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Abstract

Importance sampling is a popular Monte Carlo method used in a variety of areas in

econometrics. When the variance of the importance sampling estimator is infinite,

the central limit theorem does not apply and estimates tend to be erratic even

when the simulation size is large. We consider asymptotic trimming in such a

setting. Specifically, we propose a bias-corrected tail-trimmed estimator such that

it is consistent and has finite variance. We show that the proposed estimator is

asymptotically normal, and has good finite-sample properties in a Monte Carlo

study.
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1 Introduction

Importance sampling is widely used in econometrics to estimate integrals that do not

have closed-form solutions. This Monte Carlo technique is especially important in max-

imum likelihood estimation of latent variable models—such as stochastic volatility and

discrete choice models—where it is used to approximate intractable likelihood functions.

Examples of maximum likelihood estimators computed using importance sampling for

stochastic volatility models include Sandmann and Koopman (1998) and Koopman and

Hol Uspensky (2002); for discrete choice models, see, e.g., Geweke, Keane and Runkle

(1994) and Hajivassiliou and McFadden (1998). In the Bayesian literature, importance

sampling is used in a variety of areas, including model comparison (e.g., Frühwirth-

Schnatter, 1995; Frühwirth-Schnatter and Wagner, 2008; Chan and Eisenstat, 2015) and

posterior simulation (e.g., Hoogerheide, Opschoor and Van Dijk, 2012; Pitt et al., 2012;

Tran et al., 2014).

In his seminal paper, Geweke (1989) cautions that importance sampling should only

be used when one can ensure the variance of estimator is finite. This is because when

this finite variance condition fails, the central limit theorem does not apply, and the

importance sampling estimator converges slower than the usual parametric rate. Even

though in principle the estimator remains consistent, in practice it can be strongly biased

and erratic even when the simulation size is huge. Despite these warnings, practitioners

often ignore to check the finite variance condition, as it is challenging to verify in high-

dimensional settings.

Koopman, Shephard and Creal (2009) make an important contribution by proposing a

test to assess the validity of this finite variance assumption. However, it is not clear how

one should proceed when the finite variance condition fails. This paper proposes a way

forward in such settings. We ask if the original infinite-variance estimator can be modified

such that the new estimator is consistent, and more importantly, asymptotically normal.

To that end, we consider asymptotic trimming (see, e.g., Hill, 2010, 2013). Specifically,

we trim the right tail of the importance sampling weights in a way that the tail-trimmed

estimator converges to the estimand faster than the untrimmed estimator. Trimming

large importance sampling weights obviously introduces bias, and we show that this bias

dominates the variance asymptotically. To overcome this problem, we propose a biased-

corrected tail-trimmed estimator that has finite variance. We further prove that this

estimator, after proper studentization, is asymptotically normal.

We demonstrate the good properties of the proposed estimator in a Monte Carlo study.
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We show that in cases when the variance of the original importance sampling estima-

tor does not exist, its sampling distribution can be highly skewed. In contrast, the

biased-corrected tail-trimmed estimator performs substantially better with an approxi-

mate normal distribution. We illustrate the proposed methodology with an application

on fitting daily financial returns using a standard stochastic volatility model.

2 Importance Sampling

Importance sampling is a variance reduction technique that can be traced back to Kahn

and Marshall (1953) and Marshall (1956). Kloek and Van Dijk (1978) appear to be the

first application of importance sampling in econometrics. To define importance sam-

pling, suppose we wish to evaluate the following integral that does not have an analytical

expression:

Ψ =

∫

X
H(x)f(x)dx < ∞,

where x is a k × 1 vector, H is a function mapping from R
k to R, and f is a density

function with support X ⊂ R
k. Let g be another density function that dominates Hf ,

i.e., g(x) = 0 implies that H(x)f(x) = 0. Then, Ψ can be rewritten as

Ψ =

∫

X
H(x)

f(x)

g(x)
g(x)dx.

Therefore, we can estimate Ψ by the importance sampling estimator :

Ψ̂n =
1

n

n∑

i=1

H(Xi)f(Xi)

g(Xi)
, (1)

where X1, . . . ,Xn are independent draws from the density g, which is often called the

importance sampling density.

It is easy to see that EgΨ̂n = Ψ, where we make it explicit that the expectation is taken

with respect to g. In addition, Ψ̂n is a consistent estimator of Ψ. We refer the readers to

Kroese, Taimre and Botev (2013) for a more detailed discussion of importance sampling.

For later reference, we define W (X) = H(X)f(X)/g(X) and write W (Xi) as simply Wi

hereafter.
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2.1 Testing for Existence of Variance

One can establish the asymptotic distribution of the importance sampling estimator Ψ̂n

if Wi has a finite second moment. However, this is difficult to verify in practice. This

problem has been recognized by Monahan (1993, 2001) and Koopman, Shephard and

Creal (2009). In particular, Monahan (1993, 2001) provides a test for the existence of

the second moment of Wi when the right tail of |Wi| satisfies the condition

1− F (w) = cww
−α [1 +O

(
w−β

)]
(2)

as w → ∞, where cw, α and β are positive constants, and F is the cumulative distribution

function of |Wi|. It follows from (2) that E|Wi|j < ∞ if j < α and E|Wi|j = ∞ otherwise.

Consequently, testing the existence of the second moment is equivalent to testing α > 2.

Alternatively, Koopman, Shephard and Creal (2009) construct a test statistics from the

maximum likelihood estimates of the generalised Pareto distribution with density

f(z; ξ, η) = η−1
(
1 +

z

ξη

)−(ξ+1)

,

for z ∈ D(ξ, η) > 0, η > 0, where

D(ξ, η) =

{
[0,∞) ,

[0,−ηξ] ,

ξ ≥ 0,

ξ < 0.

The parameter ξ here plays the same role as α above. In fact, the generalised Pareto

satisfies equation (2), with α = ξ, β → ∞ when ξ > 0.1

In our context H is the likelihood function and therefore Wi = H(Xi)f(Xi)/g(Xi) ≥ 0.

From here onwards we assume Wi is bounded from the left, i.e., there exists a positive

number cl that Wi > −cl, and we only need to discuss the right tail of Wi.

Below we formally present the assumptions and results in Monahan (1993, 2001). These

assumptions are also needed when we develop our bais-corrected tail-trimmed estimator

in the following sections.

To motivate the test in Monahan (1993, 2001), we first consider the following technical

conditions.

1The result can be seen by a change of variable w = z + ξη. Then the density function of w becomes

f(w; ξ, η) = η−1(ξ−1w/η)−ξ−1, for z ∈ D̃(ξ, η) > 0, η > 0, where D̃(ξ, η) =

{
[ξη,∞) ,
[ξη, 0] ,

ξ ≥ 0,
ξ < 0.
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Assumption 1 There exists a positive number cl such that Wi > −cl. In addition, we

assume E (Wi) = Ψ < ∞ and

P (Wi > w) = L (w)w−α
(
1 + o

(
w−β

))
,

as w → ∞, α, β > 0 and L (w) is a slowly varying function.2

Assumption 2 Let {mn} be a sequence of positive integers such that mn → ∞ and

mn = o
(
n2β/(2β+α)

)
as n → ∞.

Assumption 3 The random vectors {Xi} are independent and identically distributed.

Next, we discuss the estimation of α. To that end, we define the following quantities

F̄ (y) = 1− F (y) ,

b
(
y−1
)

= F← (1− y) ,

where F← (y) = inf {w : F (w) ≥ y} , 0 < y < 1. We define the sample order statistics

W(i) of from W1, . . . ,Wn such that W(1) ≥ W(2) ≥ · · · ≥ W(n).

One popular estimator of α proposed by Hill (1975) is:

α̂−1 =
1

mn

mn∑

i=1

(
logW(i) − logW(mn)

)
, (3)

where mn → ∞, mn/n → 0 as n → ∞.

Assumptions 1–3 are one set of sufficient conditions for the asymptotic normality of α̂.

The role of β in Assumption 1 and Assumption 2 is to ensure that α̂ is asymptotically

normal. For a more detailed discussion on the sufficient conditions for the asymptotic

normality of α̂, see Haeusler and Teugels (1985).

Under Assumptions 1–3, the asymptotic normality of α̂ can be established. We summarize

this result in the following theorem.

Theorem 2.1 Under Assumptions 1–3, we have

m1/2
n

(
α̂−1 − α−1

)
/α−1

d→ N (0, 1).
2Slow variation is defined by limw→∞ L (aw) /L (w) = 1, for any a > 0. For more details and examples,

see Resnick (1987).
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The above theorem is a direct result of Corollary 4 in Haeusler and Teugels (1985).

Here the convergence rate of α̂−1 is m
1/2
n . Assumption 2 restricts mn such that mn =

o
(
n2β/(2β+α)

)
. It implies that the larger the value α has—corresponding to a thinner tail

of Wi—the slower the convergence rate of α̂−1 can possibly achieve. The parameter β also

plays an important role here. However, the estimation of β is unfortunately very hard;

to the best of our knowledge, its estimation remains an open question in the literature.

Finally, Monahan (1993, 2001) proposes testing the existence of the second moment of

Wi using the following test.

H0 : α ≥ 2 versus H1 : α < 2. (4)

If H0 is rejected, we then conclude that the variance of the importance sampling estimator

is infinite.

We can proceed the hypothesis test in (4) using Theorem 2.1. Specifically, we construct

a test statistic m
1/2
n (α̂−1 − 2−1) /α̂−1. Since this test statistic is asymptotically normal,

we calculate the P-value as 1−Φ
(
m

1/2
n (α̂−1 − 2−1) /α̂−1

)
, where Φ(·) is the cumulative

distribution function of the standard normal distribution.

2.2 A Tail-Trimmed Estimator

If α is larger than 2, then the variance of the importance sampling estimator exists. It

follows that the estimator converges to Ψ at the usual parametric rate and is asymptot-

ically normal. Conversely, if the test rejects the null hypothesis that α ≥ 2, then the

central limit theorem does not apply and one might need a prohibitively large simulation

size to obtain a reliable estimate.

A natural question is: how can we proceed in the latter scenario? The literature has

focused on providing a test of H0 and has not offered any solution if H0 is rejected. We aim

to take a first step in filling this gap. Specifically, we consider tail trimming, i.e., dropping

some large values of Wi, in a such way that the resulting tail-trimmed estimator converges

to Ψ faster than otherwise. More importantly, the modified estimator is asymptotically

normal after proper studentization.

To that end, let {kn} be an intermediate order sequence. That is, kn → ∞ and kn/n → 0
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as n → ∞. We define a sequence {ln} as the (1− kn/n)-th quantile of Wi, i.e.,

F̄ (ln) =
kn
n
.

Next, we consider the following tail-trimmed estimator:

Ψ̂∗n =
1

n

n∑

i=1

WiI(Wi < W(kn)), (5)

where I(·) is the indicator function. In other words, the estimator Ψ̂∗n drops the largest

kn values of Wi.

Obviously, Ψ̂∗n is biased downward. To discuss the bias and variance, letW ∗
n,i = WiI(Wi <

ln). Then the bias Bn and the variance S2
n of the tail-trimmed estimator are, respectively,

Bn = E[WiI(Wi ≥ ln)], S2
n = E

(
[W ∗

n,i − EW ∗
n,i]

2
)
.

Below we derive the asymptotic distribution of Ψ̂∗n. For that purpose, we consider the

following technical assumption.

Assumption 1′ There exists a positive number cl such that Wi > −cl. In addition, we

assume E (Wi) = Ψ < ∞ and

P (Wi > w) = L (w)w−α (1 + o (1)) ,

as w → ∞, cw, α, β > 0 and L (w) is a slowly varying function.

Assumption 1′ imposes a tail restriction on Wi that is similar to, but weaker than, that

in Assumption 1. We are able to do it because the stronger restriction in Assumption 1

is only used to ensure the asymptotic normality of α̂−1, which is not needed here.

Remark 1 (Assumptions on tails) The literature on heavy-tailed problems is huge.

Assumptions 1 and 1′ are some of the most popular sets of assumptions used to study

these problems. Similar conditions have been imposed to analyze problems in production

frontiers (see Daouia, Florens and Simar, 2010, and references therein), auctions (Hill

and Shneyerov, 2013), Value at Risk (Linton and Xiao, 2013), data networks (Leland et

al., 1994), and many others. However, it is very hard to verify these two assumptions

in most cases. For the simple example in the simulation section (see Section 3), we
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verify Assumption 1′ in Appendix A and we show that Assumption 1′ is satisfied with

α = (1 + ǫ1) /ǫ1. For a slightly more general multivariate case

f (x) = (2π)−d/2 exp

(
−

d∑

j=1

x2
j

2

)
,

g (x) = (2π)−d/2 Πd
j=1 (1 + ǫj)

1/2 exp

(
−

d∑

j=1

(1 + ǫj) x
2
j

2

)
, and H (x) = 1,

where d is a positive integer, ǫj > 0 for all 1 ≤ j ≤ d, and x = (x1, x2, . . . , xd)
′, we show

in Appendix A that Assumption 1′ is satisfied with α = (1 + max{ǫj}dj=1)/max{ǫj}dj=1.

The following theorem establishes the asymptotic normality of Ψ̂∗n, even when Wi does

not have a finite variance.

Theorem 2.2 Suppose 1 < α ≤ 2, kn → ∞ and kn/n → 0 as n → ∞.. Under

Assumptions 1′ and 3,

n1/2S−1n

(
Ψ̂∗n −Ψ+ Bn

)
d→ N (0, 1).

The proof is given in Appendix C.

Remark 2 (Multivariate case) For multivariateX,W remains a scalar. Consequently,

everything would go through exactly as in the univariate X case. As noted in the litera-

ture, the heavy-tailed problem may happen more frequently and may be more severe for

multivariate X, because an appropriate choice of g is much harder. This can be seen from

the simple k-variates example in Remark 1 where α is determined by the worse dimension

of X. The convergence rate is likely to be slower, with a smaller α, for multivariate X.

However, although the initial choice of g is hard in multivariate case, once g or a class of

g is fixed, our analysis can be carried out exactly as in the univariate case.

Even though the tail-trimmed estimator Ψ̂∗n is asymptotically normal, the bias Bn dom-

inates its distribution. We derive an approximate expression for Bn below. As an il-

lustration, we strengthen the distribution condition in Assumption 1′ to 1 − F (w) =
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cww
−α [1 +O

(
w−β

)]
as w → ∞ and cw, α, β > 0, then we have

Bn = E[WiI(Wi ≥ ln)] ≈
∫ kn/n

0

b
(
u−1
)
du

≈ c1/αw

α

α− 1

(
kn
n

)−1/α+1

=
α

α− 1

kn
n
ln. (6)

In the case when 1 < α < 2, we have S2
n ≈ K(n/kn)

1/α−1 for some constant K. Hence,

the ratio of the bias and standard deviation is given by

n1/2Bn

Sn

≈ n1/2

[
K

(
n

kn

)2/α−1
]−1/2(

n

kn

)1/α−1
≈ K−1/2k1/2

n ,

which tends to infinity as n → ∞. This implies that the bias Bn dominates the distribu-

tion of Ψ̂∗n asymptotically. Consequently, it is vital to correct for this bias. In the next

section, we consider a bias-corrected version of the tail-trimmed estimator.

2.3 Bias-Corrected Tail-Trimmed Estimator

In this section we introduce the bias-corrected tail-trimmed estimator and show that it

is asymptotically normal. To that end, we need to restrict the tails of the importance

sampling estimator to satisfy Assumption 1 instead of Assumption 1′—the former is

needed to establish the convergence rate of α̂.

It follows from (6) that a natural estimator for the bias is:

B̂n =
α̂

α̂− 1

kn
n
W(kn), (7)

where we use W(kn) as an approximation of ln. Then, the bias-corrected estimator is given

by

Ψ̂(b)
n = Ψ̂∗n + B̂n. (8)

To derive a central limit theorem for Ψ̂
(b)
n , we impose the following technical condition on

kn:

Assumption 4 Let {kn} be a sequence of positive integers such that kn → ∞ and
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kn/mn → 0 as n → ∞.

Recall that the sequence {mn} is used to estimate α in (3). Under Assumption 4, mn

diverges faster than kn so that the first step estimation of α does not affect the asymptotics

of the bias-corrected estimator Ψ̂
(b)
n . This can be seen from Theorem 2.1, where the

convergence rate of α̂ is m
1/2
n . In the case where we choose kn to be the same order of

mn, the asymptotic distribution of Ψ̂
(b)
n remains normal, but the asymptotic variance has

a complicated expression. For more details, see Peng (2001).

Under Assumption 4, the estimation of α does not affect the asymptotics of Ψ̂
(b)
n . However,

the use of W(kn) in B̂n introduces a term in the influence function of Ψ̂
(b)
n , which affects

the asymptotic variance. We define

Υn,t =

(
W ∗

n,i − EW ∗
n,i,

n1/2

k
1/2
n

[I(Wi > ln)− P(Wi > ln)]

)′
,

Tn =

(
1,− 1

α− 1

k
1/2
n

n1/2
ln

)′
.

Then, the asymptotic variance of the bias-corrected estimator is given by

Vn = T′nΩnTn,

where Ωn = E
[
Υn,tΥ

′
n,t

]
.

Finally, we state the central limit theorem for Ψ̂
(b)
n below. The proof is given in Appendix

C.

Theorem 2.3 Suppose Assumptions 1−3 and 4 hold, then we have

n1/2V −1n

(
Ψ̂(b)

n −Ψ
)

d→ N (0, 1).

Remark 3 (A limitation) Our bias correction method would not work when only the

first moment of f(X)/g(X) exists. For example, if f is a Student-t distribution and f a

normal density, then the highest order of finite moments of f (X) /g (X) is 1. It means

that α = 1 if we use our tail assumption to approximate the tail of f (X) /g (X) . Since

the denominator in our bias correction term involves α̂− 1, the bias correction term does

not exist in this case. More generally, our bias correction method would not work if one

adopts a very “bad”choice of g such that only the first moment of f (X) /g (X) exists.
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Remark 4 Estimating α is not an easy problem. The convergence rate of the estimates

of α can be slow because one only uses observations on the tails for the estimation. This

can affect the bias corrected estimator because the estimates of α appear in this estimator.

In the special case when X is a scalar and W (X) is monotonic in X, we propose a simple

alternative in Appendix B where we do not use the estimates of α to approximate the

bias from the trimming.

Here we discuss the choice of the tuning parameters mn and kn. Since in our context

n is the simulation size which the user controls, the exact choice of mn and kn is less

important. Our baseline recommendation is to set mn =
√
n log n and kn =

√
n. This

choice then satisfies Assumption 2 if 2β/(2β + α) > 1/2 and Assumption 4, and we can

establish Theorem 2.3. This seems to work well in the Monte Carlo study and it gives

reasonable results in our empirical illustration.

Below we discuss other alternatives. In general, the optimal—in the sense of minimizing

root mean square errors of α̂—data-driven procedure of choosing mn is difficult. This

is because the optimal choice depends critically on the second order tail behavior of Wi

(the unknown parameter β in our case), which is hard to verify in practice.

In one strand of the literature, Hall (1990), Gomes and Oliviera (2001) and Danielsson

et al. (2001) suggest bootstrap methods by further imposing certain strong conditions on

the tails. In another strand of literature, Resnick (1997) and Resnick and Starica (1997)

propose graphical tools—the Hill plot. Recently, Hill (2013) suggests similar methods

for the weakly dependent case. The bootstrap methods are computational intensive and

require stronger conditions on the tails, while the Hill plot is easy to construct but is

more ad hoc. However, both methods are often used in the literature (e.g., McNeil, 1997;

Drees, de Haan and Resnick, 2000; Danielsson et al., 2001).

Here we suggest an empirical rule to choose mn based on Daouia, Florens and Simar

(2010). More specifically, we locate a stable region in the alternative Hill plot of (u, α̂−1u ),

0 < u < 1, and

α̂−1u = (⌈nu⌉)−1
⌈nu⌉∑

t=1

(
logW(t) − logW(nu)

)
,

where ⌈x⌉ returns the smallest integer no less than x.

This alternative Hill plot is defined in Resnick and Starica (1997) and has nice prop-

erties and advantages over the original Hill plot; see Resnick and Starica (1997) for

details. To find the stable region, we calculate a sequence of estimates of α, namely,{
α̂1/L, α̂2/L, . . . , α̂1

}
.
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Then, to measure whether the sequence of estimates has become stable, we compute the

standard deviation of a rolling-window of estimates as follows:

sdi =

√
Var

(
α̂i/L, . . . , α̂(i+(0.05n)0.5)/L

)
, i = 1, . . . , L−

√
0.05n.

We then locate the “least volatile region” as the index i such that the standard deviation

attains the minimum, i.e., ı̂min = argmini{sdi}. Finally, we set mn =
⌈
nı̂min/L

⌉
.

For the choice of kn, we suggest taking kn = mn/ log n. The reason is twofold. First, this

choice is in line with Assumption 4. Second, a larger kn implies smaller Sn and Vn, which

in turn suggests a faster convergence rate of Ψ̂∗n and Ψ̂
(b)
n .

In the Monte Carlo experiments next section, we present results based on the baseline

recommendation of setting mn =
√
n log n and kn =

√
n. We also perform a robustness

check of the Monte Carlo results using the empirical rule discussed above, which are

reported in Appendix D. It turns out that the results are not sensitive to how mn and kn

are chosen.

3 Monte Carlo Experiments

In this section we investigate the properties of the proposed bias-corrected tail-trimmed

estimator via a series of Monte Carlo experiments. Recall that the goal is to estimate the

integral Ψ =
∫
X H(x)f(x)dx using importance sampling. Following Koopman, Shephard

and Creal (2009), we assume that f(x) is a Gaussian density and approximate it using

various Gaussian densities with thinner tails.

More specifically, we set f(x) to be N (0, 1) and take H(x) = 1. It is easy to see that

Ψ =
∫∞
−∞H(x)f(x)dx = 1. The importance sampling density g(x) is chosen to be

N (0, (1 + ǫ)−1) with ǫ > 0. Hence, the tails of g(x) are thinner than those of the

original density f(x). When ǫ is sufficiently large, the variance of the importance sampling

estimator becomes infinite. To show that, first note that the importance weight W (x) is

given by

W (x) =
f(x)H(x)

g(x)
=

1√
1 + ǫ

e
ǫ
2
x2

.
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It is easy to verify that Eg[W (X)] = 1. Next, we compute the second moment of W (x):

Eg[W (X)2] =

∫ ∞

−∞

1

1 + ǫ
eǫx

2 ×
√

1 + ǫ

2π
e−

1+ǫ
2

x2

dx

=
1√

2π(1 + ǫ)

∫ ∞

−∞
e−

1−ǫ
2

x2

dx.

It implies that Eg[W (X)2] < ∞ only if ǫ < 1. When ǫ ≥ 1, the variance of the importance

sampling estimator is infinite.

We consider three values of ǫ: 0.5, 1 and 3. Hence, only in the first case does the

unmodified importance sampling estimator Ψ̂n have a finite variance. In the baseline

case we set the tuning parameters for the bias-corrected tail-trimmed estimator as mn =√
n log n and kn =

√
n. These tuning parameters satisfy Assumptions 2 and 4. We also

perform a robustness check of these Monte Carlo results by using an empirical rule based

on the alternative Hill plot to choose mn and kn as discussed in Section 2.3. The results

are reported in Appendix D.

Figures 1-3 plot the sampling distributions of the importance sampling estimator Ψ̂n in (1)

and the bias-corrected tail-trimmed estimator Ψ̂
(b)
n in (8) under different settings. Each

data point in the histograms consists of an estimate using a simulation size of n = 10000,

and we use a total of 10000 independent estimates.
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Figure 1: Sampling distributions of the importance sampling estimator Ψ̂n (left panel) and

the proposed bias-corrected tail-trimmed estimator Ψ̂
(b)
n (right panel) with a simulation

size of n = 10000; ǫ = 0.5.

It is clear from Figure 1 that when the variance of Ψ̂n is finite and the central limit theorem

applies, the sampling distributions of both estimators are approximately Gaussian and

13



centered around the true value of 1. In fact, Table 1 below shows that the quantiles of

the two distributions are essentially identical.

Figure 2 depicts the results for ǫ = 1, when the variance of Ψ̂n is infinite and the central

limit theorem fails to apply. The sampling distribution of Ψ̂n is noticeably more skewed

with many large estimates, despite a substantial simulation size of n = 10000. In con-

trast, the sampling distribution of the tail-trimmed estimator Ψ̂
(b)
n remains approximately

Gaussian and is centered around the true value of 1. This is of course not surprising—the

right panel of Figure 2 is simply an empirical verification of the central limit theorem

proved in Theorem 2.3.

When ǫ = 3, the tails of the importance sampling density g(x) are substantially thinner

than those of f(x). Hence, it is of no surprise that the unmodified importance sampling

estimator Ψ̂n performs very poorly, with the largest estimate being over 26 times larger

than the true value. In fact, Table 1 shows that the 99th percentile of the estimates is

1.42. In other words, 1% of the estimates are over 42% larger than the true value.

In contrast, the proposed tail-trimmed estimator Ψ̂
(b)
n performs reasonably well even in

this severe setting. Although there seems to be a small finite-sample bias—the median

estimate is 0.968 compared to the true value of 1—its sampling distribution remains

approximately Gaussian and the mass of the density is concentrated between 0.9 and

1.05.
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Figure 2: Sampling distributions of the importance sampling estimator Ψ̂n (left panel) and

the proposed bias-corrected tail-trimmed estimator Ψ̂
(b)
n (right panel) with a simulation

size of n = 10000; ǫ = 1.
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Figure 3: Sampling distributions of the importance sampling estimator Ψ̂n (left panel) and

the proposed bias-corrected tail-trimmed estimator Ψ̂
(b)
n (right panel) with a simulation

size of n = 10000; ǫ = 3.

Table 1 also presents the quantiles of the two sampling distributions when the simulation

size is increased to n = 100000. The basic conclusions remain the same: when the

variance of Ψ̂n is finite, the properties of both estimators are essentially identical. When

the variance of Ψ̂n is infinite, its sampling distribution can be severely skewed with many

extremely large estimates, even when the simulation size is very large. On the other hand,

the proposed tail-trimmed estimator Ψ̂
(b)
n performs reasonably well with an approximate

Gaussian sampling distribution.

Table 1: Quantiles of the sampling distributions of the importance sampling estimator
Ψ̂n and the proposed bias-corrected tail-trimmed estimator Ψ̂

(b)
n .

n = 10000 n = 100000
ǫ = 0.5 min 1% 50% 99% max min 1% 50% 99% max

Ψ̂n 0.987 0.991 1.000 1.009 1.022 0.995 0.997 1.000 1.003 1.005

Ψ̂
(b)
n 0.985 0.991 1.000 1.007 1.017 0.995 0.997 1.000 1.003 1.004

ǫ = 1 min 1% 50% 99% max min 1% 50% 99% max

Ψ̂n 0.971 0.979 0.999 1.032 1.340 0.989 0.993 1.000 1.011 1.090

Ψ̂
(b)
n 0.971 0.979 0.996 1.016 1.031 0.987 0.992 0.998 1.005 1.010

ǫ = 3 min 1% 50% 99% max min 1% 50% 99% max

Ψ̂n 0.878 0.910 0.973 1.420 26.42 0.935 0.952 0.986 1.212 56.47

Ψ̂
(b)
n 0.881 0.915 0.968 1.039 1.098 0.947 0.959 0.982 1.009 1.031

Next, we study the empirical convergence rates of the two estimators under the settings

ǫ = 1 and ǫ = 3. Since the mean squared error for Ψ̂n does not exist for these settings,

15



we instead consider the interquartile range, defined as the difference between the 75th

percentile and the 25th percentile. For a normal random variable with variance σ2/n,

its interquartile range is 2z0.75
√

σ2/n, where z0.75 is the 75th percentile of the standard

normal distribution. Theorem 2.3 indicates that the convergence rate of the bias-corrected

tail-trimmed estimator Ψ̂
(b)
n depends of the tail parameter α and is typically slower than

the usual root-n rate.

Figure 4 plots the interquartile range (in log) against the simulation size n (in log) for both

estimators. In the case ǫ = 1, the slopes corresponding to Ψ̂n and Ψ̂
(b)
n are respectively

−0.439 and −0.455—the convergence rate of the proposed estimator is slightly faster.

When ǫ = 3, however, the difference becomes much larger—the empirical convergence

rates of Ψ̂n and Ψ̂
(b)
n become n0.274 and n0.359, respectively. These values imply that if

we want to halve the width of the interquartile range of Ψ̂
(b)
n , we need to increase the

simulation size by 5.5 times (compared to 4 times in usual settings). For Ψ̂n, however,

we need to increase the simulation size by 7.3 times.
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n

 

 
ǫ = 3

Φ̂n

Φ̂
(b)
n

Figure 4: The interquartile range (in log) against the simulation size n (in log) for the im-

portance sampling estimator Ψ̂n and the proposed bias-corrected tail-trimmed estimator
Ψ̂

(b)
n .

4 An Illustration

In this section we illustrate the performance of the bias-corrected tail-trimmed estimator

using an empirical application in which we fit a stochastic volatility model using daily

returns on the Standard & Poor 500 (S&P 500) index. Stochastic volatility models are

widely used to model financial returns. Notable early examples include Danielsson (1994),

Durbin and Koopman (1997) and Shephard and Pitt (1997).
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The daily returns on S&P 500 index are from September 2012 to August 2016. More

specifically, let Pt denote the S&P 500 index on day t. We compute the return on day t

as yt = 100 log(Pt/Pt−1). The standard stochastic volatility model is given as

yt = µ+ ǫyt , ǫyt ∼ N (0, eht), (9)

ht = µh + φh(ht−1 − µh) + ǫht , ǫht ∼ N (0, ω2
h), (10)

where the initial log volatility is initialized by h1 ∼ N (µh, ω
2
h/(1− φ2

h)).

We estimate this model using Markov chain Monte Carlo methods (e.g., Kim, Shepherd

and Chib, 1998). In particular, we obtain the posterior mean of the parameter vector

(µ, µh, φh, ω
2
h). We then evaluate the likelihood at this posterior mean by integrating out

the log volatility h = (h1, . . . , hT )
′ using importance sampling.

The importance sampling density is obtained by approximating the posterior distribution

of h given the parameters using a Gaussian distribution as in Durbin and Koopman

(1997). But instead of using the Kalman filter to obtain the importance sampling density,

band matrix routines as discussed in Chan and Grant (2016) and Chan (2017) are used.

Furthermore, independent draws from this Gaussian importance sampling density are

obtained using the precision sampler in Chan and Jeliazkov (2009), which is more efficient

than Kalman filter-based algorithms.

Figure 5 plots the sampling distributions of the importance sampling estimator log Ψ̂n

and the bias-corrected tail-trimmed estimator log Ψ̂
(b)
n . Each data point in the histograms

consists of an estimate using a simulation size of n = 100000.
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Figure 5: Sampling distribution of the importance sampling estimator log Ψ̂n (left panel)

and the proposed bias-corrected tail-trimmed estimator log Ψ̂
(b)
n (right panel) with a sim-

ulation size of n = 100000.
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As is evident from the figure, the sampling distribution of log Ψ̂n is substantially more

skewed even though the simulation size is n = 100000. In contrast, the sampling distri-

bution of the proposed estimator is less dispersed and remains approximately Gaussian.

Next, we plot in Figure 6 the sampling distribution of the ratio of the two estimators

Ψ̂
(b)
n /Ψ̂n. Here the same importance sampling weights are used to compute the two esti-

mates. Again each data point in the histogram consists of an estimate using a simulation

size of n = 100000.

The distribution is centered at around 1.6 with virtually no mass near unity, indicating

that the Ψ̂n estimates tend to be substantially smaller than those of Ψ̂
(b)
n . This suggests

that the original importance sampling estimator might underestimate the likelihood value

Ψ.
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Figure 6: Sampling distribution of the ratio Ψ̂
(b)
n /Ψ̂n with a simulation size of n = 100000.

5 Concluding Remarks and Future Research

We have proposed a way forward when an importance sampling estimator has an infinite

variance. Specifically, we have shown how one could modify the original infinite-variance

estimator to obtain a consistent estimator that is asymptotically normal. The proposed

estimator performed well in the Monte Carlo study as well as the empirical illustration.

In this paper we have only considered the case where independent samples are used to

compute the importance sampling estimate. In many Bayesian applications, MCMC
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draws are used instead—and by construction these draws are correlated. Hence, for

future work it would be worthwhile to first develop a similar test as Koopman, Shephard

and Creal (2009) for the weakly dependent case. In addition, it would also be fruitful to

consider asymptotic trimming in such a setting.
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Appendix A Verification of Assumption 1′ for the

Examples in Simulation Studies

A1 Univariate Case

For the univariate case, Assumption 1′ is equivalent to the following condition:3

lim
w→∞

P (Wi > aw)

P (Wi > w)
= a−α,

for α > 0. For notational convenience, let c1 =
1√
1+ǫ

and c2 =
ǫ
2
. Then,

P (Wi > aw) = P

(
c1e

c2X2
i > aw

)
= 2P

(
Xi >

√
1/c2 (log aw − log c1)

)

= 2

∫ ∞
√

1/c2(log aw−log c1)

1√
2π

exp

(
−(1 + ǫ) x2

2

)
dx.

By a similar calculation, we have

P (Wi > w) = 2

∫ ∞
√

1/c2(logw−log c1)

1√
2π

exp

(
−(1 + ǫ) x2

2

)
dx.

Hence, it follows that

lim
w→∞

P (Wi > aw)

P (Wi > w)
= lim

w→∞

∫∞√
1/c2(log aw−log c1)

1√
2π

exp
(
− (1+ǫ)x2

2

)
dx

∫∞√
1/c2(logw−log c1)

1√
2π

exp
(
− (1+ǫ)x2

2

)
dx

= lim
w→∞

√
1/c2 (logw − log c1)√
1/c2 (log aw − log c1)

(
aw

c1

)− 1+ǫ
2c2

/(
w

c1

)− 1+ǫ
2c2

= a
− 1+ǫ

2c2 = a−
1+ǫ
ǫ ,

where we apply L’Hopital’s Rule to obtain the second equality and we substitute in

c2 = ǫ
2
to get the last equality. We have therefore shown that Assumption 1′ holds for

the univariate example with α = 1+ǫ
ǫ
.

3For this result, see Resnick (1987).
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A2 Multivariate Case

We study the following simple multivariates case. Let

f(x) = (2π)−d/2 exp

(
−

d∑

j=1

x2
j

2

)
,

g (x) = (2π)−d/2 Πd
j=1 (1 + ǫj)

1/2 exp

(
−

d∑

j=1

(1 + ǫj) x
2
j

2

)
, and H (x) = 1,

where d is a positive integer, ǫj > 0 for all 1 ≤ j ≤ d, and x = (x1, x2, . . . , xd)
′. To

simplify analysis, we consider d = 2 for now. We first assume ǫ1 > ǫ2 > 0, and we deal

with the case ǫ1 = ǫ2 later. First

W (x) = (1 + ǫ1)
−1/2 (1 + ǫ2)

−1/2 exp

(
ǫ1x

2
1

2
+

ǫ2x
2
2

2

)
.

Let c1 = (1 + ǫ1)
−1/2 (1 + ǫ2)

−1/2 , c2 = (2π)−1 (1 + ǫ1)
1/2 (1 + ǫ2)

1/2. Then,

P (W > w) =

∫ ∫

ǫ1x2
1+ǫ2x2

2>2 log
(

w
c1

)
c2 exp

(
−1

2

[
(1 + ǫ1) x

2
1 + (1 + ǫ2) x

2
2

])
dx1dx2.

To calculate the above quantity, let

u = ǫ1x
2
1 + ǫ2x

2
2, v = (1 + ǫ1) x

2
1 + (1 + ǫ2) x

2
2. (A-11)

Then, we have

P (W > w) =

∫ ∫

u>2 log
(

w
c1

)
,
1+ǫ1
ǫ1

u≤v≤ 1+ǫ2
ǫ2

u

c2 exp

(
−1

2
v

) ∣∣∣∣
∂ (u, v)

∂ (x1, x2)

∣∣∣∣
−1

dvdu, (A-12)

=

∫ ∫

2
1+ǫ1
ǫ1

log
(

w
c1

)
<v≤2 1+ǫ2

ǫ2
log

(
w
c1

)
,2 log

(
w
c1

)
≤u≤ ǫ1

1+ǫ1
v

c2 exp

(
−1

2
v

) ∣∣∣∣
∂ (u, v)

∂ (x1, x2)

∣∣∣∣
−1

dudv

+

∫ ∫

v>2
1+ǫ2
ǫ2

log
(

w
c1

)
,

ǫ2
1+ǫ2

v≤u≤ ǫ1
1+ǫ1

v

c2 exp

(
−1

2
v

) ∣∣∣∣
∂ (u, v)

∂ (x1, x2)

∣∣∣∣
−1

dudv (A-13)

≡ P1 (w) + P2 (w) . (A-14)
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Solving equation (A-11), we obtain

x2
1 =

(1 + ǫ2) u− ǫ2v

ǫ1 − ǫ2
, x2

2 =
(1 + ǫ1) u− ǫ1v

ǫ2 − ǫ1
,

x1x2 =

√
[(1 + ǫ2) u− ǫ2v] [ǫ1v − (1 + ǫ1) u]

ǫ1 − ǫ2
.

Now we compute
∣∣∣ ∂(u,v)
∂(x1,x2)

∣∣∣ ,:

∣∣∣∣
∂ (u, v)

∂ (x1, x2)

∣∣∣∣ =

∣∣∣∣∣

(
2ǫ1x1 2ǫ2x2

2 (1 + ǫ1) x1 2 (1 + ǫ2) x2

)∣∣∣∣∣ = 4 (ǫ1 − ǫ2) x1x2

= 4
√

[(1 + ǫ2) u− ǫ2v] [ǫ1v − (1 + ǫ1) u].

Substitute this into equation (A-12), we have

P1 (w) =

∫ ∫

2
1+ǫ1
ǫ1

log
(

w
c1

)
<v≤2 1+ǫ2

ǫ2
log

(
w
c1

)
,2 log

(
w
c1

)
≤u≤ ǫ1

1+ǫ1
v

c2 exp
(
−1

2
v
)

4
√

[(1 + ǫ2) u− ǫ2v] [ǫ1v − (1 + ǫ1) u]
dudv,

P2 (w) =

∫ ∫

v>2
1+ǫ2
ǫ2

log
(

w
c1

)
,

ǫ2
1+ǫ2

v≤u≤ ǫ1
1+ǫ1

v

c2 exp
(
−1

2
v
)

4
√

[(1 + ǫ2) u− ǫ2v] [ǫ1v − (1 + ǫ1) u]
dudv.

We assume for now that L’Hopital’s Rule can be applied, and establish limw→∞
P(Wi>aw)
P(Wi>w)

as follows:

lim
w→∞

P (Wi > aw)

P (Wi > w)
= lim

w→∞

∂P (Wi > aw) /∂w

∂P (Wi > w) /∂w
. (A-15)
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First

∂P (Wi > aw)

∂w
=

∂P1 (aw)

∂w
+

∂P2 (aw)

∂w

=

∫

2
1+ǫ1
ǫ1

log
(

aw
c1

)
<v≤2 1+ǫ2

ǫ2
log

(
aw
c1

)





−1

2w

c2 exp
(
−1

2
v
)

4

√[
(1 + ǫ2) 2 log

(
aw
c1

)
− ǫ2v

] [
ǫ1v − (1 + ǫ1) 2 log

(
aw
c1

)]





dv,

=




∫

2
1+ǫ1
ǫ1

log
(

aw
c1

)
+h(w)<v≤2 1+ǫ2

ǫ2
log

(
aw
c1

)
−h(w)

+

∫

The rest




−1

2w

c2 exp
(
−1

2
v
)

4

√[
(1 + ǫ2) 2 log

(
aw
c1

)
− ǫ2v

] [
ǫ1v − (1 + ǫ1) 2 log

(
aw
c1

)]





dv,

≡ J (aw) +R (aw) ,

where h (w) is a function that only depends on w and both h (w) and h′ (w) are very

small such that

J (aw) +R (aw) = J (aw) (1 + o (1)) ,

for any fixed a > 1. Such h (w) can be e−w for example.4 Use this result,

lim
w→∞

∂P (Wi > aw) /∂w

∂P (Wi > w) /∂w
= lim

w→∞

J (aw) (1 + o (1))

J (w) (1 + o (1))
= lim

w→∞

J (aw)

J (w)
. (A-16)

4This is possible because we restrict it to a fixed a > 1, the term inside the integral is much bigger
than ce−w for any fixed a > 1 and a constant c, and

∫

2
1+ǫ1
ǫ1

log
(

aw

c1

)

<v≤2
1+ǫ2
ǫ2

log
(

aw

c1

)

1√[
(1 + ǫ2) 2 log

(
aw
c1

)
− ǫ2v

] [
ǫ1v − (1 + ǫ1) 2 log

(
aw
c1

)]dv

is a constant.
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Further

∂J (aw)

∂w

=
1

2w

(
2
1 + ǫ1
ǫ1w

+ h′ (w)

) c2 exp
(
−1

2

[
21+ǫ1

ǫ1
log
(

aw
c1

)
+ h (w)

])

4

√[
(1 + ǫ2) 2 log

(
aw
c1

)
− ǫ2

(
21+ǫ1

ǫ1
log
(

aw
c1

)
+ h (w)

)]
ǫ1h (w)

− 1

2w

(
2
1 + ǫ2
ǫ2w

− h′ (w)

) c2 exp
(
−1

2

[
21+ǫ2

ǫ2
log
(

aw
c1

)
− h (w)

])

4

√
ǫ2h (w)

[
ǫ1

(
21+ǫ2

ǫ2
log
(

aw
c1

)
− h (w)

)
− (1 + ǫ1) 2 log

(
aw
c1

)] .

Use the above result and note that limw→∞ log (aw) / log (w) = 1 and both h (w) and

h′ (w) are very small, we have

lim
w→∞

∂J (aw) /∂w

∂J (w) /∂w
= lim

w→∞

1+ǫ1
ǫ1

(
aw
c1

)− 1+ǫ1
ǫ1 − 1+ǫ2

ǫ2

(
aw
c1

)− 1+ǫ2
ǫ2

1+ǫ1
ǫ1

(
w
c1

)− 1+ǫ1
ǫ1 − 1+ǫ2

ǫ2

(
w
c1

)− 1+ǫ2
ǫ2

= a
− 1+ǫ1

ǫ1 . (A-17)

Since limw→∞
∂J (aw)/∂w
∂J (w)/∂w

exits and both numerators and denominators in equations (A-15)

and (A-16) go to zero, L’Hopital’s Rule can be applied in equations (A-15) and (A-16).

Equations (A-15) (A-16) and (A-17) show that

lim
w→∞

P (Wi > aw)

P (Wi > w)
= a

− 1+ǫ1
ǫ1 .

For the case when ǫ1 = ǫ2 = ǫ > 0, we can show

lim
w→∞

P (Wi > aw)

P (Wi > w)
= a−

1+ǫ
ǫ ,

where P (Wi > w) can be calculated by the following change of variables:

u = x2
1 + x2

2, v = x1/x2.

For the general d > 2 case, similar but much more tedious analysis leads to:

lim
w→∞

P (Wi > aw)

P (Wi > w)
= a

−
1+max{ǫj}d

j=1

max{ǫj}d

j=1 ,
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and Assumption 1′ is satisfied with α =
(
1 + max {ǫj}dj=1

)/
max {ǫj}dj=1 .
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Appendix B A Simple Alternative of Estimating the

Bias Term without Using α̂

The convergence speed of α̂ can be very slow, because we only use observations on tails for

estimation. α̂ may be volatile and this might lead to a volatile bias corrected estimator.

In this section, we suppose X is a scalar and W (X) is monotonic in X. In this case

(though rather restricted), we propose a simple alternative where we do not use α̂ for the

bias correction.

The idea is to estimate the bias term Bn by another importance sampling estimator.

Recall that Bn = E
[
WiI

(
Wi ≥ W(kn)

)]
=
∫
H f

g
≥W(kn)

H (x) f (x) dx. Then, we have

Bn = E

[
H (X)

f (X)

g
(
X |W ≥ W(kn)

)
]

and X ∼ g
(
x |W ≥ W(kn)

)
.

However, g(x |W ≥ W(kn)) is very hard to generate unless we assume a condition like the

following:

Assumption 5 Suppose X is a scalar. W (x) is strictly monotonic increasing for x >

cr1 > 0, and there exists a cr2 ≥ cr1 such that supx≤cr W (x) < W (cr2).

Under this assumption, W(1), ...,W(kn) is the same as W
(
X(1)

)
, ...,W

(
X(kn)

)
, for any

kn/n → 0, and

g
(
X |W ≥ W(kn)

)
= g

(
X |X ≥ X(kn)

)
.

A truncated X distributed as g
(
X |X ≥ X(kn)

)
can be generated without much difficulty.

We propose estimating Bn using

B̃n =
1

nB

nB∑

i=1

H (Xi)
f (Xi)

g
(
Xi|Xi ≥ X(kn)

) ,

and Xi ∼ g
(
x | x ≥ X(kn)

)
, nB → ∞.

Remark 5 One may estimate Bn by a simpler estimator without Assumption 5:

B̃n =
1

nB

nB∑

i=1

WiI
(
Wi ≥ W(kn)

)
, (B-18)
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where nB ≫ n. However, this estimator is extremely inefficient, because we use a tiny

potion of data to estimate Bn.

Remark 6 Assumption 5 enables us to generate a truncated X to estimate Bn using

all generated data. To serve the same purpose, one can impose similar assumptions

such that we can easily generate X from
{
X |W (X) ≥ W(kn)

}
. One can also impose

similar yet weaker assumptions such that we can a get a region of X that contains{
X |W (X) ≥ W(kn)

}
but is only slightly larger than

{
X |W (X) ≥ W(kn)

}
. We will not

lose much efficiency in this case. An extreme situation is discussed in Remark 5 where

we do not restrict X at all and the resulting estimator is highly inefficient.

The following theorem shows that the alternative estimator is asymptotically equivalent

to the original bias-corrected estimator.

Theorem B.1 Suppose n1/2S−1n

(
Ψ̂∗n − EΨ̂∗n

)
d→ N (0, 1) and n1/2S−1n

(
B̃n −Bn

)
= oP (1) .

Then, we have

n1/2S−1n

(
Ψ̂∗n + B̃n −Ψ

)
d→ N (0, 1).

The conditions n1/2S−1n

(
Ψ̂∗n − EΨ̂∗n

)
d→ N (0, 1) and n1/2S−1n

(
B̃n −Bn

)
= oP (1) can be

verified by the following low level assumptions. We note that, unlike the previous method

which relies critically on Assumption 1′ and α̂, one can potentially come up many other

low level assumptions such that this requirement is satisfied.

Lemma B.2 Suppose Assumptions 1′ and 5 hold and kn → ∞, nB → ∞, kn/n → 0,

nB/max
{
k
0.5α(α−1)−1

n , n
}

→ ∞, then we have n1/2S−1n

(
Ψ̂∗n − EΨ̂∗n

)
d→ N (0, 1) and

n1/2S−1n

(
B̃n − Bn

)
= oP (1).

The proof is in Appendix C.

Remark 7 This alternative method does not work for the case when α = 1, and it

becomes quite demanding if α is close to 1. We need an estimate of α to guide the

choice of nB, but we do not need it directly to estimate Bn. In practice, one can let

nB = log (n)max
{
k
0.5α̂(α̂−1)−1

n , n
}
. From the proof of the above lemma, we need to have

a much bigger nB, namely nB

/
max

{
nk

0.5(2−α)(α−1)−1

n , n
}

→ ∞, if we adopt B̃n from

equation (B-18).
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Appendix C Main Proofs

Below we apply the results in Hill (2013) to prove Theorem 2.2 and Theorem 2.3.

Proof of Theorem 2.2: We apply the same reasoning and derivations of Theorem 1.2

in Hill (2013). Using the notations in his proof, replace α,Ψ, Bn with κ, S, α−1E[ytI(yt <

−ln)], respectively. Also note that our standard deviation is denoted by Sn while his is

α−1Sn.

Since Hill (2013) deals with the more general dependent case—whereas we focus on the

independent case— Assumption N in Hill (2013) is automatically satisfied. Assumption

D and Assumption T required in Hill (2013) can be verified by using our Assumption 3

and Assumption 1′, respectively. Q.E.D.

Proof of Theorem 2.3: We again apply Theorem 2.1 in Hill (2013) by replacing α,Ψ, Bn

with κ, S, α−1E[ytI(yt < −ln)], respectively. Here our standard deviation is denoted by

Vn, whereas his is α
−1Vn. By the same reasoning as above, Assumption N’ in Hill (2013) is

automatically satisfied. Assumption D, Assumption T’ and (5)-(6) required in Hill (2013)

can verified by using our Assumption 3, Assumption 1, Assumption 4, and Assumption

2, respectively. Q.E.D.

Proof of Lemma B.2: n1/2S−1n

(
Ψ̂∗n − E

(
Ψ̂∗n

))
d→ N (0, 1) is a direct result from

previous theorems. We now prove n1/2S−1n

(
B̃n −Bn

)
= oP (1)

We choose nB such that it goes to infinity much faster than n, i.e., nB/n → ∞. For a fixed

n, the tail index of H (Xi)
f(Xi)

g(Xi|Xi≥X(kn))
is also α, because we can treat P

(
Xi ≥ X(kn)

)

as a constant for a fixed n. Given this,

B̃n =
1

nB

nB∑

i=1

H (Xi)
f (Xi)

g
(
Xi |Xi ≥ X(kn)

)

=
1

nB/G−
(
X(kn)

)
nB/G−(X(kn))∑

i=1

H (Xi)
f (Xi)

g
(
Xi |Xi ≥ X(kn)

)I
(
X̃i ≥ X(kn)

)
,

where X̃i is distributed as g, those X̃i that X̃i ≥ X(kn) are the same as Xi. The second

equality holds by hypothetically filling in those untruncated observations. To get nB

dropped observations (larger than X(kn)), we need nB/G
− (X(kn)

)
observations of Xi
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coming from the original g. The result from Linton and Xiao (2013) indicates5 that

B̃n −Bn = OP

([
nB/G

− (X(kn)

)]−(α−1)/α)
.

Therefore n1/2S−1n

(
B̃n −Bn

)
= OP

(
n1/2S−1n

[
nB/G

− (X(kn)

)](α−1)/α)
and n1/2S−1n

(
B̃n −Bn

)
=

oP (1) if n1/2S−1n

[
nB/G

− (X(kn)

)](α−1)/α → 0. Since kn/n ≈ G−
(
X(kn)

)
(≈ denotes equal

by first order approximation), we need nB/k
0.5α(α−1)−1

n → ∞ to ensure this condition

holds. Q.E.D.

5Linton and Xiao (2013) show the expected shortfall in time series framework. This result can be
applied to our iid case.
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Appendix D Additional Results: Robustness Checks

In this appendix we redo the Monte Carlo study in Section 3 by using an empirical rule

based on the alternative Hill plot to choose mn and kn discussed in Section 2.3. The

sampling distributions of Ψ̂n and Ψ̂
(b)
n for the cases ǫ = 0.5, ǫ = 1 and ǫ = 3 are reported

below. The results are very similar to those reported in Section 3 using the baseline

choice of mn and kn.
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Figure 7: Sampling distributions of the importance sampling estimator Ψ̂n (left panel) and

the proposed bias-corrected tail-trimmed estimator Ψ̂
(b)
n (right panel) with a simulation

size of n = 10000; ǫ = 0.5.
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Figure 8: Sampling distributions of the importance sampling estimator Ψ̂n (left panel) and

the proposed bias-corrected tail-trimmed estimator Ψ̂
(b)
n (right panel) with a simulation

size of n = 10000; ǫ = 1.
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Figure 9: Sampling distributions of the importance sampling estimator Ψ̂n (left panel) and

the proposed bias-corrected tail-trimmed estimator Ψ̂
(b)
n (right panel) with a simulation

size of n = 10000; ǫ = 3.

Table 2: Quantiles of the sampling distributions of the importance sampling estimator
Ψ̂n and the proposed bias-corrected tail-trimmed estimator Ψ̂

(b)
n .

n = 10000 n = 100000
ǫ = 0.5 min 1% 50% 99% max min 1% 50% 99% max

Ψ̂n 0.984 0.991 1.000 1.009 1.020 0.996 0.997 1.000 1.003 1.007

Ψ̂
(b)
n 0.985 0.991 0.999 1.008 1.015 0.995 0.997 1.000 1.003 1.005

ǫ = 1 min 1% 50% 99% max min 1% 50% 99% max

Ψ̂n 0.972 0.979 0.999 1.036 1.250 0.989 0.993 1.000 1.011 1.076

Ψ̂
(b)
n 0.971 0.978 0.996 1.016 1.032 0.990 0.993 0.999 1.007 1.012

ǫ = 3 min 1% 50% 99% max min 1% 50% 99% max

Ψ̂n 0.883 0.908 0.973 1.358 14.05 0.935 0.952 0.985 1.207 13.23

Ψ̂
(b)
n 0.885 0.912 0.964 1.049 1.280 0.940 0.961 0.989 1.037 1.103
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Frühwirth-Schnatter, S. and H. Wagner, (2008): “Marginal Likelihoods for Non-

Gaussian Models Using Auxiliary Mixture Sampling,”Computational Statistics and

Data Analysis, 52, 4608-4624.

Geweke, J., (1989): “Bayesian Inference in Econometric Models Using Monte Carlo

Integration,”Econometrica, 57, 1317-1339.

32



Geweke, J., M. Keane and D. Runkle, (1994): “Alternative Computational Ap-

proaches to Inference in the Multinomial Probit Model,”Review of Economics and

Statistics, 76, 609-632.

Gomes, M. I. and O. Oliviera, (2001): “The Bootstrap Methodology in Statistics of

Extremes — Choice of the Optimal Sample Fraction,” Extremes, 4, 331-358.

Haeusler, E., and J. L. Teugels, (1985): “On Asymptotic Normality of Hill’s Esti-

mator for the Exponent of Regular Variation,” Annals of Statistics, 13, 743–756.

Hajivassiliou, V. A. and D. L. McFadden, (1998): “The Method of Simulated

Scores for the Estimation of LDV Models,” Econometrica, 66, 863-896.

Hall, P., (1990): “Using the Bootstrap to Estimate Mean Squared Error and Select

Smoothing Parameter in Nonparametric Problems,” Journal of Multivariate Analysis,

32, 177-203.

Hill, B. M., (1975): “A Simple General Approach to Inference about the Tail of a

Distribution,” Annals of Statistics, 3, 1163–1174.

Hill, J. B., (2010): “On Tail Index Estimation for Dependent Heterogeneous Data,”

Econometric Theory, 26, 1398–1436.

Hill, J. B., (2013): “Expected Shortfall Estimation and Gaussian Inference for Infinite

Variance Time Series,” Journal of Financial Econometrics, 13, 1, 1–44.

Hill, J. and A. Shneyerov, (2013): “Are There Common Values in First-Price Auc-

tions? A Tail-Index Nonparametric Test,” Journal of Econometrics, 174, 144-164.

Hoogerheide, L., A. Opschoor and H. K. Van Dijk, (2012): “A Class of Adaptive

Importance Sampling Weighted EM Algorithms for Efficient and Robust Posterior and

Predictive Simulation,”Journal of Econometrics, 171(2), 101-120.

Kahn, H., and A. W. Marshall, (1953): “Methods of Reducing Sample Size in

Monte Carlo Computations,” Journal of the Operational Research Society of America,

1, 263–271.

Kim, S., N. Shepherd and S. Chib, (1998): “Stochastic Volatility: Likelihood Infer-

ence and Comparison with ARCHModels,”Review of Economic Studies, 65, 3, 361–393.

Kloek, T. and H. K. Van Dijk, (1978): “Bayesian Estimates of Equation System

Parameters: An Application of Integration by Monte Carlo,”Econometrica, 46, 1, 1-19.

33



Koopman, S. J. and E. Hol Uspensky, (2002): “The Stochastic Volatility in Mean

Model: Empirical Evidence from International Stock Markets,” Journal of Applied

Econometrics, 17, 667-689.

Koopman, S. J., N. Shephard, and D. Creal, (2009): “Testing the Assumptions

behind Importance Sample,” Journal of Econometrics, 149, 2–11.

Kroese, D. P., T. Taimre, and Z. I. Botev, (2013): Handbook of Monte Carlo

Methods, John Wiley & Sons, Hoboken.

Leland, W. E. M. S. Taqqu, W.Willinger, and D. V.Wilson, (1994): “On

the Self-similar Nature of Ethernet Traffic (extended version),” IEEE/ACM Trans.

Networking, 2-1, 1–15.

Linton, O. and Z. Xiao, (2013): “Estimation and Inference about the Expected

Shortfall for Time Series with Infinite Variance,” Econometric Theory, 29, 771-807.

Marshall, A. W., (1956): The Use of Multi-Stage Sampling Schemes in Monte Carlo

Computations, in Meyer, M. (Ed.), Symposium on Monte Carlo Methods. Wiley, New

York, pp. 123–140.

McNeil, A., (1997): “Estimating the Tails of Loss Severity Distributions Using Ex-

treme Value Theory,” Astin Bull, 27, 125-139.

Monahan, J. F., (1993): Testing the Behavior of Importance Sampling Weights, in:

Computer Science and Statistics: Proceedings of the 25th Annual Symposium on the

Interface. 112–117.

Monahan, J. F., (2001): Numerical Methods of Statistics, Cambridge University Press,

Cambridge.

Peng, L., (2001): “Estimating the Mean of a Heavy Tailed Distribution,” Statistics and

Probability Letters, 52, 255–264.

Pitt, M. K., R. Silva, P. Giordani, and R. Kohn, (2012): “On Some Properties of

Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter,” Journal

of Econometrics, 171, 134–151.

Resnick, S. I., (1987): Extreme Values, Regular Variation and Point Processes,

SpringerVerlag: New York.

Resnick, S. I., (1997): “Discussion of the Danish Data on Large Fire Insurance

Losses,”Astin Bull, 27, 139-151.

34



Resnick, S. I. and C. Starica, (1997): “Smoothing the Hill Estimator,”Advances in

Applied Probability, 29, 271-293.

Sandmann, G. and S. J. Koopman, (1998): “Estimation of Stochastic Volatility

Models via Monte Carlo Maximum Likelihood,” Journal of Econometrics, 87, 271-301.

Shephard, N. and M. K. Pitt, (1997): “Likelihood Analysis of Non-Gaussian Mea-

surement Time Series,” Biometrika, 84, 3, 653-667.

Tran, M. N., M. Scharth, M. K. Pitt, and R. Kohn, (2014): “Importance

Sampling Squared for Bayesian Inference in Latent Variable Models.”

35


	Introduction
	Importance Sampling
	Testing for Existence of Variance
	A Tail-Trimmed Estimator
	Bias-Corrected Tail-Trimmed Estimator

	Monte Carlo Experiments
	An Illustration
	Concluding Remarks and Future Research
	Verification of Assumption 1' for the Examples in Simulation Studies
	Univariate Case
	Multivariate Case

	A Simple Alternative of Estimating the Bias Term without Using "0362 
	Main Proofs
	Additional Results: Robustness Checks

