating function of Sn/

√
n satisfies

E exp

(
t
Sn√
n

)
= E exp

(
t√
n

(X1 + · · · +Xn)

)
=

n∏

i=1

E exp

(
t√
n
Xi

)

= Mn

(
t√
n

)
=

[
1 +

t2

2n
+ o(t2/n)

]n

−→ e
1
2 t2

as n→ ∞. 2

Figure 3.7 shows central limit theorem in action. The left part shows the
pdfs of S1, . . . , S4 for the case where the {Xi} have a U[0, 1] distribution.
The right part shows the same for the Exp(1) distribution. We clearly see
convergence to a bell-shaped curve, characteristic of the normal distribution.
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Fig. 3.7 Illustration of the central limit theorem for (left) the uniform distribution
and (right) the exponential distribution.

Recall that a binomial random variable X ∼ Bin(n, p) can be viewed as
the sum of n iid Ber(p) random variables: X = X1 + · · · + Xn. As a direct + 64

consequence of the central limit theorem it follows that for large n P(X 6

k) ≈ P(Y 6 k), where Y ∼ N(np, np(1− p)). As a rule of thumb, this normal
approximation to the binomial distribution is accurate if both np and n(1−p)
are larger than 5.

There is also a central limit theorem for random vectors. The multidimen-
sional version is as follows.

Theorem 3.14. (Multivariate Central Limit Theorem). Let
X1, . . . ,Xn be iid random vectors with expectation vector µ and co-
variance matrix Σ. For large n the random vector X1 + · · · + Xn ap-
proximately has a N(nµ, nΣ) distribution.

A more precise formulation of the above theorem is that the average ran-
dom vector Zn = (X1+· · ·+Xn)/n, when rescaled via

√
n(Zn−µ), converges

in distribution to a random vector K ∼ N(0, Σ) as n → ∞. A useful conse-
quence of this is given next.

Theorem 3.15. (Delta Method). Let Z1,Z2, . . . be a sequence of
random vectors such that

√
n(Zn − µ) → K ∼ N(0, Σ) as n → ∞.

Then, for any continuously differentiable function g of Zn,

√
n(g(Zn) − g(µ)) → R ∼ N(0, JΣJ⊤) , (3.36)

where J = J(µ) = (∂gi(µ)/∂xj) is the Jacobian matrix of g evaluated
at µ.
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Proof. (Sketch) A formal proof requires some deeper knowledge of statistical
convergence, but the idea of the proof is quite straightforward. The key step is
to construct the first-order Taylor expansion (see Theorem B.1) of g around+ 381

µ, which yields

g(Zn) = g(µ) + J(µ)(Zn − µ) + O(‖Zn − µ‖2) .

As n→ ∞, the remainder term goes to 0, because Zn → µ. Hence, the left-
hand side of (3.36) is approximately J

√
n(Zn−µ). For large n this converges

to a random vector R = J K, where K ∼ N(0, Σ). Finally, by Theorem 3.4+ 77

we have R ∼ N(0, JΣ J⊤). 2

Example 3.15 (Ratio Estimator). Let (X1, Y1), . . . , (Xn, Yn) be iid copies
of a random vector (X,Y ) with mean vector (µX , µY ) and covariance matrix
Σ. Denoting the average of the {Xi} and {Yi} by X̄ and Ȳ respectively, what
can we say about the distribution of X̄/Ȳ for large n?

Let Zn = (X̄, Ȳ ) and µ = (µX , µY ). By the multivariate central limit
theorem Zn has approximately a N(µ, Σ/n) distribution. More precisely,√
n(Zn − µ) converges to a N(0, Σ)-distributed random vector.
We apply the delta method using the function g(x, y) = x/y, whose Jaco-

bian matrix is

J(x, y) =

(
∂g(x, y)

∂x
,

∂g(x, y)

∂y

)
=

(
1

y
,

−x
y2

)
.

It follows from (3.36) that g(X̄, Ȳ ) = X̄/Ȳ has approximately a normal
distribution with expectation g(µ) = µX/µY and variance σ2/n, where

σ2 = J(µ)ΣJ⊤(µ) =

(
1

µY
,

−µX

µ2
Y

)(
Var(X) Cov(X,Y )

Cov(X,Y ) Var(Y )

)( 1
µY−µX

µ2
Y

)

=

(
µX

µY

)2(
Var(X)

µ2
X

+
Var(Y )

µ2
Y

− 2
Cov(X,Y )

µX µY

)
.

(3.37)

3.8 Problems

3.1. Let U and V be independent random variables with P(U = 1) = P(V =
1) = 1/4 and P(U = −1) = P(V = −1) = 3/4. Define X = U/V and
Y = U + V . Give the joint discrete pdf of X and Y in table form, as in
Table 3.1. Are X and Y independent?+ 62

3.2. Let X1, . . . , X4 ∼iid Ber(p).

a. Give the joint discrete pdf of X1, . . . , X4.
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b. Give the joint discrete pdf of X1, . . . , X4 given X1 + · · · +X4 = 2.

3.3. Three identical-looking urns each have 4 balls. Urn 1 has 1 red and 3
white balls, Urn 2 has 2 red and 2 white balls, and Urn 3 has 3 red and 1
white ball. We randomly select an urn with equal probability. Let X be the
number of the urn. We then draw 2 balls from the selected urn. Let Y be the
number of red balls drawn. Find the following discrete pdfs.

a. The pdf of X.
b. The conditional pdf of Y given X = x for x = 1, 2, 3.
c. The joint pdf of X and Y .
d. The pdf of Y .
e. The conditional pdf of X given Y = y for y = 0, 1, 2.

3.4. We randomly select a point (X,Y ) from the triangle {(x, y) : x, y ∈
{1, . . . , 6}, y 6 x} (see Figure 3.1) in the following non-uniform way. First, + 65

select X discrete uniformly from {1, . . . , 6}. Then, given X = x, select Y
discrete uniformly from {1, . . . , x}. Find the conditional distribution of X
given Y = 1 and its corresponding conditional expectation.

3.5. We randomly and uniformly select a continuous random vector (X,Y )
in the triangle (0, 0)–(1, 0)–(1, 1); the same triangle as in Example 3.8. + 70

a. Give the joint pdf of X and Y .
b. Calculate the pdf of Y and sketch its graph.
c. Specify the conditional pdf of Y given X = x for any fixed x ∈ (0, 1).
d. Determine E[Y |X = 1/2].

3.6. Let X ∼ U[0, 1] and Y ∼ Exp(1) be independent.

a. Determine the joint pdf of X and Y and sketch its graph.
b. Calculate P((X,Y ) ∈ [0, 1] × [0, 1]) ,
c. Calculate P(X + Y < 1).

3.7. Let X ∼ Exp(λ) and Y ∼ Exp(µ) be independent.

a. Show that min(X,Y ) also has an exponential distribution, and determine
its corresponding parameter.

b. Show that

P(X < Y ) =
λ

λ+ µ
.

3.8. Let X ∼ Exp(1) and (Y |X = x) ∼ Exp(x).

a. What is the joint pdf of X and Y ?
b. What is the marginal pdf of Y ?

3.9. Let X ∼ U(−π/2, π/2). Show that Y = tan(X) has a Cauchy distribu- + 69

tion.
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3.10. Let X ∼ Exp(3) and Y = ln(X). What is the pdf of Y ?

3.11. We draw n numbers independently and uniformly from the interval
[0,1] and denote their sum Sn.

a. Determine the pdf of S2 and sketch its graph.
b. What is approximately the distribution of S20?
c. Approximate the probability that the average of the 20 numbers is greater

than 0.6.

3.12. A certain type of electrical component has an exponential lifetime dis-
tribution with an expected lifetime of 1/2 year. When the component fails it
is immediately replaced by a second (new) component; when the second com-
ponent fails, it is replaced by a third, etc. Suppose there are 10 such identical
components. Let T be the time that the last of the components fails.

a. What is the expectation and variance of T?
b. Approximate, using the central limit theorem, the probability that T ex-

ceeds 6 years.
c. What is the exact distribution of T?

3.13. Let A be an invertible n×n matrix and let X1, . . . , Xn ∼iid N(0, 1). De-
fine X = (X1, . . . , Xn)⊤ and let (Z1, . . . , Zn)⊤ = AX. Show that Z1, . . . , Zn

are iid standard normal only if AA⊤ = I (identity matrix); in other words,
only if A is an orthogonal matrix. Can you find a geometric interpretation of
this?

3.14. Let X1, . . . , Xn be independent and identically distributed random
variables with mean µ and variance σ2. Let X̄ = (X1+· · ·+Xn)/n. Calculate
the correlation coefficient of X1 and X̄.

3.15. Suppose that X1, . . . , X6 are iid with pdf

f(x) =

{
3x2, 0 6 x 6 1,
0, elsewhere.

a. What is the probability that all {Xi} are greater than 1/2?
b. Find the probability that at least one of the {Xi} is less than 1/2.

3.16. Let X and Y be random variables.

a. Express Var(−aX+Y ), where a is a constant, in terms of Var(X),Var(Y ),
and Cov(X,Y ).

b. Take a = Cov(X,Y )/Var(X). Using the fact that the variance in (a) is
always non-negative, prove the following Cauchy–Schwartz inequality:

(Cov(X,Y ))2 6 Var(X) Var(Y ) .

c. Show that, as a consequence, the correlation coefficient of X and Y must
lie between −1 and 1.
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3.17. Suppose X and Y are independent uniform random variables on [0,1].
Let U = X/Y and V = XY , which means X =

√
UV and Y =

√
V/U .

a. Sketch the two-dimensional region where the density of (U, V ) is non-zero.
b. Find the matrix of Jacobi for the transformation (x, y)⊤ 7→ (u, v)⊤.
c. Show that its determinant is 2x/y = 2u.
d. What is the joint pdf of U and V ?
e. Show that the marginal pdf of U is

fU (u) =

{
1
2 , 0 < u < 1
1

2u2 , u > 1
. (3.38)

3.18. LetX1, . . . , Xn be iid with mean µ and variance σ2. Let X̄ = 1
n

∑n
i=1Xi

and Y = 1
n

∑n
i=1(Xi − X̄)2.

a. Show that

Y =
1

n

n∑

i=1

X2
i − X̄2 .

b. Calculate EY .
c. Show that EY → σ2 as n→ ∞.

3.19. Let X = (X1, . . . , Xn)⊤, with {Xi} ∼iid N(µ, 1). Consider the orthog-
onal projection, denoted X1, of X onto the subspace spanned by 1 =
(1, . . . , 1)⊤.

a. Show that X1 = X̄1.
b. Show that X1 and X − X1 are independent.
c. Show that ‖X − X1‖2 =

∑n
i=1(Xi − X̄)2 has a χ2

n−1 distribution.

Hint: apply Theorem 3.10.

3.20. Let X1, . . . , X6 be the weights of six randomly chosen people. Assume
each weight is N(75, 100) distributed (in kg). Let W = X1 + · · · +X6 be the
total weight of the group. Explain why the distribution of W is equal or not
equal to 6X1.

3.21. Let X ∼ χ2
m and Y ∼ χ2

n be independent. Show that X + Y ∼ χ2
m+n.

Hint: use moment generating functions.

3.22. Let X ∼ N(µ, 1). Show that the moment generation function of X2 is

M(t) =
eµ2t/(1−2t)

√
1 − 2t

t < 1/2 .

Next, consider independent random variables Xi ∼ N(µi, 1), i = 1, . . . , n. Use
the result above to show that the distribution of ‖X‖2 only depends on n
and ‖µ‖. Can you find a symmetry argument why this must be so?
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3.23. A machine produces cylinders with a diameter which is normally dis-
tributed with mean 3.97 cm and standard deviation 0.03 cm. Another ma-
chine produces (independently of the first machine) shafts with a diameter
which is normally distributed with mean 4.05 cm and standard deviation
0.02cm. What is the probability that a randomly chosen cylinder fits into a
randomly chosen shaft?

3.24. A sieve with diameter d is used to separate a large number of blue-
berries into two classes: small and large. Suppose that the diameters of the
blueberries are normally distributed with an expectation µ = 1 (cm) and a
standard deviation σ = 0.1 (cm).

a. Find the diameter of the sieve such that the proportion of large blueberries
is 30%.

b. Suppose that the diameter is chosen such as in (a). What is the probability
that out of 1000 blueberries, fewer than 280 end up in the “large” class?

3.25. Suppose X, Y , and Z are independent N(1, 2)-distributed random vari-
ables. Let U = X−2Y +3Z and V = 2X−Y +Z. Give the joint distribution
of U and V .

3.26. For many of the above problems it is instructive to simulate the corre-
sponding model on a computer in order to better understand the theory.

a. Generate 105 points (X,Y ) from the model in Problem 3.6.
b. Compare the fraction of points falling in the unit square [0, 1]× [0, 1] with

the theoretical probability in Problem 3.6 (b).
c. Do the same for the probability P(X + Y < 1).

3.27. Simulate 105 draws from U(−π/2, π/2) and transform these using the
tangent function, as in Problem 3.9. Compare the histogram of the trans-
formed values with the theoretical (Cauchy) pdf.

3.28. Simulate 105 independent draws of (U, V ) in Problem 3.17. Verify with
a histogram of the U -values that the pdf of U is of the form (3.38).

3.29. Consider the MATLAB experiments in Example 3.14.

a. Carry out the experiments with ̺ = 0.4, 0.7, 0.9, 0.99, and −0.8, and+ 81

observe how the outcomes change.
b. Plot the corresponding pdfs, as in Figure 3.6.
c. Give also the contour plots of the pdfs, for ̺ = 0 and ̺ = 0.8. Observe

that the contours are ellipses.
d. Show that these ellipses are of the form

x2
1 + 2̺ x1 x2 + x2

2 = constant .
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Symbols

∼ distributed as 28
E expectation 29
iid
∼ independent and identically

distributed as 64
I indicator 71
∩ intersection 7
P probability 9
∝ proportional to 208
ϕ standard normal pdf 45
Φ standard normal cdf 45
∪ union 7

A

acceptance–rejection method 54, 207,
208

affine transformation 46, 72, 74, 79, 80
Akaike information criterion 295, 310
alternative hypothesis 135
Analysis of Variance (ANOVA) 108,

137, 139, 151
model 107–111
single-factor 108, 112, 139
two-factor 110

autocorrelation 280
autocovariance 280, 281
autoregressive moving average 277, 292
auxiliary mixture sampling 330
auxiliary variable methods 177

B

bag of words method 252
balanced design 109
bandwidth 194

bar.m 4
Bayes factor 135, 242

Savage–Dickey density ratio 244
Bayes’ rule 16, 219, 220
Bayesian information criterion 295,

310
Bayesian network 236–239

Bayesian statistics 117, 220, 225
belief net 237
Bernoulli

distribution 36

process 64
regression 256

beta distribution 72, 220, 233, 247, 376
beta function 71
bias 118, 198
binomial distribution 18, 24, 37, 65, 67,

89
normal approximation to 89

binomial formula 38
binomial model 131

two-sample 99, 132
birthday problem 15
blocking 111
bootstrap method 124, 196, 198
Box–Muller method 79
burn-in 207, 281

C

categorical variable 107
Cauchy distribution 50, 69, 91, 159,

197
Cauchy–Schwartz inequality 92, 166
ceil.m 21
central limit theorem 87, 125

for random vectors 89

385
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chi-squared distribution 47, 83, 86, 93,
127, 130

classical statistics 117
coefficient of determination 151
coin tossing 3, 7, 17, 24, 37, 39, 64, 117,

220
combined multiple-recursive generator

51
complete-data likelihood 178
completing the squares 230, 359
concentration matrix 297
conditional

expectation 75
pdf 69

probability 12–18

confidence
set 169

confidence interval 124, 169, 170, 199
approximate 124
approximate – for p (binomial

distribution) 131
approximate – for p (two-sample,

binomial distribution) 132
Bayesian 124, 221
bootstrap 199
for µX − µY (two-sample normal

distribution) 129, 152
for σ2 (normal distribution) 128
for σ2

X/σ
2
Y (two-sample normal

distribution) 130
conjugate family 240
consistent estimator 171
convex function 33
correlation coefficient 73, 82, 92, 120

sample 121, 151
counting problems 19
covariance 73

matrix 74, 76, 80, 81, 83, 89, 164,
275, 295, 297, 299

method 281
covariate 101
coverage probability 124
Cramér–Rao inequality 166
credible interval 124, 221
cross-validation 141
K-fold 143
leave-one-out 143
linear model 144

cumdf.m 59, 377
cumsum.m 4, 54
cumulative distribution function (cdf)

25, 29
joint 61

D

data
reduction 146
transformation 107

data augmentation 268
De Morgan’s rules 8, 18
delta method 89, 201
dependent variable 101
derivatives

multidimensional 379
partial 379

design matrix 111, 113, 121, 123, 144,
168, 229, 255, 282, 294, 305

detailed balance equations 206, 207
digamma function 186
directed acyclic graph 236
Dirichlet distribution 232, 376
discrete joint pdf 62

discrete random variable 107
disjoint events 7, 9
distribution

Bernoulli 36

beta 72, 220, 233, 247, 376
binomial 37, 65, 67, 89
Cauchy 50, 69, 91, 159, 197
chi-squared 47, 83, 86, 93, 127, 130
continuous joint 67, 71
Dirichlet 232, 376
discrete joint 62–67
discrete uniform 58
double exponential 184
exponential 43, 91
exponential family 147, 162, 169,

256
F 49, 50, 86, 130
gamma 47, 48, 224, 233
Gaussian see normal
geometric 38

inverse-gamma 226, 307, 323, 326,
331

logistic 59
mixed joint 71–72
mixture 181, 195, 214
multinomial 66, 179, 213, 232
multivariate normal 80, 102, 297
multivariate Student’s t 261, 275
noncentral χ2 85
normal 45, 56, 78, 79
Poisson 34, 40
positive normal 55, 69, 366–367
Student’s t 49, 86, 127, 129
truncated normal 269, 275
uniform 42, 183
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Weibull 60, 184, 193
dominated convergence theorem 382
double exponential distribution 184
drawing with or without replacement

19

E

efficient score 163

erf.m 60
EM-algorithm 177, 269, 317
empirical cdf 190, 196

reduced 193
ergodic Markov chain 205
error terms 111, 168
estimate 118

estimator 118

bias 118
unbiased 118

event 6

elementary 10
expectation 29–33

conditional 75
for joint distributions 72
properties 33, 72
vector 74, 76, 80

explanatory variable 101
exponential distribution 43, 91
exponential family 147, 162, 169, 256

conjugate prior 240–242
information matrix 166
natural 148

exponential model 105

F

factor level 107
factorial experiment 107
factorization theorem 146
F distribution 49, 50, 86, 130
find.m 54
Fisher information matrix 163

observed 258
Fisher’s scoring method 175, 273
full rank matrix 122
functions of random variables 75
fzero.m 187

G

Galton, Francis 100
gamma distribution 47, 48, 224, 233
gamma function 47, 49, 71, 186, 188
gamrand.m 224, 376

gamrnd.m 327, 376
Gaussian distribution see normal

distribution
generalized likelihood ratio 173
generalized linear model 255
geometric distribution 18, 38
geometric sum 39
Gibbs sampler 211–212, 217, 218,

222, 224, 226–228, 249–250,
270, 305–309, 322–323, 325–329,
332–336

global balance equations 205
goodness of fit test 213
gradient 380

grid search 187

H

Hessian matrix 165, 171, 175, 177, 380
hierarchical model 221, 322
hyperparameter 237
hypothesis testing 135–189

I

icumdf.m 59, 125, 377
improper prior 227
independence

of events 17
of random variables 63, 64, 68, 72

independence sampler 208
independent and identically distributed

(iid) 64, 68, 87, 97–100, 125
independent variable 101
indicator 56, 71
initial distribution 203
integrated moving average 291
interval estimate see confidence

interval, 169
inverse-gamma distribution 226, 307,

323, 326, 331
inverse-transform method 53, 68, 193,

196
discrete 54

irreducible 206

J

Jacobian matrix see matrix of Jacobi
Jensen’s inequality 33, 186
joint

cdf 61
distribution 61, 76

joint pdf 67
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for dependent random variables 65
jointly normal distribution see

multivariate normal distribution

K

Kalman filter 315
kde.m 195
kernel density estimation 194–196,

202, 209, 224
Kolmogorov–Smirnov statistic 193,

214
Kronecker product 113, 303, 304, 306,

355
Kullback–Leibler distance 186

L

Langevin Metropolis–Hastings sampler
217

latent variable methods see auxiliary
variable methods

law of large numbers 87, 126
law of total probability 16
least-squares method 121–123, 215
likelihood 119, 157

Bayesian 220
binomial 157
complete-data 178
concentrated 285
normal 158
optimization 177
profile 183, 285, 293

limiting pdf 205
linear model 111, 168
linear regression model 105
linear transformation 76
local balance equations see detailed

balance equations
location family 166, 177
log-likelihood 160

logistic distribution 59, 257
logistic model 105
logistic regression 257
logit model 257

M

marginal likelihood 242
marginal pdf 63, 68, 83, 222, 233, 248
Markov

property 203
Markov chain 203–207, 210–212, 250,

313

ergodic 205
reversible 206

Markov chain Monte Carlo 202–213,
264, 266, 281

MATLAB

basic matrix operations 361–364
built-in functions 364–366
for-loop 367
function 368
function handle 367
graphics 368–372
if-then-else 366
optimization routines 372–374
sparse matrix routines 374–376
while-loop 366–367

matrix
covariance 74, 81, 83, 89, 164, 275,

295, 297, 299
matrix of Jacobi 78, 233, 248, 274, 379
maximum likelihood estimator 167–

175, 177
mean square error 150, 198
measurement equation 313
median 214

sample 197
memoryless property 40, 44, 58
method of moments 119, 120
Metropolis–Hastings algorithm 207–

211
mixture distribution 181, 195, 214
mixture model 181–182
mode 167, 221
model

Analysis of Variance (ANOVA)
107–111

autoregressive moving average 277,
292

binomial 99, 131
exponential 105
hierarchical Bayesian model 221, 322
linear regression 105

logistic 105
multinomial 232
multiple linear regression 103, 112
nested 244
normal linear 85, 111–114, 121, 133,

137, 144, 151, 228
power law 105
probability 10, 117
randomized block design 139
regression 100–107
response surface 105
selection 110, 137, 141, 242, 278
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simple linear regression 102, 111,
123, 134

single-factor ANOVA 108, 139
state space 313
stochastic volatility 329–336
time-varying parameter autoregressive

323–329
two-factor ANOVA 110
unobserved components 315–323
Weibull 106
zero inflated Poisson 249

moment 32

sample- 119
moment generating function (MGF)

35, 83, 88, 93
Monte Carlo

integration 126
sampling 189–218

Monty Hall problem 13
moving average 279, 287

integrated 291
multinomial distribution 66, 179, 213,

232
multinomial model

Bayesian 232
multiple linear regression 103, 112
multivariate normal distribution

79–86, 92, 102, 297

N

natural exponential family 148
neighborhood structure 217
nested model 244
Newton’s binomial formula 38
Newton–Raphson method 175

noncentral χ2 distribution 85
nonlinear regression 105, 183, 215
normal distribution 45, 56, 78, 80

generating from 79
positive 55, 69, 366–367

normal equations 122
normal linear model 85, 111–114, 121,

133, 137, 144, 151, 256
Bayesian 228

normal model
two-sample 100, 108, 129

nuisance factor 111
null hypothesis 135

O

observed information matrix 258
orthogonal matrix 92

P

p-value 136, 189
partial derivative 379
partition 15
Pearson’s height data 101
pivot variable 124
plot.m 4
Poisson distribution 34, 40
Poisson regression 272
polynomial regression 105

pooled sample variance 129
positive normal distribution 55, 69,

366–367
posterior

mean 221
mode 221

posterior pdf 117
asymptotic normality 239

power law model 105
precision matrix 297
predicted residual 143
predictive pdf 251
predictor 101
prior pdf 219, 240

improper 227
uninformative 225

probability 3, 5, 9–11
probability density function (pdf)

discrete joint 62

conditional 65
continuous 28

discrete 27

probability distribution 25
continuous 28
discrete 27

probability generating function (PGF)
34

probability model 10, 117
probit model 263
product rule 14, 65, 69, 203, 221, 236
profile likelihood 183, 285, 293
projection matrix 93, 122, 143
pseudo-inverse 122, 231

Q

quad.m 60
quotient of independent random

variables 68

R

radius of convergence 34
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rand.m 4, 68
randn.m 56
random

experiment 3, 5, 10
number generator 51
vector 76

random variable 23

continuous 25, 28
discrete 25, 107
functions of 75
quotient of 68
range 25

random vector 61
transformation 78

random walk sampler 209
randomized block design 139
range

of a random variable 25
rank 122
ratio estimator 90, 201
reduction of data 146
regression

line 102
model 100–107
multiple linear 103

nonlinear 105, 183, 215
polynomial 105

simple linear 102, 104, 199
reliability 8
replacement

drawing with or without — 19
resampling 196, 198
residuals 122, 143, 278
response surface model 105
response variable 101
reversibility 206
R2 see coefficient of determination

S

sample
correlation coefficient 120, 121, 151
mean 118, 119
median 197
standard deviation 120

variance 119, 120, 199
pooled 129

sample space 5

continuous 11
discrete 10

Savage–Dickey density ratio 244
score

efficient 163

function 160, 163

interval 169, 170
seed 51
simple linear regression 102, 111, 123,

134
sort.m 21
sparse matrix 285, 289, 297, 319, 374
spreadsheet 112
standard deviation 32

sample 120

standard normal distribution 45
state space model 313

initial condition 316
stationarity 279, 281
statistic 118, 135

sufficient see sufficient statistic
statistical model 98
statistical test

goodness of fit 213
steps for 125, 136

statistics 3, 5
Bayesian 117
classical 117

stochastic volatility model 329–336
Student’s t distribution 49, 86, 127,

129, 256
multivariate 261, 275

sufficient statistic 146, 147, 149, 183
sum rule 9, 10, 16, 26, 27, 62, 63

T

target distribution 202
Taylor’s theorem 88

multidimensional 90, 104, 171, 172,
174, 175, 381

test statistic 135
time series 277–295, 313–336
time-varying parameter autoregressive

model 323–329
tower property 75
transformation

of data 107
transformation rule 76, 78, 233
transition

density 203
equation 313
graph 204

trimmed mean 214
truncated normal distribution 269, 275
two-sample

binomial model 99, 132
normal model 100, 108, 129
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U

unbiased estimator 118
uniform distribution 42, 183

discrete 58
unobserved components model

315–323

V

variance 32

properties 33, 35, 36, 73, 74, 91

sample 119, 120, 199

W

Weibull
distribution 60, 184, 193
model 106

Z

zero inflated Poisson 249


